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Abstract. For a Banach space X we consider three ways in which a subspace
of X∗ can represent locally the whole dual space X∗. We obtain characterizations in
terms of ultrapowers and we study the relationship between the subspaces of X∗ and
the subspaces of the dual of an ultrapower of X .
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1. Introduction. We consider the question of representing the dual space X∗ of a
Banach space X by means of a closed subspace Z of X∗. This is interesting because in
many cases we do not have a good representation of X∗ at hand.

For a subspace Z of X∗, the following three properties (see Definition 1) represent
increasing stages in the accuracy of the representation of X∗ by Z:

(a) Z is a norming subspace,
(b) X∗ is finitely dual representable in Z,
(c) Z is a local dual of X .
The principle of local reflexivity is equivalent to saying that X , as a subspace of

X∗∗, is a local dual of X∗. Moreover (b) implies (a) and (c) implies (b), but the converse
implications fail [4, 5]. Observe that these properties not only depend on the isometric
properties of Z, but also on the position of Z inside X∗.

Here we study these three properties in terms of ultrapowers. This is interesting
because the principle of local reflexivity for ultrapowers [7, Theorem 7.3] can be stated
by saying that the ultrapower (X∗)U as a subspace of (XU)∗ is a local dual of XU.

Properties (a), (b) and (c) are local properties, in the sense that they can be defined
in terms of ε-isometries that satisfy some conditions on finite dimensional subspaces
(Definition 1).

We show first that the conditions mentioned in the previous paragraph can be
replaced by some “approximate” conditions (Proposition 2). We apply this result to
obtain characterizations of (a), (b) and (c) in terms of ultrapowers (Theorem 3). As a
consequence we show that the subspace Z of X∗ has one of these properties if and only
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if the ultrapower ZU has the corresponding property as a subspace of the dual space
(XU)∗ (Theorem 6).

We apply these results to show that the canonical copy of L1[0, 1] contained in
the space of Radon measures M[0, 1] ≡ C[0, 1]∗ is a local dual of C[0, 1], and that
the canonical copy of C[0, 1] in L∞[0, 1] is a local dual of L1[0, 1]. These results were
proved in [5] assuming the Continuum Hypothesis. Here we remove this condition.

Similarly, we show that (the canonical copies) L1(�) is a local dual of C(�), and
that C(�) is a local dual of L1(�), where � denotes the unit circle in the complex plane.
Observe that C(�) is not isometric to C[0, 1].

In the paper X and Y are Banach spaces, BX the closed unit ball of X , SX the
unit sphere of X , and X∗ the dual of X . We identify X with a subspace of X∗∗. By a
subspace we always mean a closed subspace.

We denote by B(X, Y ) the space of all (bounded linear) operators from X into Y .
Given T ∈ B(X, Y ), T∗ is the conjugate operator.

An operator T ∈ B(X, Y ) is an ε-isometry (0 < ε < 1) if it satisfies (1 + ε)−1 <

‖Tx‖ < 1 + ε for all x ∈ SX . A Banach space X is said to be finitely representable in Y
if for each ε > 0 and each finite dimensional subspace M of X there is an ε-isometry
T : M −→ Y .

We denote by � the set of all positive integers. An ultrafilter U on a set I is countably
incomplete if there is a countable partition {In : n ∈ �} of I such that In /∈ U for every
n ∈ �. We always assume that the ultrafilters are countably incomplete. Observe that
every infinite set admits a countably incomplete ultrafilter [7].

Given an ultrafilter U on a set I and a family (Xi)i∈I of Banach spaces, �∞(I, Xi)
is the Banach space of all bounded families (xi)i∈I such that xi ∈ Xi for every i ∈ I
endowed with the supremum norm ‖(xi)‖ := sup{‖xi‖ : i ∈ I}. We denote by NU(I, Xi)
the closed subspace of all families (xi) ∈ �∞(I, Xi) which converge to 0 following U.
The ultraproduct of (Xi)i∈I following U is defined as the quotient:

(Xi)U := �∞(I, Xi)
NU(I, Xi)

.

The element of (Xi)U including as a representative the family (xi) ∈ �∞(I, Xi) is
denoted by [xi], and its norm in XU is given by ‖[xi]‖ = limU ‖xi‖. Given a uniformly
bounded family of operators (Ti) ∈ �∞(I,B(Xi, Yi)), its ultraproduct is the operator
[Ti]: (Xi)U −→ (Yi)U defined by [Ti]([xi]) = [Txi]. If Xi = X for all i ∈ I then we speak
of the ultrapower of X , denoted XU. The ultrapower XU contains an isometric copy of
X generated by the constant families of �∞(I, X). We identify this copy with X . The
ultrapower (X∗)U is contained in (XU)∗, but in general they do not coincide. Actually,
[ fi] ∈ (X∗)U is identified with the functional f ∈ (XU)∗ defined by f ([xi]) := limU fi(xi);
(X∗)U = (XU)∗ if and only if X is superreflexive [7]. Note that for every x ∈ X and
every f ∈ X∗, the duality action as elements of XU and (XU)∗ is preserved, namely,
〈 f, x〉 = 〈[ f ], [x]〉. We refer to [7] for additional information about ultrapowers.

2. Main results. Let F and Z be subspaces of X∗, and let G be a subspace of X .
For an operator L: F −→ Z we shall consider the following exact conditions:

(I) 〈L f, x〉 = 〈 f, x〉 for all x ∈ G and all f ∈ F.

(II) L( f ) = f for all f ∈ F ∩ Z.

https://doi.org/10.1017/S001708950300140X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950300140X


SUBSPACES OF THE DUAL OF A BANACH SPACE 495

We shall say that L: F −→ Z satisfies (I) or (II) with respect to G.

Our aim is to study the concepts introduced below in terms of ultrapowers.

DEFINITION 1. Let Z be a subspace of X∗.
(a) We say that Z is norming if

‖x‖ = sup{|〈 f, x〉| : f ∈ BZ}, for every x ∈ X.

(b) We say that X∗ is finitely dual representable in Z if for every couple of finite
dimensional subspaces F of X∗ and G of X , and for every 0 < ε < 1, there is an
ε-isometry L: F −→ Z that satisfies (I) with respect to G.

(c) We say that Z is a local dual of X if for every couple of finite dimensional
subspaces F of X∗ and G of X , and every ε > 0, there is an ε-isometry L: F −→ Z that
satisfies (I) and (II) with respect to G.

The notions defined above were introduced in [4, Definition 1] and [5, Definition
2.1].

Clearly, if Z is a local dual of X , then X∗ is finitely dual representable in Z, and
therefore Z is norming. However, the converse implications do not hold [4, 5].

Let F and Z be subspaces of X∗, let G be a subspace of X and let 0 < ε < 1. For
an ε-isometry L: F −→ Z we shall consider the following approximate conditions:

(I′) |〈L f, x〉 − 〈 f, x〉| ≤ ε‖ f ‖ ‖x‖ for all x ∈ G and all f ∈ F.

(II′) ‖L( f ) − f ‖ ≤ ε‖ f ‖ for all f ∈ F ∩ Z.

We shall say that L: F −→ Z satisfies (I’) or (II’) with respect to G.

PROPOSITION 2. Let Z be a subspace of X∗.
(a) Z is norming if and only if for every finite dimensional subspace G of X and for

every ε > 0, there exist a normalized basis {x1, . . . , xn} of G and functionals {g1, . . . , gn}
in Z such that ‖gi‖ ≤ 1 + ε and 〈gi, xj〉 = δij for i, j = 1, . . . , n.

(b) X∗ is finitely dual representable in Z if and only if for every couple of finite
dimensional subspaces F of X∗ and G of X, and every 0 < ε < 1, there is an ε-isometry
L: F −→ Z that satisfies (I’) with respect to G.

(c) Z is a local dual of X if and only if for every couple of finite dimensional
subspaces F of X∗ and G of X, and every 0 < ε < 1, there is an ε-isometry L: F −→ Z
that satisfies (I’) and (II’) with respect to G.

Proof. (a) Let us assume that Z is norming. By Auerbach’s Lemma [10, Proposition
1.c.3], there are normalized vectors {x1, . . . , xn} in G and { f1, . . . , fn} in G∗ such that
〈 fi, xj〉 = δij for i, j = 1, . . . , n.

Let T : G −→ X denote the embedding map and select {h1, . . . , hn} in (1 + ε/2)BX∗

such that T∗hi = fi for i = 1, . . . , n.
Since Z is norming, BZ is weak∗-dense in BX∗ [3]. Therefore, as G∗ ≡ X∗/G⊥ is

finite dimensional, T∗(BZ) is norm-dense in BG∗ . Thus (1 + ε/2)T∗(BX∗ ) is contained
in (1 + ε)T∗(BZ), and it is enough to choose {g1, . . . , gn} in (1 + ε)BZ such that T∗gi =
T∗hi for i = 1, . . . , n.

The converse implication is trivial.
(b) For the non-trivial implication, we fix finite dimensional subspaces F of X∗

and G of X . Observe that the existence of Lε for every ε > 0 implies that Z is norming.
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Thus, by Proposition 2 (a), we can choose a normalized basis {x1, . . . , xn} of G and
functionals {g1, . . . , gn} in Z such that ‖gi‖ < 2 and 〈gi, xj〉 = δij for i, j = 1, . . . , n.

Let 0 < ε < 1 and let δ := ε/(8n). We define L: F −→ Z by

L f := Lδf +
n∑

i=1

〈 f − Lδf, xi〉gi for f ∈ F.

Clearly 〈L f, x〉 = 〈 f, x〉, for all f ∈ F and all x ∈ G. Moreover, for every f ∈ F ,
∥∥∥∥∥

n∑
i=1

〈 f − Lδf, xi〉gi

∥∥∥∥∥ ≤ 2nδ‖ f ‖.

Therefore, L is a ε-isometry that satisfies (I) with respect to G.
(c) is Theorem 2.5 in [5]. �
Part (c) in Proposition 2 was useful in [4] and [5] to find examples of local dual

spaces of some Banach spaces.
Let Z be a subspace of X∗ and let U be an ultrafilter on a set �. Since BX∗ is

weak∗ compact, it follows that every bounded family ( fα)α∈� ⊂ X∗ is weak∗ converging
following U. This fact allows us to introduce the natural operatorQ : ZU → X∗ defined
by

Q([zα]) := w∗ − lim
α→�

zi.

The operator Q plays a central role in the following theorem, which is our main result.

THEOREM 3. Let Z be a subspace of X∗.
(a) Z is norming if and only if there is an ultrafilter U such that Q maps the closed

unit ball of ZU onto BX∗ .
(b) X∗ is finitely dual representable in Z if and only if there is an ultrafilter U and

an isometry T ∈ B(X∗, ZU) such that QT = IX∗ .
(c) Z is a local dual of X if and only if there is an ultrafilter U and an isometry

T ∈ B(X∗, ZU) such that QT = IX∗ and T |Z is the natural embedding.

Proof. In all the direct implications, U will be an ultrafilter on the set of all pairs
α = (Eα, Fα) of finite dimensional subspaces of X and X∗ refining the order filter.

(a) Assume Z is norming, namely, BZ is w∗-dense in BX∗ . Let f ∈ BX∗ . For every
index α, we take a basis {x1, . . . , xn} of Eα and the w∗-neighborhood of f given
by Vα := {g ∈ X∗ : |〈g − f, xi〉| < n−1, i = 1, . . . , n}. Take gα ∈ Vα ∩ BZ. Note that for
every w∗-neighborhood V of f , there is an index α verifying Vα ⊂ V , so Q([gα]) = f .
For the converse, take a norm one element x ∈ X and choose a norm one functional
f ∈ X∗ such that 1 = 〈 f, x〉. Following the hypothesis, there is a family (gi)i∈I ⊂ BZ

such that Q([gi]) = f . Hence 1 = limi→U〈gi, x〉, so Z is norming.
(b) Suppose that X∗ is finitely dual representable in Z. For every α = (Eα, Fα),

we write nα = dim Eα + dim Fα. Then there exists a n−1
α -isometry Tα: Fα −→ Z that

satisfies (I) with respect to Eα.
We define T ∈ B(X∗, ZU) by Tf := [(Tf )α], where

(T f )α =
{

Tα f, if f ∈ Fα;
0, otherwise.
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Clearly T is an isometry. Moreover, for every x ∈ X and f ∈ X∗, we have

〈QTf, x〉 = lim
α−→U

〈(Tf )α, x〉 = 〈 f, x〉.

Hence QT = IX∗ .
Conversely, assume that there exist an ultrafilter U on a set � and an isometry

T : X∗ −→ ZU verifying QT = IX∗ . By part (a), Z is norming.
Consider a pair of finite dimensional subspaces F of X∗ and G of X . Let 0 < ε < 1.

Since T|F has finite rank, by [7, Lemma 7.3] there is a uniformly bounded family
of operators (Lα)α∈� in B(T(F), Z) such that T = [LαT ], and moreover, there exists
�1 ∈ U so that Tα := LαT is an ε-isometry for all α ∈ �1.

By Proposition 2 (a), there exist a normalized basis {x1, . . . , xm} of G and func-
tionals {g1, . . . , gm} in Z such that ‖gi‖ <

√
2 and 〈gi, xj〉 = δij for i, j = 1, . . . , m.

Moreover, there exist a normalized basis {h1, . . . , hn} of F and vectors {y1, . . . , yn} in
X such that ‖yi‖ <

√
2 and 〈hi, yj〉 = δij for i, j = 1, . . . , n.

Since QT = IX∗ , we can select α ∈ �1 so that

|〈Tαhi − hi, xj〉| <
ε

2mn
, for all i and j.

Thus, for every h ∈ F and every x ∈ G, as h = ∑n
i=1〈h, yi〉hi and x = ∑m

j=1〈gj, x〉xj, we
get |〈Tαh − h, x〉| ≤ ε‖h‖‖x‖, and applying Proposition 2 (b), the proof is done.

(c) For the direct implication, for every index α we choose a n−1
α -isometry Tα

verifying (I) and (II) with respect to Eα. Proceeding as in (b), we get QT = IX∗ .
Moreover, since Tαg = g for all g ∈ Z ∩ Fα, we get Tg = [g].

For the converse implication, we proceed as in part (b), but instead of choosing α ∈
�1, we choose α ∈ �1 ∩ �2, where �2 := {α ∈ � : ‖Tαhi − hi‖ <

√
2

−1
n−1ε}; notice

that since T|Z is the natural embedding of Z into ZU, then �2 ∈ U. Therefore, the
ε-isometry Tα verifies (I′) and (II′) with respect to G. Proposition 2 (c) shows that Z is
a local dual of X . �

REMARK 4. In Theorem 3, TQ is a norm-one projection on ZU with range isometric
to X∗.

REMARK 5. It has been already noted in [7] and [1, 8.17 Theorem] that the classical
principle of local reflexivity implies the existence of an ultrafilter U and an isometry
J: X∗∗ −→ XU such that JQ is a norm-one projection whose range is isometric to X∗∗

and JQ|X is the canonical embedding of X into XU. Theorem 3 and Remark 4 shed
light upon the projection JQ: its existence is equivalent to the classical principle of
local reflexivity.

The previous characterizations are the key to prove the converse implications in
the following result.

THEOREM 6. Let Z be a subspace of X∗ and let U be an ultrafilter on a set I.
(a) Z is norming if and only if ZU is norming.
(b) X∗ is finitely dual representable in Z if and only if (XU)∗ is finitely dual represen-

table in ZU.
(c) Z is a local dual of X if and only if ZU is a local dual of XU.

Proof. (a) Assume that Z is a norming subspace of X∗. Let [xi] ∈ XU and ε > 0.
For each i ∈ I there is a norm one element fi ∈ Z such that 〈 fi, xi〉 ≥ ‖xi‖ − ε, so
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〈[ fi], [xi]〉 ≥ ‖[xi]‖ − ε, which proves that ZU is norming. For the converse, assume
that ZU is a norming subspace of (XU)∗. Given x ∈ X , there is [ fi] ∈ ZU such that
‖ fi‖ = 1 for all i and ‖x‖ = 〈[ fi], [x]〉. Thus ‖x‖ = limi→U〈 fi, x〉, hence Z is a norming
subspace of X∗.

(b) The proof is essentially contained in the proof of (c).
(c) Assume that Z is a local dual of X and fix a couple of finite dimensional

subspaces F of X∗
U

and G of XU and 0 < ε < 1. Since X∗
U

is a local dual of XU, there is
an ε/4-isometry L1: F −→ (X∗)U satisfying (I) and (II) with respect to G.

We fix a basis {[ f 1
i ], . . . , [ f m

i ]} of L1(F) and a basis {[x1
i ], . . . , [xn

i ]} of G. For every
i ∈ I , we write Fi := span{ f 1

i . . . f n
i } ⊂ X∗ and Gi := span{x1

i . . . xn
i } ⊂ X .

Now, for every i ∈ I we select an ε/4-isometry Li: Fi −→ Z satisfying (I) and (II)
with respect to Gi, and define an ε/4-isometry L2: L1(F) −→ ZU by L2[ fi] := [Lifi].

Clearly L := L2L1: F −→ ZU is an ε-isometry satisfying (I) and (II) with respect
to G. Thus ZU is a local dual of XU.

Conversely, assume that ZU is a local dual of XU. Let F ⊂ X∗ and G ⊂ X be
finite dimensional subspaces and 0 < ε < 1/2. Take 0 < ε′ < 2−3ε and choose an
ε′-net { fj}n

j=1 in BF and an ε′-net {xj}n
j=1 in BG. Note that { fj}n

j=1 includes a basis
of F . Since we can consider F and G as subspaces of (X∗)U and XU, there is an
ε′-isometry L: F −→ ZU verifying (I) and (II) with respect to G.

Since L has finite rank, by [7, Lemma 7.3] there exist a set �1 ∈ U and a bounded
family of uniformly bounded operators (Li)i∈I in B(F, Z) such that L = [Li] and such
that, for each i ∈ �1, Li is an ε-isometry. Moreover, there exists �2 ∈ U such that, for
every i ∈ �2,

|〈Li fj, xk〉 − 〈 fj, xk〉| ≤ ε′‖ fj‖ ‖xk‖ for all j, k = 1, . . . , n, and

‖Li( fj) − fj‖ ≤ ε′‖ fj‖ for all j = 1, . . . , n.

We fix i ∈ �1 ∩ �2 and denote T = Li. Thus T is a ε-isometry. Let us show that T
satisfies (I′) and (II′) for G.

First, we take f ∈ SF and x ∈ SG. We pick fk and xl so that ‖ f − fk‖ < ε′ and
‖x − xl‖ < ε′. Thus, as

〈(I − T) f, x〉 = 〈(I − T) f, x − xl〉 + 〈(I − T)( f − fk), xl〉 + 〈(I − T) fk, xl〉

we obtain |〈(I − T) f, x〉| ≤ 2(2 + ε′)ε′ + ε′ < ε. Second, we take f ∈ SF ∩ Z, and pick
fk so that ‖ f − fk‖ < ε′. Therefore

‖Tf − f ‖ ≤ ‖Tf − Tfk‖ + ‖Tfk − fk‖ + ‖ fk − f ‖ < 2ε′ + ε′ + ε′ < ε.

Hence T is a ε-isometry that satisfies (I′) and (II′) with respect to G, and the proof is
complete. �

REMARK 7. Note that part (c) in Theorem 6 implies that (X∗)U is a local dual of
XU, which constitutes the principle of local reflexivity for ultrapowers [7].

In the following we are going to prove that there is local duality between C[0, 1]
and L1[0, 1]. The same result was already given by the authors in [5, Proposition 2.8],
but the proof offered here needs not the Continuum Hypothesis, which is an important
improvement with respect to the proof in [5]. In order to show that, for every n ∈ �,
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we consider the intervals

In
i =




[
i − 1

2n
,

i
2n

)
if i = 1, . . . 2n − 1,

[
2n − 1

2n
, 1

]
if i = 2n.

Let us denote by χn
i the characteristic functions of the intervals In

i . Recall that C[0, 1]∗

can be identified with the space M[0, 1] of all Borel measures on [0, 1]. We identify
L1[0, 1] with a subspace of M[0, 1] in the usual way.

For every n ∈ �, we define operators Gn:M[0, 1] −→ L1[0, 1] by

Gnλ :=
2n∑

i=1

2nλ
(
In

i

)
χn

i .

LEMMA 8. (a) the sequence (Gn f ) converges in norm to f , for every f ∈ L1[0, 1].
(b) (Gnλ) converges to λ in the weak∗-topology, for every λ ∈ M[0, 1].

Proof. (a) is well known [2].
(b) Let λ ∈ M[0, 1] be a positive measure and f ∈ C[0, 1]. We denote Mn

i :=
sup{ f (t) : t ∈ In

i }, mn
i := inf{ f (t) : t ∈ In

i } and

ρn( f ) := max
{
Mn

i − mn
i : i = 1, . . . , 2n}.

It is enough to prove that |〈 f , λ − Gnλ〉| ≤ ρn( f )‖λ‖.
We consider the Borel-measurable functions Mn and mn on [0, 1], defined by

Mn(t) :=
2n∑

i=1

Mn
i χ

n
i (t) and mn(t) :=

2n∑
i=1

mn
i χ

n
i (t).

Clearly,

〈mn , λ〉 ≤ 〈 f , λ〉 ≤ 〈Mn , λ〉
and

〈mn , Gnλ〉 ≤ 〈 f , Gnλ〉 ≤ 〈Mn , Gnλ〉.
Since 〈mn , λ〉 = 〈mn , Gnλ〉 and 〈Mn , λ〉 = 〈Mn , Gnλ〉, we get

|〈 f , λ − Gnλ〉| ≤ 〈Mn − mn , λ〉 =
2n∑

i=1

(
Mn

i − mn
i

)
λ
(
In

i

) ≤ ρn( f )‖λ‖.

�
Let Z be a local dual of X , and let J: X −→ X∗∗ the canonical embedding of X

into X∗∗. We denote by ϒ : X −→ Z∗ the isometry that maps x onto J(x)|Z. It has been
proved in [5, Proposition 2.10] that ϒ(X) is a local dual of Z.

THEOREM 9. (a) L1[0, 1] is a local dual of C[0, 1].
(b) C[0, 1] is a local dual of L1[0, 1].
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Proof. (a) Let U be an ultrafilter on � and define T :M[0, 1] −→ L1[0, 1]U by
Tλ := [Gnλ]. Lemma 8 fulfills the hypotheses of part (c) in Theorem 3, which proves
that L1[0, 1] is a local dual of C[0, 1].

(b) Note that ϒ(C[0, 1]) is the canonical copy of C[0, 1] contained in L1[0, 1]∗, so
statement (a) and [5, Proposition 2.10] proves (b). �

We denote the torus {eit : t ∈ [0, 2π ]} by �. Note that the following Theorem
cannot be obtained from Theorem 9 because C[0, 1] is not isometrically isomorphic to
C(�).

THEOREM 10. (a) L1(�) is a local dual of C(�);
(b) C(�) is a local dual of L1(�).

Proof. (b). Let {ψn}∞n=1 a positive summability kernel on � [9, Definition 2.2] such
that ψn(eit) = ψn(e−it) for all t ∈ [0, 2π ] and all n ∈ �. The following facts are well
known:

(i) ‖ψn ∗ f − f ‖1
n−→ 0 for all f ∈ L1(�),

(ii) ‖ψn ∗ g − g‖∞
n−→ 0 for all g ∈ C(�),

(iii) ψn ∗ g ∈ C(�) for all g ∈ L∞(�);
moreover, statement (i), the symmetry of each ψn and Fubini’s theorem yield:

(iv) 〈ψn ∗ g, f 〉 = 〈g, ψn ∗ f 〉 n−→ 〈g, f 〉 for all g ∈ L∞(�) and all f ∈ L1(�).
Thus, for every n ∈ �, statement (iv) allows us to define the operator Tn: L∞(�) −→
C(�) by fn(g) = ψn ∗ g. Let U be an ultrafilter on � and define the operators
T : L∞(�) −→ C(�)U by T(g) = [Tn(g)], and Q: C(�)U −→ L∞(�) by Q([gn]) =
w∗- limn→U gn. On the one hand, statement (ii) yields

‖T(g) − g‖ = lim
n→U

‖Tn(g) − g‖∞ = 0 for all g ∈ C(�).

So the restriction of T to C(�) is the natural embedding of C(�) into C(�)U. On the
other hand, (iv) leads to

〈T(g), [ f ]〉 = lim
n→U

〈Tn(g), f 〉 = 〈g, f 〉, for all g ∈ L∞(�) and all f ∈ L1(�),

which shows that QT is the identity on L∞(�). Hence, the hypotheses of Theorem 3
(c) are fulfilled, so C(�) is a local dual of L1(�).

(a) The proof is analogous to that of part (b) in Theorem 9, by using [5,
Proposition 2.10]. �
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6. M. González and A. Martı́nez-Abejón, Local dual spaces of Banach spaces of vector-
valued functions, Proc. Amer. Math. Soc., 130 (11) (2002), 3255–3258.

7. S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980),
72–104.

8. N. Kalton, Locally complemented subspaces andLp-spaces for 0 < p < 1, Math. Nachr.
115 (1984), 71–97.

9. Y. Katznelson, An introduction to harmonic analysis (Dover, 1968).
10. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence spaces. (Springer-

Verlag, 1977).

https://doi.org/10.1017/S001708950300140X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950300140X

