A series identity

By G. N. Watson, University of Birmingham.
I have constructed two simple proofs of the result established by J. C. P. Miller, Mathematical Notes, No. 29 (1935), pp. vi-viii.

Miller's result may be stated in the following form:
Let

$$
A_{0}=1, \quad A_{n}=\left(-\frac{1}{2} \cdot \frac{1}{4} \ldots \cdot \frac{2 n-3}{2 n}\right)^{2}, \quad(n>0)
$$

and write

$$
S_{1}=\sum_{n=0}^{\infty} \frac{A_{n}}{2 x+2 n}, \quad S_{2}=\sum_{n=0}^{\infty} \frac{A_{n}}{2 x-2 n+1} .
$$

Then

$$
S_{1}=S_{2}
$$

whenever x is a positive integer.
Taking x to be unrestricted, combine like terms of S_{1} and S_{2}; we get

$$
\begin{aligned}
S_{1}-S_{2} & =\sum_{n=0}^{\infty} \frac{A_{n}(1-4 n)}{(2 x+2 n)(2 x-2 n+1)} \\
& =\frac{1}{2 x(2 x+1)} \cdot{ }_{5} F_{4}\left(\begin{array}{rrrr}
-\frac{1}{2} . & \frac{3}{4}, & -\frac{1}{2}, & x, \\
-\frac{1}{4}, & 1, & x+1, & \frac{1}{2}-x
\end{array}\right) .
\end{aligned}
$$

Now, by a theorem due to Dougall,

$$
\begin{aligned}
&{ }_{5} F_{4}\left(\begin{array}{c}
a, \\
1+\frac{1}{2} a, \\
\\
\frac{1}{2} a, \\
1+a-c, \\
1+a-d, \\
1+a-e
\end{array}\right) \\
&=\frac{\Gamma(1+a-c) \Gamma(1+a-d) \Gamma(1+a-e) \Gamma(1+a-c-d-e)}{\Gamma(1+a)} \overline{\Gamma(1+a-d-e) \Gamma(1+a-e-c) \Gamma}(\overline{1+a-c-d)} .
\end{aligned}
$$

In Dougall's theorem write

$$
a=c=-\frac{1}{2}, \quad d=x, \quad e=-x-\frac{1}{2},
$$

and we find at once that
i.e.

$$
S_{1}-S_{2}=\frac{1}{2 x(2 x+1)} \frac{\Gamma(1) \Gamma\left(\frac{1}{2}-x\right) \Gamma(1+x) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma(1) \Gamma\left(\frac{3}{2}+x\right) \Gamma(1-x)},
$$

$$
S_{1}-S_{2}=-\frac{\Gamma(x) \Gamma\left(-x-\frac{1}{2}\right)}{8 \Gamma\left(\frac{3}{2}+x\right) \Gamma(1-x)}
$$

whence Miller's result is obvious. A proof of Dougall's theorem is to be found in W. N. Bailey's Generalised hypergeometric series (Cambridge, 1935), pp. 27-28, with complete references to the relevant literature.

The result given above for unrestricted x suggests my second proof, which is considerably simpler. From the asymptotic expansion of the Gamma-function it follows that the function

$$
-\frac{\Gamma(x) \Gamma\left(-x-\frac{1}{2}\right)}{8 \Gamma\left(\frac{3}{2}+x\right) \Gamma(1-x)}
$$

satisfies the conditions (Cf. Modern Analysis, §7•4) which admit of its being expressed as a sum of partial fractions. Since the residues of the function at the poles $x=-n, x=n-\frac{1}{2}$ are respectively

$$
\frac{1}{2} A_{n}, \quad-\frac{1}{2} A_{n},
$$

we obtain anew the result

$$
-\frac{\Gamma(x) \Gamma\left(-x-\frac{1}{2}\right)}{8 \Gamma\left(\frac{3}{2}+x\right) \Gamma(1-x)}=\sum_{n=0}^{\infty} \frac{A_{n}}{2 x+2 n}-\sum_{n=0}^{\infty} \frac{A_{n}}{2 x-2 n+1}
$$

for unrestricted x.
It is, of course, possible to write down any number of generalisations of this result, the simplest perhaps being the expression for

$$
\frac{\Gamma(x) \Gamma(-x-a)}{\Gamma(1+a+x) \Gamma(1-x)}
$$

as a sum of partial fractions, where a is a suitably restricted constant.

On the configuration known as a double-six of lines

By H. W. Richmond, King's College, Cambridge.
In geometry of three dimensions it is well known that, when two quadrics Q_{1}, Q_{2} are given, if one set of four points exists having the properties that each point lies on Q_{1}, and each two points are conjugate with respect to Q_{2}, an infinity of such sets of points can be found. The quadrics Q_{1}, Q_{2} stand in a special relation to one another ${ }^{1}$, expressed by the vanishing of the coefficient of λ in the discriminant of $Q_{2}+\lambda Q_{1}$, an invariant of Q_{1}, Q_{2}. Two quadrics Q_{1}, Q_{2} are thus related if the equation of Q_{1} contains no squares

[^0]
[^0]: ${ }^{1}$ See Salmon, Analytic Geometry of Three Dimensions, Rogers' revised edition, Vol. 1, p. 204 ; or Sommerville, Analytical Geometry of Three Dimensions, p. 309.

