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Abstract

We consider planar flow involving two viscous fluids in a porous medium. One fluid is
injected through a line source at the origin and moves radially outwards, pushing the
second, ambient fluid outwards. There is an interface between the two fluids and if the
inner injected fluid is of lower viscosity, the interface is unstable to small disturbances
and radially directed unstable Saffman–Taylor fingers are produced. A linearized theory
is presented and is compared with nonlinear results obtained using a numerical spectral
method. An additional theory is also discussed, in which the sharp interface is replaced
with a narrow diffuse interfacial region. We show that the nonlinear results are in close
agreement with the linearized theory for small-amplitude disturbances at early times,
but that large-amplitude fingers develop at later times and can even detach completely
from the initial injection region.

2020 Mathematics subject classification: primary 76E17; secondary 76E30.

Keywords and phrases: viscous fingering, porous medium, radial outflow, unstable
interface.

1. Introduction

Suppose two different viscous fluids lie horizontally in a porous medium. There is
a sharp interface between the two fluids and it necessarily forms a flat horizontal
plane. The lower fluid has viscosity μ1 and the upper has viscosity μ2. Now the lower
fluid is caused to move vertically upwards with some constant speed, so that the top
fluid 2 is effectively being pushed upwards by bottom fluid 1. In a classical paper,
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Saffman and Taylor [25] carried out a linearized stability analysis of this problem
and showed that the horizontal interface between the two fluids would be unstable if
μ1 < μ2. Thus, when a less viscous fluid pushes a more viscous one, small disturbances
at the interface are unstable and grow exponentially fast in time, eventually forming
finger-like structures at the interface. Saffman and Taylor also investigated flow near
the nose of one of these fingers and confirmed their calculations by comparison
with experiment. Since their analysis made use of linearized theory, it is therefore
predicated on the assumption that perturbations to the initial interface shape remain
small as time progresses. Clearly this cannot remain true for unstable interfaces with
rapidly growing fingers and so there must be some time beyond which linearized
theory ceases to be valid. At later times, therefore, nonlinear effects will become
evident at the interface and its shape would need to be computed numerically. An
early attempt to do this was presented by Davidson [5]. Much has subsequently been
written about the Saffman–Taylor instability, and good reviews of the subject are given
by Homsy [14] and Couder [4].

The Saffman–Taylor instability, at least from the mathematical point of view, is
similar to several other unstable flow types in which an interface separates two fluids
with different material properties. Notable among these are Rayleigh–Taylor flows,
in which one fluid of high density lies above a second fluid of lower density. The
interface between them is again unstable and small perturbations to it rapidly develop
into fingers of the heavy fluid moving down, alternating with bubbles of the lighter
fluid floating upwards. Rayleigh–Taylor flows can form over vastly differing length
and time scales, ranging from the microscopic to galactic (see Kelley et al. [17]). As
a result, those types of interfacial instability have been the focus of intense research.
Rayleigh–Taylor flows are also possible in porous media, where the fluid density may
depend on factors such as temperature or the concentration of dissolved salts. A model
of this type has been presented by Trevelyan et al. [28] who considered density to
depend on the concentrations of two different solutes. More recently, Forbes et al. [9]
compared two nonlinear models for Rayleigh–Taylor flow in a porous medium and
demonstrated that including diffusion at a diffuse interface, with density dependent
on the concentration of a single solute, allowed very large amplitude unstable fingers
to form. Unlike the situation for regular fluids in contact at an interface, the fingers
formed in a porous medium did not possess overturning sections at their heads.
Because the Saffman–Taylor flow also involves fluid percolating through a porous
medium, it is therefore to be expected that the way in which fingers evolve at its
interface should be similar to those seen by Forbes et al. [9].

Saffman–Taylor flows are of interest in a number of practical situations. Exper-
imentally, they have been studied using the Hele–Shaw apparatus, which consists
of a viscous fluid confined between closely spaced parallel plates. This device
enables laboratory visualization of the long fingers that form at the interface when
a less-viscous fluid is forced into the apparatus that already contains an ambient fluid
of higher viscosity. Some images of finger evolution are displayed in the article by
Paterson [23], who found large-amplitude patterns when fluid was either injected or
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withdrawn radially in a Hele–Shaw cell. Instability and splitting of Saffman–Taylor
fingers in a Hele–Shaw cell are demonstrated in the experimental work of Tabeling
et al. [27]. Recently, Islam and Gandhi [15] have suggested that the fractal-like
branching networks found in biological systems and respiratory networks can be
fabricated in the laboratory by controlling spatial anisotropy in a Saffman–Taylor
experiment.

The original paper by Saffman and Taylor [25] considered an initially planar
interface between two horizontal fluid layers. Here, however, we instead focus on a
radial outflow, in which an inner fluid is injected through a line source placed at the
origin of some coordinate system. The flow through the porous medium is supposed to
be two-dimensional, similar to conditions in a Hele–Shaw cell [23], and the injected
fluid pushes the surrounding fluid outwards. Based on the original work of Saffman
and Taylor [25], it is to be expected that the circular interface between the two fluids
in radial flow should also be unstable if μ1 < μ2, that is, if the inner injected fluid
is less viscous than the outer ambient fluid. The interface will become progressively
more distorted with time, forming large-amplitude radially directed waves around its
circumference. Eventually, nonlinear effects will come to dominate the characteristics
of the outflow and the shapes of all the fingers at the interface. Miranda and Widom
[21] carried out a weakly nonlinear analysis of radial Saffman–Taylor flow, focussing
on the second-order terms in the expression for the interface shape. Their calculations
show that nonlinearity is responsible for three important qualitative changes to the
predictions of linearized theory alone. First, nonlinear effects allow coupling between
different Fourier modes, with the result that the fingers formed at the interface are
broader than linearization suggests, since superharmonic and subharmonic modes are
excited. Second, as a consequence of broadening of the fingers, splitting is to be
expected at the fingertips. A third consequence of nonlinearity (evident from their
Figure 4) is that regions of high curvature form at selected points of the interface
profile and this will be discussed more fully in Section 6.

Experimental observations confirm the first two of these effects of nonlinearity;
that is, as time progresses, the unstable fingers that form on the expanding interface
broaden as they develop and fingertip splitting then takes place. These effects are
particularly evident in the images presented by Chen [3], who injected either dyed
water or dyed oil into a Hele–Shaw cell, displacing ambient glycerine. After some
time, the injected fluid formed intricate patterns, with an interface that was almost
fractal in appearance, caused by repeated widening and splitting of the fingers at
smaller and smaller length scales.

The third consequence of nonlinearity, which we have identified above, relates
to the formation of regions of very high curvature at the interface, when the two
fluids are immiscible and a genuine sharp interface exists between them. Sorbie
et al. [26] refer to the difficulty experienced by researchers aiming to compute
immiscible viscous fingering by direct numerical solution of the governing partial
differential equations. They stress that they do not see this difficulty as arising from
issues relating purely to numerical accuracy or numerical instability, but rather that a
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deeper problem with the underlying physics is responsible. They were concerned to
create a practical method for modelling oil recovery in situations where oil trapped
underground in a porous medium was driven towards an extraction well using injected
water. This creates a Saffman–Taylor scenario with an elaborately fingered interface,
since the water has lower viscosity than the oil. They presented a semi-heuristic
scheme that allowed them to compute quantities of interest with two immiscible fluids
present.

This difficulty with computing the behaviour of a sharp interface between immis-
cible fluids is well known in other, similar, fluid instabilities. Moore [22] first showed
that a sharp interface between two different fluids can develop regions of very high
curvature and that, in fact, the curvature becomes infinite within some finite critical
time t = tC. His analysis was carried out for planar Kelvin–Helmholtz instability,
which occurs when two inviscid fluids move at different speeds either side of a
sharp interface. Moore used asymptotic analysis to estimate the critical time tC. His
formula indicates that tC decreases markedly as the amplitude of the initial disturbance
at the interface increases. Forbes [7] demonstrated that Moore’s [22] formula also
gave a good estimate for the critical time tC, at which a curvature singularity forms
at the interface in the planar Rayleigh–Taylor instability. Forbes [8] later computed
planar radial Rayleigh–Taylor outflow with less-dense fluid injected through a line
source into a more dense ambient fluid, in the analogous situation to the viscous
Saffman–Taylor instability discussed here. He showed that curvature singularities also
formed at the interface within finite time, when the two fluids did not mix and a sharp
interface was present. The physical model of the flow ceases to be valid beyond this
critical time, t > tC. Nevertheless, by changing the physical model to one in which
the two fluids were weakly miscible and replacing the sharp interface with a narrow
interfacial region across which the fluid density could change rapidly but smoothly,
Forbes [8] demonstrated that the miscible-fluid model could now continue beyond
the critical time t > tC. Radially directed fingers formed around the interface and,
after sufficient time, they formed overturning mushroom-shaped structures at their
heads.

It is therefore apparent that purely immiscible models of Saffman–Taylor instability
will not be appropriate for large times and that miscible models will be required.
Pritchard [24] carried out a linearized analysis for radial injection into a Hele–Shaw
cell, in the case when the viscosity of the fluid system varied continuously with
both temperature and the concentration of some solute; an explicit interface was not
included in this analysis and so the system is physically equivalent to a miscible
one in which there are finite-width interfacial zones. He found that there were two
moving fronts in his model, one where temperature changed rapidly from one state
to another and a second across which the concentration of the solute changed.
This gave two effective interfaces, either of which could exhibit unstable behaviour.
Iwasaki et al. [16] demonstrated experimentally that viscous finger formation in radial
Saffman–Taylor flow could be suppressed by using a system of two fluids in which
partial mixing across the interfacial zone could occur. Viscous fingering was also

https://doi.org/10.1017/S144618112400004X Published online by Cambridge University Press

https://doi.org/10.1017/S144618112400004X


[5] Radial viscous fingers in fluid injection 5

shown by Hinton and Jyoti [13] to be suppressed in a mathematical model in which
the two viscous fluids were allowed to form vertical buoyant plumes within a porous
medium in three-dimensional geometry.

In this present paper, we review in Section 2 the governing equations for a system
of two fluids in a porous medium in which a sharp interface is present. We develop a
linearized solution in Section 3 for radial Saffman–Taylor flow driven by a line source
at the origin. The base flow consists of a simple radial outflow with a circular interface
that moves outwards as time progresses and linearization consists of small-amplitude
perturbations to this flow. The linearized stability condition is presented in Section 3.1.
Linearization can be expected to give a good approximation to the Saffman–Taylor
flow so long as perturbations to the simple base flow remain small, but, as discussed
above, perturbations grow exponentially rapidly in unstable cases, so that linearization
soon loses validity and nonlinear effects then dominate. Accordingly, we present in
Section 4 a semi-numerical method for solving the fully nonlinear equations appro-
priate to the case of a sharp interface between two immiscible fluids. Large-amplitude
perturbations are allowed for in this model, but it is found that the numerical method
fails within finite time; as discussed above and consistent with Sorbie et al. [26], we
suggest this is a physical limitation in the immiscible model, rather than a numerical
issue, and we argue that curvature singularity at the sharp interface is responsible. For
this reason, we consider in Section 5 a third model in which the two fluids are now
miscible. This description of the problem treats the system as a single fluid in which
the viscosity varies continuously throughout the region. Fluid viscosity is supposed
to vary linearly with temperature and an additional convection–diffusion equation for
temperature is introduced into the problem description. There is therefore no longer
a sharp interface, but instead a narrow interfacial zone exists in the fluid, across
which the viscosity (and temperature) vary smoothly but rapidly from one value to
another. Results of these three models are presented and discussed in Section 6, with
each successive model having effectively evolved from the limitations of its prior. A
discussion concludes the paper in Section 7.

2. Governing equations for sharp-interface model

This section reviews the basic equations needed to describe the fully nonlinear
problem for the case in which two completely immiscible fluids meet at an infinites-
imally thin interface, described by some curve r = R(θ, t) in plane polar coordinates.
The system under consideration involves a porous material between two parallel plates
separated by a narrow gap of thickness 2h. The system therefore behaves as a porous
Hele–Shaw cell. A hole is present in the upper plate at the origin of a coordinate system
and one viscous fluid is injected through it into the medium, which is already suffused
with a different viscous fluid. The flow is assumed to be steady and incompressible
and the two fluids meet at an initially circular interface of radius a. Since the thickness
of the cell is small and the cell is oriented horizontally, the gravitational force on the
fluid is considered to be insignificant. We will assume that the fluid is slow moving
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FIGURE 1. Schematic diagram of the dimensionless Saffman–Taylor system with radial outflow. A line
source is present at the origin and injects fluid with unit flux. The unperturbed initial interface is the unit
circle (sketched with a dashed line, red online). The location of the (sharp) interface is r = R(θ, t) and β
represents the viscosity ratio.

and dominated by viscous friction. As a result, the fluid seepage velocity q is related
to the pore pressure p through Darcy’s law,

q = − k
μ
∇p, (2.1)

where k is the porosity of the medium (in this set-up: k = h2/3 [m2]). The quantity μ
represents the viscosity of the fluid and p denotes the pore pressure of the fluid within
the porous medium. The usual plane polar coordinates (r, θ) will be used, and these
are related to Cartesian coordinates (x, y) by means of the familiar relations x = r cos θ
and y = r sin θ.

From this point onwards, all variables will be nondimensionalized. Let us denote the
inner (injected) fluid as fluid 1 and the outer (displaced) one as fluid 2, with respective
viscosities μ1 and μ2. At the origin r = 0, fluid 1 is injected at volume rate Q and
this process is modelled using a simple line source. At the initial time t = 0, fluid 1
occupies a cylinder of radius a, which will be taken to be the length scale in the new
nondimensional coordinates. All times are referenced to the quantity (2πha2)/Q and
the appropriate scale for speed is Q/(2πha). Pressures are nondimensionalized using
the quantity (Qμ2)/(2πhk). In these dimensionless coordinates, the initial cylinder
containing inner fluid 1 has radius 1 and an important parameter is

β = μ1/μ2, (2.2)

which is the dimensionless ratio of the viscosities of the inner and outer fluids. A
definition sketch of this nondimensional system is given in Figure 1.

In dimensionless coordinates and variables, Darcy’s law (2.1) for inner fluid 1 takes
the form

q1 = −
1
β
∇p1 in 0 < r < R(θ, t), (2.3)
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and in outer fluid 2, the governing law is

q2 = −∇ p2 in r > R(θ, t). (2.4)

The two fluids each satisfy the mass-continuity equation

∇ · qj = 0 (2.5)

for j = 1, 2, in their appropriate domains. Since a line source is assumed to be present
at the origin, it follows that the fluid velocity there takes the form

q1 →
1
2r

er as r → 0. (2.6)

In this expression, er represents the unit vector pointing radially outwards from the
origin. In each fluid, it follows from conservation of mass (2.5) and Darcy’s law (2.3)
or (2.4) that the pressure within each fluid satisfies Laplace’s equation

∇2pj = 0 for j = 1, 2. (2.7)

The interface, located at r = R(θ, t), is subject to three boundary conditions. Two of
these are kinematic, expressing the fact that neither fluid is free to cross the interface
and enter into the domain of the other fluid. This gives rise to conditions

uj =
∂R
∂t
+

vj

R
∂R
∂θ

on r = R(θ, t), j = 1, 2. (2.8)

There is also a dynamic condition at the interface and it indicates that the jump in
pressure across that surface is due to the surface tension there. This is written as

p2 − p1 = −σκ on r = R(θ, t). (2.9)

The dimensionless constant

σ =
2πhkγ
μ2aQ

(2.10)

is a surface-tension parameter and the function

κ =
R2 + 2R2

θ − RRθθ
[R2 + R2

θ]
3/2

(2.11)

is the curvature of the interface.

3. Linearized solution

To approximate the behaviour of this nonlinear system with the solution to a simpler
linearized problem, we assume that the system behaves as a small perturbation to a
known, basic outflow. The obvious background flow in this situation is one in which
the velocity in both fluid layers is simply the outflow (2.6) generated by the line source
and presumed to hold everywhere. To complement this velocity vector, we assume that
the background interface shape remains circular, with expanding radius R0(t). Thus,
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u(0)
j (r) =

1
2r

; v(0)
j (r) = 0, j = 1, 2, (3.1)

and the kinematic condition (2.8) reduces to

∂R0

∂t
=

1
2R0

. (3.2)

This simple equation (3.2) is integrated, under the assumption that the initial bubble
radius was R0(0) = 1, and shows that the injection source causes the background
bubble radius to increase with time, according to

R0(t) =
√

1 + t. (3.3)

The pore pressures associated with this background flow are obtained by substituting
the velocity components u(0)

j and v(0)
j from (3.1) into the two dimensionless forms (2.3)

and (2.4) of Darcy’s law. This gives

p(0)
1 (r, t) = −β

2
ln(r) + f1(t) in 0 < r < R0(t),

p(0)
2 (r, t) = −1

2
ln(r) + f2(t) in r > R0(t).

(3.4)

Here, the two quantities f1(t) and f2(t) are arbitrary functions of integration.
We suppose that some small perturbation is now made to this underlying back-

ground flow (3.1), (3.3), and is characterized by a small parameter ε. This constant ε
typically arises from a description of initial disturbances to the background flow. The
solution variables are expanded in series form to give

pj(r, θ, t) = p(0)
j (r, t) + εp(1)

j (r, θ, t) + O(ε2)

uj(r, θ, t) = u(0)
j (r, t) + εu(1)

j (r, θ, t) + O(ε2) for j = 1, 2.
(3.5)

Here, the zeroth-order pore pressures and radial velocity components are given in (3.4)
and (3.1), respectively. The radius of the perturbed interface r = R(θ, t) is likewise
written

R(θ, t) = R0(t) + εR1(θ, t) + O(ε2), (3.6)

in which R0(t) is the known base radius (3.3) of the expanding axisymmetric
background flow.

The perturbation expansions (3.5), (3.6) are substituted into the governing equations
(2.7) and boundary conditions (2.8), (2.9). Furthermore, since the boundary conditions
hold at the exact (unknown) interface r = R(θ, t), Taylor series expansions are used to
project these conditions onto the known location r = R0(t) given in (3.3). Correct to
the first order in the small parameter ε, the two kinematic boundary conditions (2.8)
linearize to
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u(1)
j =

∂R1

∂t
+

R1

4R2
0

on r = R0(t), j = 1, 2. (3.7)

At zeroth order in ε, the dynamic condition (2.9) yields simply

f2(t) − f1(t) = − σ
R0(t)

, (3.8)

involving the two functions of integration f1 and f2 in (3.4). At first order, the linearized
dynamic condition becomes

[p(1)
2 − p(1)

1 ] + R1

[
β − 1
2R0

]
=
σ

R2
0

[
R1 +

∂2R1

∂θ2

]
on r = R0(t). (3.9)

The linearized pressure function p(1)
1 satisfies Laplace’s equation (2.7) in the linearized

interior region 0 < r < R0(t) and pressure function p(1)
2 obeys the same equation in

r > R0(t).
In view of the expansions (3.5), the desired forms of the linearized pressure

functions that satisfy Laplace’s equation in their respective domains are

p(1)
1 (r, θ, t) =

∞∑
n=1

rn[A∗n(t) cos(nθ) + B∗n(t) sin(nθ)] in 0 < r < R0(t),

p(1)
2 (r, θ, t) =

∞∑
n=1

r−n[C∗n(t) cos(nθ) + D∗n(t) sin(nθ)] in r > R0(t).

(3.10)

The form of the perturbed interface R1(θ, t) is chosen to be consistent with (3.10) and
so is

R1(θ, t) =
∞∑

m=1

M∗n(t) cos(nθ) + N∗n(t) sin(nθ). (3.11)

In these expressions, the functions A∗n(t) and so on are so far arbitrary. The velocity
components in each of the two regions are found by differentiating the pressure
functions in the series representations (3.10), using Darcy’s law (2.3) in fluid 1 and
(2.4) in outer fluid 2.

The linearized boundary conditions (3.7)–(3.9) determine the Fourier coefficients
in the representations (3.10) and (3.11). The first kinematic condition in (3.7), with
j = 1, gives the two sets of differential equations

dM∗n(t)
dt

= −1
β

nRn−1
0 A∗n(t) − 1

4R2
0

M∗n(t),

dN∗n(t)
dt

= −1
β

nRn−1
0 B∗n(t) − 1

4R2
0

N∗n(t).
(3.12)

A similar system of differential equations can be derived in the same way from the
second kinematic boundary condition in (3.7) with j = 2. However, it is easier to
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consider the difference between the two kinematic conditions, which at once gives
u(1)

2 = u(1)
1 on r = R0(t). This results in the further two sets of algebraic equations

C∗n(t) = −1
β

R2n
0 A∗n(t),

D∗n(t) = −1
β

R2n
0 B∗n(t).

(3.13)

Finally, the linearized dynamic condition (3.9) gives two more systems of algebraic
equations for the Fourier coefficients. These are

C∗n(t)R−n
0 − A∗n(t)Rn

0 −Mn(t)
1 − β

2
R−1

0 =
σ

R2
0

(1 − n2)M∗n(t),

D∗n(t)R−n
0 − B∗n(t)Rn

0 − Nn(t)
1 − β

2
R−1

0 =
σ

R2
0

(1 − n2)N∗n(t).
(3.14)

To solve this linearized problem, the systems of equations (3.12)–(3.14) must be
solved for the time-dependent Fourier coefficients A∗n, B∗n, C∗n and D∗n in the series
(3.5), along with coefficients M∗n and N∗n in the representation (3.6) of the interface
shape. Taking the first equation in each of (3.12)–(3.14) leads to a first-order differential
equation for the coefficients M∗n. We obtain

dM∗n
dt
+

M∗n
R2

0

[1
4
+

n(β − 1)
2(β + 1)

]
+

M∗n
R3

0

σn(n2 − 1)
β + 1

= 0.

An identical equation is also obtained for the coefficients N∗n from the second equation
in each of the three sets of boundary conditions (3.12)–(3.14). This differential equation
is simplified very significantly by regarding the base radius R0(t) in (3.3) as the
independent variable, rather than the time t itself. Application of the chain rule of
calculus then leads to

dM∗n
dR0

= M∗n
(
λn

R0
− δn

R2
0

)
. (3.15)

Now, the solution to (3.15) can be obtained at once, in the form

M∗n(R0) = CnRλn
0 eδn/R0 . (3.16)

In this expression, the quantities Cn are constants of integration and we have defined
additional constants

λn = −
1
2
+

n(1 − β)
1 + β

,

δn =
2σn(n2 − 1)

1 + β
,

(3.17)
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for convenience. A similar solution to (3.16) is likewise obtained for the coefficients
N∗n , so that the linearized solution for the interface shape in (3.11) becomes

R1(θ, t) =
∞∑

m=1

Rλn
0 eδn/R0 [Kn cos(nθ) + Hn sin(nθ)]. (3.18)

The function R0(t) is the expanding base radius defined in (3.3), and Kn, Hn are
constant Fourier coefficients that would be determined from initial conditions.

3.1. Stability condition The result (3.18) gives rise to an important stability condi-
tion for the linearized solution. It follows from (3.3) that R0(t) > 1 and, consequently,
the interface perturbation R1(θ, t) in (3.18) grows with time at the nth Fourier mode if
λn > 0. This shows that the interface becomes immediately unstable if

β <
n − 1/2
n + 1/2

. (3.19)

For large mode number n, we find that equation (3.19) reduces to suggesting unstable
behaviour when β < 1, or in dimensional variables, μ1 < μ2. From the physical
viewpoint, instability thus occurs when the low-viscosity fluid forces the more viscous
fluid to recede. Conversely, in the case where μ2 < μ1 (that is, β > 1) and the
low-viscosity fluid is displaced by the more viscous one, the interface is always stable.

To see the effect of mode number and viscosity ratio upon stability, we write the
amplitude of the nth mode in (3.18) in the form

Rλn
0 eδn/R0 ≡ exp{Gn(t)},

in which we have defined a growth function

Gn(t) = λn ln(R0) +
δn
R0

=
2σn(n2 − 1)

1 + β
1

R0(t)
+

[n(1 − β)
1 + β

− 1
2

]
ln(R0(t)). (3.20)

Here, we have used the definitions in (3.17). As time becomes large, the expression
(3.20) behaves as

Gn(t)
ln(R0(t))

∼
[n(1 − β)

1 + β
− 1

2

]
, (3.21)

and we have plotted contours of this quantity in Figure 2 for varying β and n. The
numerical values of the function (3.21) are shown on the diagram for the first ten
contours. When this term is positive, the linearized solution (3.18) grows without
bound and so is unstable, and this is indicated on the figure. Conversely, negative
values result in a decaying, stable mode. The critical value Gn = 0 divides the
parameter plane in Figure 2 into stable and unstable regions, as indicated on the
diagram, and gives rise to the stability criterion (3.19). Figure 2 is slightly novel in
the context of the Saffman–Taylor instability, although it is qualitatively similar to a
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12 S. E. Cook, L. K. Forbes and S. J. Walters [12]

FIGURE 2. Stability diagram for modes n = 1, . . . , 20 over viscosity ratios 0 ≤ β ≤ 1. Coloured curves
represent contours of the growth function given in (3.14). (Colour available online.)

linearized stability criterion derived by Grodzki and Szymczak [12] for injection of a
corrosive acid into a porous substrate.

4. Numerical solution for sharp interface

To understand the effects of nonlinearity, in the nonlinear model that consists of two
distinct fluids separated by a sharp interface, a numerical semi-analytical approach is
used to solve the full radial nonlinear problem. Exact solutions of Laplace’s equations
(2.7) in each fluid domain are used and their time-dependent Fourier coefficients are
found numerically as the solutions to coupled systems of differential equations. This
builds on the “basic” scheme of Forbes et al. [10], extended to planar cylindrical
geometry by Forbes [8].

In the two different fluid regions, the solutions to Laplace’s equation follow the
overall mathematical structure (3.10) used for the linearized solution in Section 3.
However, terms such as rn and r−n evaluated on an increasing radius can become
arbitrarily large or small when the mode number n becomes large. This results in a
numerical method that is too ill-conditioned to be of much practical use. To avoid this
problem, the radius must be scaled with respect to some function of comparable size
to the radius of the expanding interface and so we choose to take the scale function to
be (3.3), which for clarity we rewrite here as
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RS(t) =
√

1 + t. (4.1)

Accordingly, the two pressures in this nonlinear problem are now taken to be

p1(r, θ, t) = −β
2

ln(r) + A0(t) +
N∑

n=1

An(t)
( r
RS(t)

)n
cos(nθ) in 0 < r < R(θ, t),

p2(r, θ, t) = −1
2

ln(r) + C0(t) +
N∑

n=1

Cn(t)
( r
RS(t)

)−n
cos(nθ) in r > R(θ, t)

(4.2)

with the scaling function given by (4.1). Other forms for RS could doubtlessly be
chosen, although these have not been investigated here.

The fluid boundary, located at r = R(θ, t), likewise has a form based on the
linearized function in (3.18). We assume that

R(θ, t) = R0(t) +
N∑

n=1

Rn(t) cos(nθ). (4.3)

We observe that, geometrically, we are free to rotate the coordinates about the origin,
so that the interface and the two nonlinear pressures can be chosen to be symmetric
about the x-axis (θ = 0 in polar coordinates). This is why only the (even) cosine
functions are present in (4.2) and (4.3). Although the two pressures in (4.2) are in the
forms of solutions to Laplace’s equation, which is a linear partial differential equation,
the problem is nevertheless highly nonlinear, since the shape of the interface in (4.3) is
unknown; therefore, the two fluid solution domains in (4.2) are not known in advance.
The aim here is to solve for the Fourier coefficients An(t), Cn(t) and Rn(t) in these
representations, and thus to determine the three unknown functions p1, p2 and R in
(4.2) and (4.3).

In the inner region 1, the fluid satisfies Darcy’s law (2.3), and so it has velocity
q1 = u1er + v1eθ with radial component u1 and azimuthal component v1 given by

u1(r, θ, t) = −1
β

∂p1

∂r
=

1
2r
− 1
βRS(t)

N∑
n=1

nAn(t)
( r
RS(t)

)n−1
cos(nθ),

v1(r, θ, t) = − 1
βr
∂p1

∂θ
=

1
βRS(t)

N∑
n=1

nAn(t)
( r
RS(t)

)n−1
sin(nθ).

(4.4)

Similarly, the velocity q2 in outer fluid 2 is obtained by differentiation of the pressure
p2 according to Darcy’s law (2.4), resulting in components

u2(r, θ, t) = −∂p2

∂r
=

1
2r
+

1
RS(t)

N∑
n=1

nCn(t)
( r
RS(t)

)−n−1
cos(nθ),

v2(r, θ, t) = −1
r
∂p2

∂θ
=

1
RS(t)

N∑
n=1

nCn(t)
( r
RS(t)

)−n−1
sin(nθ).

(4.5)
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14 S. E. Cook, L. K. Forbes and S. J. Walters [14]

These forms are used to satisfy the nonlinear boundary conditions on the interface
r = R(θ, t).

It follows from the kinematic boundary conditions that the zeroth-mode Fourier
coefficient R0(t) in the representation (4.3) for the interface shape can be written in
terms of the remaining coefficients in that expression. The expressions (4.4) for the
two velocity components in fluid 1 are evaluated on the (unknown) interface r = R(θ, t)
and substituted into the first kinematic condition in (2.8). The expression is multiplied
by R and solved for R∂R/∂t to give

R
∂R
∂t
=

1
2
− 1
β

N∑
n=1

nAn(t)
[RS(t)]n

[
Rn cos(nθ) + Rn−1 ∂R

∂θ
sin(nθ)

]
.

This equation can be written in the simplified form

∂

∂t

(1
2

R2
)
=

1
2
− 1
β

N∑
n=1

An(t)
∂

∂θ

([ R
RS(t)

]n
sin(nθ)

)
.

The zeroth Fourier mode can be extracted from this at once, simply by integration. We
obtain

d
dt

( ∫ π
−π

R2 dθ
)
= 2π.

Integration with respect to time now gives∫ π
−π

R2(θ, t) dθ = 2πt +
∫ π
−π

R2(θ, 0) dθ. (4.6)

The representation (4.3) is now substituted into this expression and the integrals are
evaluated exactly by means of the orthogonality of the trigonometric functions. As an
example, the term on the left-hand side of (4.6) becomes∫ π

−π
R2(θ, t) dθ = 2π

[
R2

0(t) +
1
2

N∑
�=1

R2
� (t)
]
.

As a result, the identity (4.6) yields

R0(t) =

√√√
R2

0(0) + t +
1
2

N∑
�=1

[R2
�
(0) − R2

�
(t)]. (4.7)

This equation is the full nonlinear equivalent of the simple result (3.3).
It is now necessary to calculate the remaining Fourier coefficients R1, . . . , RN , and

ordinary differential equations (ODEs) are derived for these quantities from the first
kinematic condition (2.8) with j = 1. Substituting the representations (4.4) for the two
velocity components in fluid 1 and evaluating these at the interface r = R(θ, t) reduces
the first kinematic boundary condition to
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1
2R
− 1
βRS(t)

N∑
n=1

nAn(t)
[ R
RS(t)

]n−1
cos(nθ)

=
dR0

dt
+

N∑
n=1

dRn

dt
cos(nθ) +

1
βRS(t)

N∑
n=1

nAn(t)
Rn−2

[RS(t)]n−1

∂R
∂θ

sin(nθ). (4.8)

A differential equation for R0(t) can be derived from this relation by integrating over
−π < θ < π. This adds no new information, however, since the formula (4.7) already
gives R0 in terms of the higher coefficients. Consequently, this is not pursued further
here. Differential equations for the higher coefficients R�(t), � = 1, 2, . . . , N, however,
are obtained by multiplying the first kinematic boundary condition (4.8) by the basis
functions cos(�θ) and integrating over θ. Integration by parts is used on the last term in
(4.8) and, after some algebra, the desired ordinary differential equations are obtained
in the form

dR�
dt
=

1
2π

J(1)
�

(t) +
A1(t)
πβRS(t)

[K(1)
�,1(t) − �S(1)

�,1(t) − πδ�,1]

+
1

πβRS(t)

N∑
n=2

An(t)[K(1)
�,n(t) − �S(1)

�,n(t)]. (4.9)

In this expression, we have employed the usual Kronecker delta symbol

δ�,1 =

⎧⎪⎪⎨⎪⎪⎩0 if � � 1,
1 if � = 1.

In addition, we have defined intermediate functions

K(1)
�,1(t) =

∫ π
−π

ln(R(θ, t)) cos(θ) cos(�θ) dθ,

K(1)
�,n(t) =

( n
n − 1

) ∫ π
−π

[R(θ, t)
RS(t)

]n−1
cos(nθ) cos(�θ) dθ, n = 2, . . . , N,

(4.10)

for � = 1, . . . , N. We observe that the structure of the first kinematic condition
(4.8) requires that the case n = 1 must be treated separately. Similarly, the further
intermediate functions

S(1)
�,1(t) =

∫ π
−π

ln(R(θ, t)) sin(θ) sin(�θ) dθ,

S(1)
�,n(t) =

( n
n − 1

) ∫ π
−π

[R(θ, t)
RS(t)

]n−1
sin(nθ) sin(�θ) dθ, n = 2, . . . , N

(4.11)

have been defined here, along with the functions

J(1)
�

(t) =
∫ π
−π

1
R(θ, t)

cos(�θ) dθ (4.12)

for � = 1, 2, . . . , N.
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16 S. E. Cook, L. K. Forbes and S. J. Walters [16]

The second kinematic condition in (2.8), with j = 2, may be treated in the same
way as for the first condition above. The representations (4.5) for the two velocity
components in outer fluid 2 are incorporated into the second kinematic condition and
evaluated at the interface r = R(θ, t). The resulting equation is again multiplied by
basis functions cos(�θ), � = 1, 2, . . . , N, and integrated over −π < θ < π. The algebra
is simpler than for the first kinematic condition, since the case n = 1 in the sums does
not need to be treated separately. We obtain

dR�
dt
=

1
2π

J(1)
�

(t) +
1

πRS(t)

N∑
n=1

Cn(t)[K(2)
�,n(t) + �S(2)

�,n(t)], � = 1, . . . , N. (4.13)

Here, we have defined extra intermediate functions

K(2)
�,n(t) =

( n
n + 1

) ∫ π
−π

[R(θ, t)
RS(t)

]−n−1
cos(nθ) cos(�θ) dθ

S(2)
�,n(t) =

( n
n + 1

) ∫ π
−π

[R(θ, t)
RS(t)

]−n−1
sin(nθ) sin(�θ) dθ

(4.14)

for � = 1, 2, . . . , N.
The second kinematic condition in the form (4.13) gives a system of differential

equations for R�(t). However, this information is already provided by (4.9) and so,
to extract as much independent information as possible from these two kinematic
conditions, we effectively replace the first condition (4.9) with the difference of that
equation and the second kinematic condition (4.13). This now generates the algebraic
system

0 =
N∑

n=1

[K(2)
�,n(t) + �S(2)

�,n(t)]Cn(t) − 1
β

[K(1)
�,1(t) − �S(1)

�,1(t) − πδ�,1]A1(t)

− 1
β

N∑
n=2

[K(1)
�,n(t) − �S(1)

�,n(t)]An(t). (4.15)

This is now a matrix equation that relates the coefficients C1, . . . , CN to the coefficients
A1, . . . , AN at each value of time t.

Finally, the dynamic condition (2.9) is subjected also to Fourier analysis, by multi-
plying by basis functions cos(�θ), � = 1, 2, . . . , N and integrating over θ, as previously.
We ignore the zeroth mode � = 0 which effectively provides extra information about
the difference between the two coefficients A0 and C0 in the representations (4.2) for
pore pressures; this information is not needed here because pressure is arbitrary within
an additive constant. The �th Fourier mode for the dynamic condition (2.9) can be
written as

N∑
n=1

M�,n(t)Cn(t) −
N∑

n=1

N�,n(t)An(t) =
1
2

(1 − β)L�(t) − σF�(t) (4.16)
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for � = 1, 2, . . . , N. Again, in view of the intricacy of these conditions, it has proven
very convenient to introduce further intermediate matrix quantities

M�,n(t) =
∫ π
−π

[R(θ, t)
RS(t)

]−n
cos(nθ) cos(�θ) dθ

N�,n(t) =
∫ π
−π

[R(θ, t)
RS(t)

]n
cos(nθ) cos(�θ) dθ

(4.17)

for � = 1, 2, . . . , N and n = 1, 2, . . . , N, along with the vector terms

L�(t) =
∫ π
−π

ln[R(θ, t)] cos(�θ) dθ

F�(t) =
∫ π
−π
κ(θ, t) cos(�θ) dθ, � = 1, 2, . . . , N.

(4.18)

The constant σ is the surface-tension parameter in (2.10) and κ is the curvature
in (2.11).

4.1. Computational algorithm The spectral representations (4.2) already solve the
governing (Laplace) equations (2.7) exactly for the pore pressure and it is only required
to calculate the coefficients in these Fourier series along with the coefficients in (4.3).
The three sets of Fourier coefficients in these representations are found from the three
sets of equations that derive from the boundary conditions on the interface.

In our solution algorithm, we regard the Fourier coefficients in (4.3) for the interface
shape as the fundamental unknown quantities to be found. We therefore create the
(N × 1) vector of unknowns

X(t) = [R1(t), R2(t), . . . , RN(t)]T , (4.19)

and seek to write the kinematic and dynamic conditions at the interface as an
N-dimensional dynamical system of the form

dX
dt
= F(t, X). (4.20)

This system (4.20) is marched forward in time using a MATLAB routine for solving
ODEs. The vector (4.19) is thus obtained at later times t, starting from some initial
configuration X(0), and the solution variables are then reconstructed from their
spectral representations. For this purpose, a dedicated MATLAB routine is written that
takes the vector X in (4.19) at time t as its input and returns the vector of derivatives F
in (4.20) as output.

This dedicated routine therefore takes the vector X of coefficients R1, . . . , RN at time
t and, from these, it immediately calculates the average interface radius R0(t) according
to (4.7). Next, the interface shape R(θ; t) and the first two spatial derivatives ∂R/∂θ
and ∂2R/∂θ2 are re-constructed from (4.3), and the curvature is obtained from (2.11).
Following this, the matrices and vectors of intermediate quantities (4.10)–(4.12) and
(4.14), (4.17), (4.18) are calculated and stored. All these functions involve integrations
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over the spatial domain −π < θ < π and we evaluate these to extremely high accuracy
using the Gaussian quadrature routine lgwt.m written by von Winckel [29].

It remains for this interior routine to calculate the Fourier coefficients Aj(t), Cj(t),
j = 1, . . . , N, in the representations (4.2) for the two pressures. These are obtained from
the two conditions (4.15) and (4.13), which constitute a matrix-vector equation of the
form

ML v = RH , (4.21)

in which v denotes the augmented vector

v = [A1(t), . . . , AN(t); C1(t), . . . , CN(t)]T (4.22)

of size (2N × 1). The coefficient matrix ML in the matrix system (4.21) is of size
(2N × 2N) and has the partitioned form

ML ≡
[
mKA mKC

mDA mDC

]
,

in which the two submatrices coming from the kinematic conditions (4.15) have
components

[mKA]�,1 = −
1
β

[K(1)
�,1(t) − �S(1)

�,1(t) − πδ�,1] if n = 1,

[mKA]�,n = −
1
β

[K(1)
�,n(t) − �S(1)

�,n(t)] if n = 2, . . . , N,

[mKC]�,n = K(2)
�,n(t) + �S(2)

�,n(t),

and the two submatrices that arise from the dynamic condition (4.16) have components

[mDA]�,n = −N�,n(t),

[mDC]�,n =M�,n(t).

The quantitiesM�,n and N�,n are defined in (4.17). The right-hand side vector RH in
the matrix equation (4.21) is of size (2N × 1). Its first N elements are all zero so that it
has the structure

[RH]� = [0, . . . , 0; 1
2 (1 − β)L� − σF�]T

with � = 1, . . . , N. The matrix equation (4.21) is solved for the vector v in (4.22) to
give the coefficients An and Cn, and the two pressures are re-constructed from (4.2).
Finally, the vector

F = [R′1(t), R′2(t), . . . , R′N(t)]T

in (4.20) is calculated from (4.13) and the system is integrated forward in time.
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4.2. Smoothing algorithm When a function is represented by a Fourier series, as
is the case for the interface function R(θ, t) in (4.3), for example, the convergence
of the series becomes a concern if the original function R changes rapidly with θ.
In particular, the Fourier series representation of a discontinuous function R does not
converge to the original function, but instead to a function which changes rapidly at the
location of the discontinuity and possesses spurious oscillations either side of it. This
is known as the Gibbs phenomenon (see Kreyszig [20]) and it can be responsible for
producing small-amplitude ripples near regions of interest in our numerical solutions.
Where appropriate, we therefore smooth the discontinuous original function using
Lanczos smoothing, which can be carried out simply by multiplying each Fourier
coefficient Rn(t) calculated in (4.3) by a damping factor

sin(λTn)
λTn

, n = 1, 2, . . . , N. (4.23)

Here, the small positive constants λT are suitably chosen Lanczos parameters. Further
details are given by Duchon [6]. It can be shown that this is equivalent to replacing the
discontinuous original function R(θ, t) in (4.3), at a given location θ∗, with a continuous
function that is the average of (4.3) over the moving interval θ∗ − λT < θ < θ

∗ + λT . We
typically choose the Lanczos parameter to have a value of approximately λT ≈ 0.05.

5. Numerical solution for diffuse interface

The nonlinear model described in Section 4 assumes that there exists an infinitesi-
mally thin interface between the fluids. As a consequence of this approximation, that
nonlinear model can develop Moore curvature singularities at its interface, resulting in
the failure of the entire model within finite time [22]. For real viscous fluids, however,
there is likely to be a narrow interfacial layer across which the viscosity changes
rapidly but smoothly, rather than a precise interface of zero thickness at which the
viscosity jumps discontinuously between the two fluids. For this reason, we consider
a further nonlinear model in this section, in which the system is treated as a single
fluid with viscosity that changes continuously in space. A narrow interfacial region
will be present, across which the viscosity changes rapidly from one region to another,
representing an interfacial zone where mixing of the two fluids could occur.

Possibly the simplest model of the type wanted in this section is one in which
the viscosity depends upon temperature. In dimensionless variables, the temperature
T(r, θ, t) satisfies the heat equation

∂T
∂t
+ q · ∇T = σH∇2T . (5.1)

This equation introduces a new dimensionless temperature-diffusion parameter
σH = κH(2πh)/Q, in which the dimensional diffusion constant κH has units of length
squared per time. To some extent, this diffusion constant σH plays a similar role to the
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surface-tension parameter σ defined in (2.10), since it also is responsible for diffusive
effects in the vicinity of the interface. We suppose that fluid is still injected through a
line source at the origin, as previously, and that it has viscosity μ1 and temperature T1
in dimensional variables; far away, the fluid has viscosity μ2 and temperature T2. We
now return to dimensionless variables by referencing all temperatures with respect to
the outer temperature T2 so that the nondimensional temperature T in the heat equation
(5.1) has the value 1 far away and the dimensionless value

τ = T1/T2 (5.2)

at the origin r = 0. Now the dimensionless form of Darcy’s law in the porous medium,
replacing (2.3) and (2.4), becomes

q = − 1
μ(T)
∇p. (5.3)

In the simplest model, the viscosity is taken to vary linearly with temperature and we
assume the simple “state” equation

μ(T) = β − β − 1
1 − τ (T − τ). (5.4)

Here, β = μ1/μ2 is the same viscosity ratio (2.2) used previously and τ is the ratio (5.2)
of inner to outer fluid temperatures. The single fluid is taken to be incompressible, so
that

∇ · q = 0, (5.5)

replacing (2.5) and, since a line source is present at the origin, the condition (2.6) still
holds there.

As for the previous nonlinear model in Section 4, we again make use of a spectral
representation to solve this nonlinear problem. Now, however, we are forced to restrict
the computational domain by placing some outer cylinder r = R∞ appropriately far
from the origin, and expressing the temperature as a double Fourier series in r and θ,
with time-dependent doubly subscripted Fourier coefficients that are to be determined.
The boundary conditions for temperature then become T = τ at r = 0 and T = 1 at
r = R∞. After some experimentation, it was determined that the temperature could be
well represented by the spectral form

T(r, θ, t) =
1
2

(τ + 1) +
1
2

(τ − 1) cos
(
πr
R∞

)
+

N∑
n=1

A0,n(t) sin
(nπr

R∞

)

+

M∑
m=1

N∑
n=1

Am,n(t)Jm(γm,nr) cos(mθ). (5.6)
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In this expression, we have defined constants

γm,n = jm,n/R∞, (5.7)

in which the constant jm,n denotes the nth positive zero of the first-kind Bessel function
Jm(z). With the choice of constants in (5.7), the assumed form (5.6) for the temperature
function clearly satisfies the required boundary conditions at r = 0 and r = R∞.

A representation is also needed for the pressure in the single fluid. This function
must behave like the base pressure in (3.4) as r → 0, to take account of the line source
at the origin. Accordingly, we have chosen

p(r, θ; t) = −β
2

ln(r) +
N∑

n=1

B0,n(t)J0(γ0,nr) +
M∑

m=1

N∑
n=1

Bm,n(t)Jm(γm,nr) cos(mθ). (5.8)

This again makes use of the constants defined in (5.7) and the coefficient functions
Bm,n are to be determined. A system of ODEs for the coefficients Am,n is obtained by
substituting the form (5.6) into the heat equation (5.1) to give

N∑
n=1

A′0,n(t) sin
(nπr

R∞

)
+

M∑
m=1

N∑
n=1

A′m,n(t)Jm(γm,nr) cos(mθ)

= −σH

2
(τ − 1)

π

R∞

1
r

[
sin
(
πr
R∞

)
+
πr
R∞

cos
(
πr
R∞

)]

+ σH

N∑
n=1

π

R∞
A0,n(t)

n
r

[
cos
(nπr

R∞

)
− nπr

R∞
sin
(nπr

R∞

)]

− σH

M∑
m=1

N∑
n=1

Am,n(t)γ2
m,nJm(γm,nr) cos(mθ) −

(
u
∂T
∂r
+

v
r
∂T
∂θ

)
. (5.9)

To obtain this expression, we have used the Bessel differential equation given by
Abramowitz and Stegun [1, p. 358].

Differential equations for the zeroth (azimuthal) mode coefficients are now
obtained, by integrating (5.9) over −π < θ < π. The resulting equation is then
multiplied by basis functions sin((�πr)/R∞) and integrated over 0 < r < R∞. We
obtain, after rearrangement,

dA0,�(t)
dt

= −σH(τ − 1)
(
π

R2
∞

)
Vs
� − σH(τ − 1)

(
π2

R3
∞

)
S� +

2σH

R∞

N∑
n=1

Mc
�,nA0,n(t)

− σH

(
�π

R∞

)2
A0,�(t) −

1
πR∞

∫ R∞

0

∫ π
−π

(
ru
∂T
∂r
+ v
∂T
∂θ

)1
r

sin
(
�πr
R∞

)
dθ dr.

(5.10)
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Here, we have defined the intermediate vector

S� ≡
∫ R∞

0
cos
(
πr
R∞

)
sin
(
�πr
R∞

)
dr

=

⎧⎪⎪⎨⎪⎪⎩0 if � = 1,
[R∞�][1 + cos(�π)]/[π(�2 − 1)] if � � 1,

(5.11)

and a further (N × 1) vector Vs
�

and (N × N) matrix Mc
�,n defined as

Vs
� =

∫ R∞

0

1
r

sin
(
πr
R∞

)
sin
(
�πr
R∞

)
dr for � = 1, 2, . . . , N,

Mc
�,n =

∫ R∞

0

( nπ
R∞

)1
r

sin
(
�πr
R∞

)
cos
(nπr

R∞

)
dr for n, � = 1, 2, . . . , N.

Differential equations for the kth azimuthal mode, for k = 1, 2, . . . , M, are similarly
calculated by multiplying (5.9) by cos(kθ) and integrating over θ. The equation thus
obtained is then multiplied by rJk(γk,�r) and integrated over r. We make use of the
orthogonality condition∫ R∞

0
rJk(γk,nr)Jk(γk,�r) dr =

⎧⎪⎪⎨⎪⎪⎩0 if n � �,
(1/2)[R∞Jk+1(γk,�R∞)]2 if n = �

(5.12)

for Bessel functions, which may be derived from [1, p. 485, (11.4.5)], and obtain

dAk,�(t)
dt

= −σHγ
2
k,�Ak,�(t) −

2
Ck,�

∫ R∞

0

∫ π
−π

(
ru
∂T
∂r
+ v
∂T
∂θ

)
Jk(γk,�r) cos(kθ) dθ dr.

(5.13)

In this expression, it is convenient to write

Ck,� = π[R∞Jk+1(γk,�R∞)]2, (5.14)

which comes from the orthogonality condition (5.12).
The system of ordinary differential equations (5.10), (5.13) can in principle be

integrated forward in time, once the Fourier coefficients Bm,n in the expression (5.8)
for pressure are known. To obtain them, use must be made of Darcy’s law (5.3), which
we here write in the form ∇p = −μ(T)q. The divergence of this expression is taken,
leading to

∇2p = −
[dμ
dT
∇T · q + μ(T)div(q)

]
.

The second term on the right-hand side vanishes, by the incompressibility condition
(5.5), and the viscosity–temperature relation (5.4) gives

∇2p = −
(1 − β

1 − τ

)
∇T · q.
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Darcy’s law (5.3) is used again to eliminate q, resulting in the equation

∇2p =
(1 − β

1 − τ

) 1
μ(T)

[
∂p
∂r
∂T
∂r
+

1
r2

∂p
∂θ

∂T
∂θ

]
.

The representation (5.8) for pressure is substituted into this equation and yields

−
N∑

n=1

γ2
0,nB0,n(t)J0(γ0,nr) −

N∑
n=1

M∑
m=1

γ2
m,nBm,n(t)Jm(γm,nr) cos(mθ)

=

(1 − β
1 − τ

) 1
μ(T)

[
∂p
∂r
∂T
∂r
+

1
r2

∂p
∂θ

∂T
∂θ

]
.

(5.15)

This new expression (5.15) replaces the simple Laplace equation for pressure (2.7) that
was used in Section 4 for the nonlinear model with a sharp interface.

Equation (5.15) is again subjected to Fourier analysis, in a similar manner to the heat
equation discussed above, making use of the orthogonality of the simple trigonometric
functions and the orthogonality relation (5.12) for Bessel functions. The zeroth Fourier
azimuthal modes are obtained first by integrating over θ then by multiplying by
rJ0(γ0,�r), � = 1, . . . , N, and integrating over r. This results in

B0,�(t) = −
(
β − 1
τ − 1

) 1
γ2

0,�C0,�

∫ R∞

0

∫ π
−π

1
μ(T)

[
r
∂p
∂r
∂T
∂r
+

1
r
∂p
∂θ

∂T
∂θ

]
J0(γ0,�r) dθ dr. (5.16)

The constants C0,� in this formula are obtained from (5.14) with k = 0. In a similar way,
the equations for the higher azimuthal Fourier modes cos(kθ) with k = 1, . . . , M are

Bk,�(t) = −
(
β − 1
τ − 1

) 2
γ2

k,�Ck,�

∫ R∞

0

∫ π
−π

1
μ(T)

[
r
∂p
∂r
∂T
∂r

+
1
r
∂p
∂θ

∂T
∂θ

]
Jk(γk,�r) cos(kθ) dθ dr. (5.17)

5.1. Iterative solution Before the differential equations (5.10), (5.13) can be inte-
grated forward in time, the Fourier coefficients Bm,n must be determined from (5.16)
and (5.17). These equations essentially constitute a straightforward system of linear
algebraic equations that give Bm,n in terms of the coefficients Am,n. In principle,
therefore, they could be solved for the Bm,n coefficients using a standard package
that implements Gaussian elimination. The practical difficulty, however, is that the
vector of unknown coefficients Bm,n, m = 0, 1, 2, . . . , M, n = 1, 2, . . . , N would contain
(M + 1)N elements; its coefficient matrix would be of size (M + 1)N × (M + 1)N and,
for larger values of M and N, overwhelms both the memory capacity and speed of
many current computers. A similar difficulty, when solving problems of this general
type, was encountered by Walters et al. [30] and Forbes et al. [11]. To overcome this
difficulty, those authors solve their matrix equation using a type of fixed-point iteration
scheme and we follow that approach here too.
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An initial guess is made for the coefficients B(0)
0,�(t) and B(0)

k,�(t), k = 1, 2, . . . , M,
� = 1, 2, . . . , N. Based on this guess, the pressure p(0) and its first partial derivatives are
re-constructed from the spectral representation (5.8). The system of linear equations
(5.16), (5.17) is then solved iteratively in the form

B(q+1)
0,� (t) = −

(
β − 1
τ − 1

) 1
γ2

0,�C0,�

∫ R∞

0

∫ π
−π

1
μ(T)

[
r
∂p(q)

∂r
∂T
∂r

+
1
r
∂p(q)

∂θ

∂T
∂θ

]
J0(γ0,�r) dθ dr,

B(q+1)
k,� (t) = −

(
β − 1
τ − 1

) 2
γ2

k,�Ck,�

∫ R∞

0

∫ π
−π

1
μ(T)

[
r
∂p(q)

∂r
∂T
∂r

+
1
r
∂p(q)

∂θ

∂T
∂θ

]
Jk(γk,�r) cos(kθ) dθ dr.

(5.18)

This iteration scheme q = 1, 2, 3, . . . is continued until convergence is achieved, in the
form

‖B(q+1) − B(q)‖ < δ

for some acceptable convergence criterion defined by the small constant δ.

5.2. Initial condition for temperature The initial temperature in the region is
chosen so as to mimic a disturbance to the initial circle r = 1 at some azimuthal Fourier
mode m∗. This then enables comparison with the predictions of the linearized solution
in Section 3 and the sharp-interface nonlinear solution in Section 4. To do this, we
create the discontinuous initial temperature

T(r, θ, 0) =

⎧⎪⎪⎨⎪⎪⎩τ if r < Rin(θ),
1 if Rin(θ) < r < R∞,

(5.19)

in which

Rin = 1 + εT cos(m∗θ).

Here, the constant εT gives the amplitude of the disturbance in physical space.
The initial values of the Fourier coefficients Am,n(0) are now calculated using

Fourier analysis of the representation (5.6), as described above. After use of the
orthogonality criterion (5.12),

A0,�(0) = −τ + 1
�π

[1 − cos(�π)] − τ − 1
R∞
S�

+
1
πR∞

∫ R∞

0

∫ π
−π

T(r, θ, 0) sin
(
�πr
R∞

)
dθ dr (5.20)
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for the zeroth azimuthal modes and

Ak,�(0) =
2
Ck,�

∫ R∞

0

∫ π
−π

rT(r, θ, 0)Jk(γk,�r) cos(kθ) dθ dr (5.21)

for the higher azimuthal modes k = 1, 2, . . . , M. These formulae make use of the
chosen initial temperature in (5.19). The constants S� in (5.20) are as defined previously
in (5.11) and the quantities Ck,� in (5.21) are given in (5.14). As discussed in Section
4.2, however, the discontinuous initial profile (5.19) is not particularly desirable, since
its Fourier representation is subject to spurious oscillations caused by the Gibbs
phenomenon [20]. We avoid this difficulty here using Lanczos smoothing [6] in both
spatial variables r and θ. The coefficients Ak,�(0) calculated in (5.21) are multiplied by
damping factors [sin(λTk)

λTk

][sin(λR�)
λR�

]
, (5.22)

in which the small positive constants λT and λR are suitably chosen Lanczos
parameters. This generalizes the single-variable case (4.23) and is equivalent to
replacing the discontinuous initial condition (5.19), at a given point (r∗, θ∗), with a
continuous function that is the moving average of (5.19) over the rectangular patch
r∗ − λR < r < r∗ + λR, θ∗ − λT < θ < θ

∗ + λT in the (r, θ) plane. Thus, the two Lanczos
parameters λT and λR determine the effective width of the initial interfacial zone. This
Lanczos smoothing strategy is also applied approximately a further ten times over the
lifetime of our numerical solution, so as to regularize the results.

5.3. Computational algorithm The computational process used to simulate this
nonlinear varying-viscosity problem is similar in philosophy to that described in
Section 4.1 for the previous nonlinear model in which there was a sharp discontinuous
interface between the two fluids. In this model, however, there are many more Fourier
coefficients that must be found and so computer run-times can be lengthy. To reduce
as much as possible the demands on computer time, we cache as many functions as
possible in large arrays, so that they may be calculated only once, stored and not
re-computed. As examples, trigonometric functions such as cos(mθq) evaluated for
modes m = 1, 2, . . . , M and at mesh points θq with q = 1, 2, . . . , Q are stored in (M × Q)
matrices. Similarly, Bessel functions Jm(γm,nrp) evaluated at grid points p = 1, 2, . . . , P
are stored in (M × N × P) arrays.

As with the previous nonlinear problem in Section 4.1, the overall algorithm here
treats the differential equations (5.10), (5.13) as a dynamical system for the coefficients
Am,n in which the additional coefficients Bm,n must be determined at each new time
step. This system again has an overall form equivalent to that in (4.20), except that,
here, the unknown vector of coefficients is very large, of size ((M + 1)N × 1) in matrix
notation, and has the structure

X(t) = [A0,1, . . . , A0,N . . . . . . Am,1, . . . , Am,N . . . . . . AM,1, . . . , AM,N]T .
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The algorithm begins by calculating the initial coefficients for temperature, as
described in Section 5.2, and storing these in a vector X(0). Then, at each time step,
a dedicated inner code takes the vector X of coefficients as its input and uses it to
solve for the coefficients Bm,n at that time step by the iteration process described
in Section 5.1. The routine then calculates a vector X′ = F that consists of all the
derivatives of these Fourier coefficients, by evaluating the expressions (5.10), (5.13).
This vector F is also of dimension ((M + 1)N × 1), having (M + 1)N components; it
is passed to a MATLAB routine that solves the differential equations and advances the
solution to the next time step.

6. Presentation of results

This section presents some of the results of the numerical computation, primarily
to study the effects of nonlinearity upon the evolving interface profiles. In addition,
the effect of a finite-width interfacial zone, rather than a sharp interface, is also of
interest. The linearized stability criterion sketched in Figure 2 gives an important guide
as to the anticipated behaviour of solutions; furthermore, the contours of the growth
function (3.21) in Figure 2 show precisely the relationship between mode number n
and viscosity ratio β that allows two different solutions to have the same growth rate
Gn. For simplicity, in this section, we therefore illustrate solutions at the one value
β = 0.5 of the viscosity ratio and generate different growth rates by varying the initial
mode number m∗.

The first task is to establish the credibility of the nonlinear solution algorithm in
Section 4 by comparing its predictions with those of the linearized solution from
Section 3, since the two should be in good agreement if started from a perturbation of
appropriately small amplitude. This comparison is illustrated in Figure 3 for a solution
started from a pure fifth-mode perturbation (m∗ = 5) and one with a ninth-mode
disturbance (m∗ = 9). In both cases, the initial amplitude had the small value ε = 0.05,
and interface profiles are sketched at the two (dimensionless) times t = 1 and t = 3.
The linearized solution is obtained from (3.18) and drawn with a dashed line (red
online), and the solid (blue) line represents the nonlinear result for the sharp-interface
model.

At early times, there is good agreement between the linearized and nonlinear
interface profiles, as would be expected. This is apparent in both the solutions at the
earlier time t = 1 in both Figure 3(a) for m∗ = 5 and in Figure 3(b) for m∗ = 9. For
the m∗ = 5 solution at t = 1, the linearized and nonlinear interface profiles are nearly
identical, and this is to be expected since, from Figure 2, the instability grows more
slowly when n = 5 than when n = 9. Figure 3(a) therefore helps establish the reliability
of the numerical results in the nonlinear case. These were generated here using
N = 101 Fourier coefficients, and we have also verified that they are consistent with
results at N = 81 and N = 51, to a very high degree of accuracy. For the m∗ = 9 solution
shown in Figure 3(b), there is still reasonable agreement between the linearized and
nonlinear solutions at the earlier time t = 1, but differences become evident by the
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FIGURE 3. A comparison of the linearized interface (dashed lines, red online) with the predictions
of the nonlinear sharp-interface model of Section 4 (solid line, blue online) for β = 0.5, σ = 1.E − 4,
ε = 0.05. The nonlinear solution used N = 101 Fourier coefficients, with Lanczos parameter 0.05. Results
are shown for initial mode (a) m∗ = 5 and (b) m∗ = 9.

later time t = 3. This is because the linearized solution (3.18), when started with the
monochromatic disturbance m∗ = 9, can only produce the single mode n = 9 with an
amplitude that must grow exponentially with time. By contrast, however, the nonlinear
solution involves all the Fourier modes and, as a result, nonlinear saturation takes
place, as energy is transferred to higher modes. Thus, the nonlinear disturbance by
time t = 3 has developed a nonsinusoidal shape with a much reduced overall wave
amplitude.

Nonlinear curvatures of the interface are shown in Figure 4 for the same conditions
β = 0.5, σ = 10−4, ε = 0.05 as in Figure 3, and for the three times t = 1, 2 and 3.
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(a)

(b)

FIGURE 4. Interfacial curvature κ calculated for the nonlinear sharp-interface model of Section 4, for the
same parameters as in Figure 3. The solution used N = 101 Fourier coefficients, with Lanczos parameter
λT = 0.05. Results are shown for initial mode (a) m∗ = 5 and (b) m∗ = 9.

The curvatures were calculated from (2.11). The initial condition stipulates that, at
t = 0, the interface is a circle of unit radius with an added perturbation; when that
perturbation is small, then the linearization assumption (3.6) shows that the curvature
behaves like

κ(θ, t) =
1

√
1 + t

− ε

1 + t

[
∂2R1

∂θ2
+ R1

]
+ O(ε2). (6.1)
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Thus, the mean curvature decreases with time like κ ∼ 1/
√

t, because the interface is
being forced outwards by the injection of fluid at the origin; however, the linearized
theory nevertheless predicts that the perturbations at the interface, along with their
curvature, grow exponentially with time.

For the fifth-mode solution m∗ = 5 in Figure 4(a), the curvature at the earliest time
t = 1 does indeed consist of an essentially sinusoidal disturbance to the mean curvature
1/
√

2, as predicted by (6.1). However, by time t = 3, the oscillations in curvature are
noticeably nonsinusoidal, with sharply pointed troughs and broad crests, caused by
the growing influence of nonlinear energy transfer to higher Fourier modes. A similar
description applies also to the m∗ = 9 curvatures displayed in Figure 4(b), except that
the higher-mode perturbation in this case grows more rapidly than for the m∗ = 5
solution in Figure 4(a), and so the effects of nonlinearity are far more developed. At
the last time t = 3 shown, the curvature consists of nearly constant portions around the
interface, punctuated by sudden, sharp downward spikes.

As the sharp-interface model of Section 4 is run further forward in time, nonlinear
effects become more pronounced, as discussed in relation to Figure 4. The curvature
of the interface, in particular, develops sharp spikes at selected points and, eventually,
the entire model fails, due to the formation of curvature singularities. This was first
predicted by Moore [22], and it occurs at some finite critical time that depends on the
perturbation mode number and the initial disturbance amplitude. This is illustrated in
Figure 5, where a ninth-mode solution, with initial mode number m∗ = 9 and initial
amplitude ε = 0.05, has been allowed to evolve in time until failure occurred, in this
instance, at a dimensionless time slightly larger than t = 5.6. In Figure 5, we therefore
show the nonlinear interface computed with N = 101 coefficients at time t = 5.6
(Figure 5(b)) and, for comparison, the diagram in Figure 5(a) shows the interface at
t = 2. These nonlinear solutions are drawn with heavy solid lines (blue online) and, in
addition, the linearized interface shape from Section 3 is indicated with dashed lines
(red online).

As expected from Figure 3, the agreement in Figure 5 between the linearized and
nonlinear results at time t = 2 is reasonably good. However, at time t = 5.6, which
is close to the failure time, the linearized solution substantially over-estimates the
amplitude of the perturbations at the interface, because it assumes that all the energy
remains confined within the monochromatic mode n = 9 for all time. By contrast,
the nonlinear interface develops high-curvature dimples and broad, flat tips that are
reminiscent of the “tip-splitting” event illustrated in a schematic diagram in the paper
by Kim et al. [18, Figure 4(b)].

The curvature is shown in Figure 6 for the same parameters as illustrated in Figure 5
and at the last time t = 5.6 for which solutions could be computed. Although the mean
curvature decreases slowly with time, as indicated in the linearized result (6.1), the
profile in Figure 6 nevertheless also contains large positive and negative curvature
spikes that punctuate almost flat portions in the profile where the curvature is roughly
constant. This is entirely consistent with the nonlinear interface shape shown in
Figure 5(b) at time t = 5.6. Our computer code failed to integrate significantly beyond
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FIGURE 5. A comparison of the linearized interface (dashed lines, red online) with the predictions of
nonlinear sharp-interface model of Section 4 (solid line, blue online) for a ninth-mode perturbation
m∗ = 9 and parameters β = 0.5, σ = 1 × 10−4, ε = 0.05, at the two times (a) t = 2 and (b) t = 5.6. The
nonlinear solution used N = 101 Fourier coefficients, here with Lanczos parameter λT = 0.02.

this time, which is therefore anticipated to be close to the critical time at which points
of infinite curvature form on the interface and the sharp-interface mode of Section 4
ceases to be valid.

The single-fluid model in Section 5, with a diffuse interfacial zone of finite width
across which some degree of fluid mixing can occur, was developed to overcome the
formation of Moore curvature singularities [22] like those developing in Figure 6.
Accordingly, we show in Figure 7 a comparison of the predictions of both nonlinear
models, from Sections 4 and 5, at two different times. The background images in
both cases are contours of the temperature T computed from the variable-viscosity
model in Section 5 for the case β = 0.5, τ = 1.5 and diffusion constant σH = 10−4

in the heat equation (5.1). This is a ninth-mode solution (m∗ = 9) and was started
from a perturbation with amplitude εT = 0.05. The numerical results were run with
(M, N) = (101, 105) Fourier coefficients and were subject to Lanczos smoothing at
regular time intervals Δt = 0.2 using smoothing parameters λT = λR = 0.05 in the
damping strategy (5.22). As outlined in Section 5.1, each new time step calculated
by the solution algorithm requires the solution of a large matrix equation to obtain
the coefficients Bm,n. This is done iteratively and we have found that the use of eleven
iterations at each time step is sufficient to reduce the iteration error in the solution of
the equations (5.18) to below δ = 10−11.

Overlaid on Figure 7, in a heavy solid line (red online), is a nonlinear solution for a
sharp interface for this same case m∗ = 9, β = 0.5, with initial amplitude ε = 0.05. The
surface tension in the dynamic boundary condition (2.9) has the value σ = 10−4, but it
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FIGURE 6. The curvature for the nonlinear sharp-interface model of Section 4, for a ninth-mode
perturbation m∗ = 9 and parameters β = 0.5,σ = 1 × 10−4, ε = 0.05. The nonlinear solution used N = 101
Fourier coefficients, here with Lanczos parameter λT = 0.02.

(a) (b)

FIGURE 7. A comparison of the results of the nonlinear diffuse-interface approach of Section 5 with the
predictions of the sharp-interface model of Section 4 (solid line, red online), for a ninth-mode perturbation
m∗ = 9 with parameters β = 0.5, σ = 1 × 10−4, εT = 0.05. The diffuse-interface solution used τ = 1.5.
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is important to observe that this is not the same as the diffusion parameter σH = 10−4

also used in Figure 7 for the single-fluid model, even although both dimensionless
parameters have the same numerical value. In this respect, then, the comparison
between the two nonlinear theories in Figure 7 is not exact; nevertheless, it is about
the best that can be done and the difference is not expected to detract greatly from the
overall comparison.

For the diagram in Figure 7(a) at the earlier time t = 2, there is reasonably good
overall agreement between the two nonlinear theories, despite clear differences in
detailed features. In particular, the sharp interface from Section 4 lies very precisely
over the crests of the outward-moving fingers of fluid 1 obtained with the diffuse
model of Section 5. For the diagram in Figure 7(b), calculated from the two nonlinear
theories at time t = 5.6, there is again reasonably close agreement between the two
results at the crests of the fingers. Nevertheless, this is about the last time at which
the sharp-interface model of Section 4 could yield a solution, due to the formation
of curvature singularities as illustrated in Figures 5 and 6. The variable-viscosity
model of Section 5, at this time, has formed fingers that have largely detached from
the central region, within which fluid 1 continues to be injected at the origin. The
heads of these fingers have a blunt shape that is very similar to that predicted by the
nonlinear sharp-interface model, but they also possess pointed regions on each side
of the finger-tips, forming small, overhanging regions. The variable-viscosity solution
does not encounter a problem at t = 5.6, but can continue to be integrated forward
in time beyond this value, until issues of numerical accuracy eventually cause the
integration package to stall at significantly later times.

Perhaps the most striking difference between the nonlinear sharp-interface model
and the diffuse-interface model of Section 5 concerns the way in which the
diffuse-interface results show outward-moving fingers that have separated almost
completely from the central core. This often happens quite early and Figure 8 presents
a sequence of solutions at eight early times, so as to illustrate the way in which
detachment and separation of the fingers occurs. At the first time t = 0.1 shown, the
central core containing fluid 1 simply possesses nine little oscillations arising from
the ninth-mode perturbation m∗ = 9 given to it initially. At some time close to t ∼ 1,
the fingers can be seen to start the process of detaching from the central region, and
by the last time t = 1.6 shown, they have broken away almost completely.

This is illustrated further in Figure 9, where the mode-nine solution from Figure 8
has been re-computed with (M, N) = (101, 105) Fourier coefficients and subject to
a small amount of Lanczos smoothing with λT = λR = 0.02. The vertical axis in
this diagram represents the temperature, computed with the spectral representation
(5.6) with temperature ratio τ = 1.05 and starting from initial temperature amplitude
εT = 0.1. At this later time, the fingers have effectively detached completely from the
inner core region (fluid 1) and this region has consequently returned to a cylindrical
shape. This is an interesting outcome since, although the linearized solution in Figure 2
indicates that the solution is unstable (at early times and for small finger amplitude),
this is apparently not the case at very late times; instead, the solution begins as an
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FIGURE 8. Temperature profiles showing the detachment and shedding of fingers at eight early times, for
a ninth-mode (m∗ = 9) perturbation. Here, β = 0.5 and τ = 1.05. The temperature diffusion coefficient
was σH = 1 × 10−5, the initial temperature amplitude was εT = 0.1 and the algorithm was run with
(M, N) = (81, 85) coefficients.

https://doi.org/10.1017/S144618112400004X Published online by Cambridge University Press

https://doi.org/10.1017/S144618112400004X


34 S. E. Cook, L. K. Forbes and S. J. Walters [34]

FIGURE 9. A temperature profile showing detached fingers at time t = 3.6 for the ninth-mode (m∗ = 9)
perturbation in Figure 8. Here, β = 0.5, σH = 1 × 10−5, τ = 1.05, εT = 0.1 and the number of modes was
increased to (M, N) = (101, 105).

unstable flow, but then the unstable fingers break off and move far away, leaving behind
a circular cylinder of fluid 1 injected at the origin. This is now a stable geometry,
with n = 0, and unless further disturbances are given to the system, it will remain a
stable flow with a circular inner core that has radius R0(t) growing slowly according
to (3.3).

7. Conclusion

In this article, we have presented numerical solutions for two highly nonlinear
models of Saffman–Taylor flow occurring in radial geometry; that is, an ambient
viscous fluid was originally present in a porous medium and then a second fluid of
lower viscosity was injected through a line source at the origin. This creates a circular
interface between the two fluids that moves radially outwards. An initial perturbation is
given to the otherwise circular interface and this perturbation grows unstably because
the inner fluid is less viscous than the outer one.

The first model considered was one in which there was assumed to be an
infinitesimally thin interface between the two viscous fluids, so that the viscosity jumps
discontinuously as we cross the interface. A classical type of linearized solution to
this sharp-interface model has been presented in Section 3, leading to the stability
condition (3.19) from which it follows that high-mode perturbations are unstable if the
viscosity ratio β < 1 so that the inner fluid is less viscous than the outer. Carrying out
such a solution for radial geometry is somewhat novel in the context of Saffman–Taylor
instability and Figure 2 summarizes the findings of the linearized solution in a compact
form. Similar results, in other contexts, have also been presented by Grodzki and
Szymczak [12] and Beeson-Jones and Woods [2].
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The fully nonlinear thin-interface model was then solved numerically in Section 4,
using an adaptation of the “basic” spectral method introduced by Forbes et al. [10].
Here, we have used an exact Fourier series-type solution (4.2) of Laplace’s equation
for the two fluid pore pressures within the porous medium, taking account of the line
source of fluid 1 at the origin. This solution involves Fourier coefficients that are
unknown functions of time, and these must be found by imposing the exact nonlinear
conditions on a moving interface r = R(θ, t) of unknown shape and location. The
structure of the equations that arise in this porous medium problem requires a matrix
equation to be solved at each new time step and, at first, we found that the system was
so ill-conditioned that it could not be done to satisfactory accuracy or with sufficient
total number N of Fourier modes. This difficulty was overcome here by scaling the
radial coordinate r with a time-dependent function RS(t) in the representations (4.2) for
pressure. It was found that the simple circular radius function in (4.1) was sufficient to
make the equations well conditioned, although eventually, a critical time is attained at
which the interface function r = R(θ, t) develops Moore curvature singularities [22] at
certain points θ. This is a feature of interfacial fluid models that involve infinitesimally
thin interfaces, as shown by Moore [22], but it is possible that a different choice of
scaling function RS(t) than that used in Section 4 might allow numerical solutions
to be computed more accurately close to the critical failure time. This may be worth
future study.

To avoid the curvature singularities encountered with a sharp interface, a second
model was investigated in Section 5, in which the viscosity varies smoothly in space
and there is a narrow interfacial region across which the change in viscosity from one
region to the other is rapid. This was accomplished here by allowing the viscosity
to depend solely on temperature and adding a convection-diffusion energy equation
(5.1) to the mathematical model of the system. We postulated the simplest possible
“equation of state” for the fluid, consisting of a linear relation (5.4) between viscosity
and temperature. It was shown here that this new variable-viscosity model agreed
well with both the linearized and nonlinear results from the first sharp-interface
model, at least at early times; furthermore, the variable-viscosity model continues
to produce meaningful solutions at times significantly after the critical time when
the sharp-interface model fails because of the curvature singularities it creates at the
interface.

The two nonlinear theories produce outward-moving fingers that agree quite closely
near their tips. However, the major difference is that the diffuse-interface model in
Section 5 creates long fingers that soon detach from the central region in which fluid
1 is injected. These fingers continue to move outwards as time increases, leaving
behind a circular central region that grows slowly with time according to the simple
background shape (3.3). Of course, this only happens because the injection of fluid 1
at the origin occurs in the steady fashion (2.6) and, if this were replaced by a source
strength that varied with time, it would be expected that further fingers would continue
to form and detach as time progressed. In some studies, such as the recently published
results of Kim et al. [19], long fingers with somewhat bulbous heads also form,
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similar to those found here, although most do not appear to detach from the central
injection region in quite the same way as here. Those authors used a different set of
model equations, based on a phase-field approach with the Cahn–Hilliard equation;
in addition, their viscosity depended exponentially on the concentration of a dissolved
solute rather than the temperature. Our model in Section 5 avoids the use of phase-field
methods, since our intention was to mimic conditions in the sharp-interface model of
Section 4 as much as possible, and these differences doubtlessly influence the details
of the solutions that are obtained. It would be of interest to consider more complicated
relations between viscosity and temperature than the simple linear formula (5.4), and
in addition to study the effects of dissolved solutes, such as in Kim et al. [19], Trevelyan
et al. [28] and Forbes et al. [9]. This work is on-going.
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