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A specific feature of three-dimensional bluff body wakes, flow bistability, is a subject
of particular recent interest. This feature consists of a random flipping of the wake
between two asymmetric configurations and is believed to contribute to the pressure
drag of many bluff bodies. In this study we apply the modelling approach recently
suggested for axisymmetric bodies by Rigas et al. (J. Fluid Mech., vol. 778, 2015,
R2) to the reflectional symmetry-breaking modes of a rectilinear bluff body wake. We
demonstrate the validity of the model and its Reynolds number independence through
time-resolved base pressure measurements of the natural wake. Further, oscillating
flaps are used to investigate the dynamics and time scales of the instability associated
with the flipping process, demonstrating that they are largely independent of Reynolds
number. The modelling approach is then used to design a feedback controller that
uses the flaps to suppress the symmetry-breaking modes. The controller is successful,
leading to a suppression of the bistability of the wake, with concomitant reductions in
both lateral and streamwise forces. Importantly, the controller is found to be efficient,
the actuator requiring only 24 % of the aerodynamic power saving. The controller
therefore provides a key demonstration of efficient feedback control used to reduce
the drag of a high-Reynolds-number three-dimensional bluff body. Furthermore, the
results suggest that suppression of large-scale structures is a fundamentally efficient
approach for bluff body drag reduction.

Key words: drag reduction, flow control, low-dimensional models

1. Introduction
For many three-dimensional wakes, a prominent feature that is believed to contribute

to pressure drag is the so-called bistability. This feature consists of an instantaneous
asymmetry of the wake, even under nominally symmetric flow conditions, and a
random switching between two such asymmetric states. Bistability was first recognised
by Herry et al. (2011), who observed mean flow asymmetry and high sensitivity to
side slip angle for the flow over a three-dimensional double backward-facing step.
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FIGURE 1. Plan view of the Ahmed body showing a conditional average of one of the
symmetry-breaking states of the wake, obtained from particle image velocimetry. The
streamlines demonstrate the asymmetry, showing the stationary vortex adjacent to the base.
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FIGURE 2. View of the Ahmed body showing the overall assembly (a) and detailed view
of the base (b). The model width W is 0.216 m. The positioning of the flaps, pressure
sensors and force balance is shown.

Since then, a number of studies have examined this same feature on the body of
Ahmed, Ramm & Faltin (1984). This so-called Ahmed body, shown in figures 1
and 2, provides a generic representation of a road vehicle, including the essential
features of a real vehicle flow field such as three-dimensional separation and ground
effect.

At low Reynolds numbers (Re), of order 100, the flow behind the Ahmed body
is steady and is characterised by reflectional symmetry with respect to the vertical
symmetry plane of the body (Grandemange, Cadot & Gohlke 2012). Due to the
presence of the ground, a top–bottom asymmetry exists with respect to the horizontal
symmetry plane. Increasing the Reynolds number, the flow undergoes a steady
supercritical bifurcation and the resulting steady flow loses the remaining spatial
symmetry. The flow breaks the left–right reflectional symmetry and, depending on the
initial conditions, relaxes in one of two possible stable asymmetric states. For even
higher Reynolds numbers, the flow becomes unsteady and periodic shedding starts
to occur. These two regimes were observed for Re> 340 and Re> 410, respectively
(Grandemange et al. 2012).

It has been recently shown that the two reflectional symmetry-broken (RSB) states
observed in the laminar regime persist at much higher Reynolds numbers (Re≈ 105)
(Grandemange, Gohlke & Cadot 2013c; Cadot, Evrard & Pastur 2015; Volpe, Devinant
& Kourta 2015) and for a number of different geometric configurations (Grandemange,
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728 R. D. Brackston and others

Gohlke & Cadot 2013b). For a body aligned with the flow, the asymmetric structure is
demonstrated to flip randomly between two asymmetric states, each the mirror image
of the other. In the long-time average this ‘flipping’ leads to a statistically symmetric
wake, while instantaneously the wake is typically asymmetric with an associated
lateral force on the body. The structure of this asymmetric flow is displayed in
figure 1, and consists of a static vortex adjacent to the base towards one side, leading
to a low-pressure region. For a more detailed description the reader is referred to
Evrard et al. (2015, figure 11). The flipping process has two time scales associated
with it, the flipping period (T) defining the average time between flips, and the
instability time scale (δ) defining the duration of a flipping event. The former is
generally many orders of magnitude greater than the latter. Previous studies have
examined the statistics of the flipping process, including the flipping period, with
respect to ground clearance (Cadot et al. 2015) and flow alignment (Volpe et al.
2015), but none has looked in detail at the flipping dynamics. The instability time
scale δ therefore remains to be investigated in detail.

The RSB modes observed for high-Reynolds-number rectilinear three-dimensional
(3-D) bluff body wakes are qualitatively similar to the asymmetry seen in the wakes
of other 3-D bluff bodies, most notably in axisymmetric cases. For example, Rigas
et al. (2014) and Grandemange, Gohlke & Cadot (2014a) both demonstrate that,
instantaneously, the wakes of respectively a bullet-shaped body and a sphere are
asymmetric but that this asymmetry is not present over long-time averages. For such
axisymmetric wakes this feature is again linked to the spatial symmetry breaking seen
at low Reynolds numbers (Bury & Jardin 2012), shown to result from a supercritical
pitchfork bifurcation (Fabre, Auguste & Magnaudet 2008; Meliga, Chomaz & Sipp
2009). For the bullet-shaped body, this link with the low-Reynolds-number bifurcations
has allowed an accurate model to be developed for the turbulent dynamics (Rigas
et al. 2015). Here we apply the same approach to the wake of a rectilinear body,
obtaining a model that accurately captures the dynamics of the RSB modes including
the time scale of the instability.

A number of studies of both axisymmetric and rectilinear bodies have looked at
methods to control the wake, including control of the spatial symmetry-breaking
mode. For example, Grandemange, Gohlke & Cadot (2014b) and Cadot et al. (2015)
both applied a vertical control cylinder in the wake of the Ahmed body, finding
that if correctly located, the bistable behaviour could be suppressed, achieving a
small concomitant drag decrease. More recently, Evrard et al. (2015) found that a
base cavity was also able to achieve bistability suppression with even larger drag
reductions. For the axisymmetric body, similar results have been achieved using a
passive slit around the perimeter of the base (García de la Cruz, Oxlade & Morrison
2016). While these passive methods have proven effective, the requirements for
suppression of the spatial symmetry-breaking mode remain unclear. Moreover, it
remains to be seen whether the mode can be suppressed without significant geometric
modification. This motivates the use of active feedback control techniques.

Closed-loop control of fluid flows such as wakes has historically proven to be
challenging because of infinite degrees of freedom of the fluid continuum and
strongly nonlinear dynamics. While some flow control methods such as extremum
seeking (Henning et al. 2008) and machine learning control (Gautier et al. 2015)
are model free, many more rely on having a mathematical model, and often a linear
model, of the fluid system. For example, black-box linear models have often been
used for convectively unstable flows such as the backward-facing step (Barbagallo
et al. 2012; Dahan, Morgans & Lardeau 2012; Gautier & Aider 2014), because such
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flows behave like a linear amplifier, thus allowing linear models to be obtained for
various input–output behaviours. For absolutely unstable flows that operate on a limit
cycle it is much more challenging, as the flow is already operating in a fully nonlinear
regime. In such cases, a linear fit may be obtained about an operating point, but not
about the desired operating condition. For numerical simulations, the unstable system
may still be identified since the base flow can be evaluated directly along with the
perturbation dynamics (Barbagallo, Sipp & Schmid 2009). For experimental flows this
is not possible. Another solution has been to obtain a working controller by trial and
error, and then to examine the dynamics of the stabilised system (Morgans & Dowling
2007; Illingworth, Morgans & Rowley 2012). While this is an attractive solution in
some cases, empirical design of an effective controller for a turbulent high-Re flow
is usually not possible. Therefore, having a priori the form of an accurate model of
the flow is of great benefit for feedback control. Moreover, we may expect to be able
to achieve better control through knowledge of the flow physics than through the use
of generic methods (Ho & Pepyne 2002). The nonlinear Langevin model that we
develop here for the RSB modes provides just such a model that enables informed
design of a feedback controller.

In this paper we use oscillating flaps along with pressure measurements to provide
further insight into the dynamics of the bistability, specifically estimating the time
scale of the instability and the variation of the dynamics with Re. The dynamics is
then linked to the modelling approach of Rigas et al. (2015), wherein the large-scale
flow structure of the bistability is modelled by a simple nonlinear Langevin equation,
the stochastic term modelling the effect of the turbulence. In contrast to many
previous flow control strategies, the present modelling approach allows us to linearise
analytically a low-dimensional model, thereby enabling us to design a feedback
controller based on the equations governing the laminar large-scale structures. This
controller is designed with the aim of suppressing the asymmetric large-scale structure
of the RSB mode, and is demonstrated to reduce both the pressure drag and the lateral
force on the body.

The paper is outlined as follows. The experimental set-up is detailed in § 2, before
the modelling and open-loop results are described in § 3. The design and results of
the feedback controller are then given in § 4, before conclusions are made in § 5.

2. Experimental set-up

The experimental set-up is shown in figure 2. Experiments were carried out in a
closed-circuit wind tunnel with a test section measuring 1.37 m × 1.22 m × 3.00 m.
The model blockage ratio was 2.1 % and the free-stream turbulence intensity was less
than 0.1 %. The tunnel is controlled using a proportional integral derivative (PID)
controller to achieve the desired free-stream velocity to an accuracy of 0.25 %.

The experimental model consists of a scaled-down, flat-backed Ahmed body of
the proportions specified by Ahmed et al. (1984). The base of the model measures
0.216 m×0.160 m, giving Re of O(105). The model sits 0.028 m above a raised floor,
ensuring minimal boundary layer thickness over the tunnel floor while maintaining
the correct ground effect. A force balance, situated out of the air flow, provides the
connection between the model and the tunnel, enabling accurate measurement of the
total force and moment acting on the body.

In addition to the force balance, the model is instrumented with eight Endevco
8507C pressure transducers for fluctuating pressure measurements and an ESP-DTC
pressure scanner supplying 64 static pressure measurements distributed over the
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model base. The static pressure measurements are used to calculate the time-
averaged statistics while the pressure transducers are used for time-resolved pressure
measurements and feedback control.

Forcing of the wake is achieved using two flaps located at the trailing edges of the
sides of the body, each 0.019 m in streamwise length and running the height of the
body. The flaps are mounted on hinges driven by internal motors powered through
an amplifier. The flaps are given a natural equilibrium and oscillatory dynamics
through the action of internal springs. The angle of each flap is measured using a
12-bit magnetic encoder while the power supplied to the flaps is monitored through
measurement of the supply voltage and the current through the motors.

All channels are sampled simultaneously at 25 kHz with the exception of the
pressure scanners that are sampled at 250 Hz, and synchronised with every hundredth
analogue sample. For open-loop forcing of the wake, the mean angles, fluctuation
amplitudes and phases of the flaps are PID-controlled to ensure uniform forcing at all
frequencies. Feedback control was achieved using a National Instruments Real-Time
PXI running a discrete time controller at 5 kHz. The controller obtains pressure
measurements from six of the Endevco transducers and outputs two voltages that are
sent to the motors.

3. Modelling and open-loop investigations
In this section we provide the methodology for deriving a physical model capturing

the dynamic evolution of the RSB mode, and identify its unknown parameters
experimentally. The basis for the model is the observation that the bistability of
the turbulent flow results from a persistence of the laminar global modes at high
Reynolds numbers. The effect of turbulence on the deterministic nonlinear dynamics
governing the RSB mode is modelled as stochastic forcing, as in Rigas et al. (2015).
The model is also extended to capture the response of the mode to open-loop forcing
provided by the flaps, in anticipation of its use for feedback control design.

For rectilinear bodies it has been shown that the spatial symmetry-breaking mode
occurs in only one of the two dimensions, the specific dimension depending upon
the aspect ratio and ground effect (Grandemange et al. 2013b). For the Ahmed body
wake this feature occurs only in the lateral dimension (see figure 2); we therefore
require some metric that captures this feature from our experimental data. While there
are many choices for this metric, here, as in Rigas et al. (2014) and Volpe et al.
(2015), we take the lateral component of the centre of pressure (CoP) location. Non-
dimensionalised by the body width, this is defined as

r(t)= 1

W
∫∫

A
p(y, t) dA

∫∫
A

p(y, t)y dA, (3.1)

where p(y, t) is the local pressure obtained from either the static taps or the pressure
transducers, y is the lateral coordinate and A is the area over the base of the body.
Henceforth we will use the parameter r to describe the symmetry-breaking mode of
the wake and, when displaying experimental results, use the metric defined by (3.1).

3.1. Modelling
Our modelling of the RSB mode of the wake follows the modelling approach of Rigas
et al. (2015). To begin, the normal form of the spatial symmetry-breaking mode of the
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FIGURE 3. (Colour online) (a) The potential well V(r) for θ = 0, and (b) an example
time series demonstrating the time scales T and δ.

wake can be written as
ẋ= αx− λx3. (3.2)

This equation describes a supercritical pitchfork bifurcation where x is the bifurcated
mode, ẋ the time derivative, α the growth rate and λ the saturation parameter.

In the turbulent regime and for the rectilinear bluff body wake of our experiment,
(3.2) can now be written in terms of the mode r as

ṙ= αr− λr3 + bθt−τ + σξ(t). (3.3)

Here, the first additional term bθt−τ models the effect of the forcing by the flaps.
The flaps may be expected to deflect the shear layers by an amount determined by
their angle θ . They thereby provide a lateral momentum flux that forces the mode
r, according to some linear scaling factor b. Given that any shear layer perturbation
must be advected, it is natural to also incorporate an advective time delay τ . We
will demonstrate later that the nature of this term fits well with the experimental
observations (§§ 3.3 and 3.4). The additional term σξ(t) is used to model the
broadband forcing due to turbulence acting on the large-scale structure of the mode,
where ξ is a normally distributed random variable and σ 2 gives the variance (noise
intensity). This is intended to capture all of the remaining perturbations in the flow
that will cause the mode r to change. Given the coherence of the mode described by
r, we may expect the term σξ(t) to be relatively small. Furthermore, for the flaps
to have good authority over the flow, we may require the term bθt−τ to be relatively
large. We will see in § 3.5 that this is indeed the case.

The system described by (3.3) is one of a state r moving in a double-well potential
V(r), as illustrated in figure 3(a). The turbulent forcing perturbs the state within this
well, while the parameter θ is able to skew the well in either direction. Such systems
are commonplace and have been studied extensively in the past (see for example
Gammaitoni et al. 1998), therefore we will summarise only the key features here. In
the absence of noise and for θ = 0, the system has three points of equilibrium: one
unstable at r= 0 and two stable at r=±√α/λ=±re. The state r will therefore tend
to move in a region around one of the two stable equilibrium points until sufficiently

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

49
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.495


732 R. D. Brackston and others

perturbed by the noise to jump to the other. The mean time between such jumps, T ,
is illustrated in figure 3(b), and may be shown to be given by (Zwanzig 2001)

T = π

2α
exp

(
αr2

e

2σ 2

)
. (3.4)

The second time scale of the process is the instability time scale associated with the
duration of a flipping event, as demonstrated in figure 3(b), and is approximately given
by δ≈ 1/α. The ratio of these two time scales therefore depends upon the ratio σ 2/α
and determines the proportion of time spent at or near the equilibrium positions.

In the long-time average the distribution of values for r may be given analytically
by the steady state Fokker–Planck equation (Risken 1996). The stationary probability
density function (PDF) for the system described by (3.3) with constant θ is

P(r) = C exp
(
−2V(r)

σ 2

)
= C exp

(
α

σ 2

(
r2 − 1

2
λ

α
r4

)
+ 2bθ
σ 2

r
)
, (3.5)

where C is a normalisation constant. This will later allow us to validate the model
and aid in establishing the parameters.

The model is also consistent with expectations for the power spectral density (PSD)
of the variable r. At high frequencies, (3.3) describes diffusive motion since ṙ ≈ σξ .
At very low frequencies, i.e. long time scales, (3.3) leads to a random switching
process as observed in practice. For both diffusive motion and low-frequency flipping
(Grandemange 2013, § D.2.) the PSD is expected to follow Srr(ω)∝ω−2, i.e. the PSD
will have a slope of −2 on a log–log axis.

3.2. Unforced flow
The unforced flow was examined at three different free-stream velocities corresponding
to Re= 2.3× 105, 3.0× 105 and 4.4× 105. Figure 4(a) shows the PDF for r, along
with the model prediction from (3.5), using the parameters shown in § 3.5. The PDF
demonstrates the asymmetry of the flow since the mode is non-zero, i.e. the PDF
peaks at |r| = re, the equilibrium value of (3.3). The results demonstrate both collapse
of the data with Re and agreement with the model prediction.

As indicated in (3.5), the unforced (θ = 0) PDF can be written as a function of
two non-dimensional parameters: σ 2/α and λ/α. These two parameters determine
respectively the sharpness and location of the peak in the PDF and are seen to be
largely Re independent. Physically, the parameter σ 2/α gives the intensity of the
noise relative to the growth rate of the instability. The results therefore suggest that
as Re changes, any change in growth rate is accompanied by a roughly equal change
in the noise intensity. As noted above, this parameter is closely linked to the ratio of
the two flipping time scales: a large σ 2/α corresponds to a larger δ/T . The second
parameter, λ/α, describes the level of asymmetry, and hence the topology of the flow,
at the two stable equilibrium points. The results therefore suggest that this topology
remains approximately constant.

Figure 4(b) shows the power spectral density of r as a function of the Strouhal
number, StW = fW/U∞. At lower frequencies, a region of ω−2 roll-off is observed for
all three Re, consistent with the expectations for a randomly bistable process.
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FIGURE 4. (Colour online) Properties of the mode r at the three tested Re: (a) probability
density function and (b) power spectral density.

3.3. Response to harmonic forcing
While the unforced results of § 3.2 allow assessment of the time-averaged behaviour,
full quantification of the process requires knowledge of the time scales quantified by
α and τ . These time scales can most accurately be assessed by forcing the flow with
the lateral flaps in order to induce repeated flipping of the asymmetric structure. By
performing such harmonic forcing at a range of frequencies we obtain a frequency
response for the flow and also understand how the flaps affect the drag of the body.

The frequency response is found using a standard system identification technique.
The Fourier coefficients corresponding to the frequency of the harmonic forcing are
evaluated for both the input and the output. From these coefficients, the gain and
phase are evaluated. The input is taken as the mean of the two flap angles, with
the sign convention that a positive angle for both flaps corresponds to antisymmetric
forcing, i.e. forcing in which when one flap moves inwards the other moves outwards.
The output is the metric r, approximated using the pressure transducers. The complex
gain G(StW) is therefore defined as R(StW)/Θ(StW) where R and Θ are respectively
the Fourier transforms of r and θ .

Figure 5(a) shows the antisymmetric frequency response of the flow at the three
different Re, demonstrating that the responses collapse in both magnitude and phase.
This shows that the dynamics and flow topology associated with the process remain
essentially identical, such that in a dimensionless form the parameters of (3.3) remain
constant.

The amplitude of the frequency response shown in the upper part of figure 5(a)
can be considered to consist of a number of discrete sections. Typical phase-averaged
responses for each of these sections are shown in figure 5(b). At very low frequencies,
StW . 10−2, the response is essentially constant. In this range the flaps simply induce
flipping of the asymmetric structure between the two equilibrium points of ±re. This
gives an approximately square-wave output at the forcing frequency, as shown in
figure 5(b). For 10−2 < StW < 8× 10−2 the amplitude response begins to decay as an
increasing portion of the forcing period is spent moving between the two extremes of
the motion. At StW ≈ 8× 10−2 the rate of decay rapidly changes, and by a frequency
of StW ≈ 10−1 the response has decayed by one and a half orders of magnitude.
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FIGURE 5. (Colour online) (a) Frequency response between the antisymmetric flap
oscillation and the mode r at the three Re and (b) phase-averaged responses at Re =
2.3× 105. The amplitude of the flap oscillations is 10◦.
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FIGURE 6. (Colour online) Effect of the harmonic forcing on the drag and average base
pressure for varying forcing amplitudes. The free-stream velocity is 15 m s−1.

Above StW ≈ 10−1 the response increases again as the antisymmetric forcing begins
to interact with the lateral vortex shedding, leading to a sinusoidal response.

While insensitive to Re, figure 6 demonstrates that the magnitude of the frequency
response varies significantly with forcing amplitude. This is indicative of nonlinearity
in the response between flap angle and pressure measurement. Figure 6 also shows the
influence of the forcing on the drag and base pressure, each plotted as a ratio relative
to the case with stationary flaps.
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Despite their differences, the frequency responses of figure 6 demonstrate the same
general behaviour, consisting of a large response at low frequencies that decays
before the interaction with vortex shedding at StW ≈ 0.2. This is corroborated by
the changes in mean drag and base pressure, also displayed in figure 6. At very low
frequencies, there is generally a small drag increase, indicating that regular flipping of
the symmetry-breaking mode does not significantly increase the drag compared with
the random flipping of the unforced case. By contrast, at higher frequencies, StW & 0.1,
the drag is seen to rise significantly as the flaps amplify the vortex shedding of the
wake. For a range of intermediate frequencies and for small forcing amplitudes, drag
reductions of up to 1 % are observed, accompanied by a base pressure increase of
1.7 %.

From the phase response shown in the lower part of figure 5(a), we first observe
that at all frequencies the output r lags the actuation. While some portion of the phase
lag may be attributable to the dynamics captured by the magnitude response, some
portion may be due to the advective delay. The monotonic decrease of phase angle
with frequency over a region in which the magnitude response is flat (StW . 2× 10−2)
suggests that such a delay is present. Since the phase responses are independent of Re,
this delay is observed to be constant in a dimensionless sense, i.e. τU∞/W is constant.
This suggests that τ is an advection time associated with the shear layer perturbations
generated by the flap.

A final key observation is the sharp trough seen in some of the frequency response
amplitudes at StW ≈ 0.1, shown in figures 5(a), 6. For a linear transfer function
this corresponds to the presence of right half-plane zeros, and is often caused
by a cancellation between dynamics operating at different time scales (for the
meaning of this, see for example Skogestad & Postlethwaite 2005). Interestingly
this feature is distinct only for large-amplitude forcing and does not correspond to
any particular response of the drag or base pressure. It is therefore likely to be a
result of cancellation between the measurements of different flow features, rather than
the result of any specific flow phenomenon.

3.4. Offset response
In addition to the frequency response discussed above, the flaps can also provide a
steady forcing: the flaps are placed at a fixed angle and their effect on the distribution
P(r) is measured. Figure 7(a) shows the steady state PDF for a number of different
flap angles at a free-stream velocity U∞ = 15 m s−1. The data show that the flaps
induce approximately equal and opposite skewness as they are moved from positive
to negative offsets. At a zero offset the PDF is approximately symmetric, with any
asymmetry resulting from either imperfect alignment or insufficient averaging time.

Figure 7(b) shows the particular relationship between θ and the skewness of the
PDF, defined here as the natural logarithm of the ratio P(re)/P(−re). The results
demonstrate that a linear fit can be obtained for a range of angles. While more
details are provided in § 3.5, the implication of this is that θ has a linear influence
in (3.3), justifying the choice of a term bθt−τ .

3.5. Parameter extraction
As detailed below, the parameters of the model may now be estimated. The time
scales α and τ can be non-dimensionalised using the body width W and free-stream
velocity U∞. The remaining parameters λ, σ 2 and b can all be written as ratios with
respect to α, thereby showing the relative importance of the terms in (3.3). However,
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FIGURE 7. (Colour online) (a) Steady state PDF P(r) under a range of steady flap angles
θ and (b) skewness as a function of θ . The dashed line in (b) shows the linear fit used
to establish the parameter b.

αW
U∞

τU∞
W

λr2
e

α

σ 2

αr2
e

b
αre

Value 0.05 1.7 1 0.23 0.11

TABLE 1. Dimensionless parameters for the low-dimensional model (3.3).

the ratio of these parameters is dependent upon the range of values that the mode r
takes. Furthermore, the choice of metric for r is somewhat arbitrary; for example, the
CoP location could be replaced by the pressure gradient on the base or barycentre
of velocity deficit in the wake. Any of these metrics quantify the same flow feature
but give different numerical values for the mode r. A characteristic value such as the
equilibrium value re=√α/λ may therefore be taken into account in the normalisation.
The correct method for doing this can be seen by considering the change of variables
q= r/re. Under this change (3.3) becomes

q̇ = 1
re

(
αreq− λr3

e q3 + bθt−τ + σξ(t)
)

= α︸︷︷︸
α′

q− λr2
e︸︷︷︸
λ′

q3 + b
re︸︷︷︸
b′

θt−τ + σ

re︸︷︷︸
σ ′

ξ(t). (3.6)

Under the change of variables, each of the model parameters can be seen to be
replaced by a normalised version, denoted by the ′. As expected, the time scale
defined by α remains unchanged but the other terms now depend upon re. This gives
an appropriate method for non-dimensionalising the parameters, as shown in table 1.

The first time scale, α, is estimated from the frequency response of figure 5(a).
We stress here that, while the frequency response is usually used as a method for
the identification of linear systems, the behaviour seen here is nonlinear, as may be
observed from the first phase average shown in figure 5(b) and the variation shown
in figure 6. We therefore do not seek to fit a linear model to obtain α, but are still
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able to use the response. The instability time scale associated with α is estimated
as the inverse of the corner frequency, seen at StW ≈ 5 × 10−2 in figure 5(a). That
is, δ ≈ 1/α ≈W/0.05U∞. This gives a value of δ ≈ 0.2 s for a free-stream velocity
of 15 m s−1. Such a time scale is sufficiently small that, when a long time series
is viewed, flipping events appear to be instantaneous. However this is notably slower
than the period of the vortex shedding: for the same U∞, this period is ≈ 0.07 s.

Secondly, the advective time delay is estimated via the slope of the phase response;
the precise method for doing this described in the appendix. The value of this
parameter, O(W/U∞), is consistent with the interpretation that τ is associated with
the streamwise advection of perturbations generated by the flaps. The parameters λ
and σ , quantifying, respectively, the saturation and noise intensity, are estimated from
the shape of the PDF shown in figure 4(a). As stated above, λ/α determines the
location of the peak while σ 2/α determines the width of the distribution.

Estimation of the parameter b can be found by examining the Fokker–Planck
prediction, (3.5). As can be seen, only the term involving θ gives an effect that is
asymmetric about r= 0. Taking the natural logarithm of the ratio of P(±re) we obtain

ln
(

P(re)

P(−re)

)
= 4bθre

σ 2
. (3.7)

As shown in figure 7(b), the left-hand side of this equation is seen to be linear with
respect to θ , within a certain range, enabling b to be estimated by the slope of the
fit.

The dimensionless form for λ is by definition equal to unity, while those for σ and
b are seen to be of O(0.1). The relative size of λ and σ 2 is therefore consistent with
the fairly sharp peaks in the PDFs of figures 4(a) and 7(a). Given flap angles θ of
O(10◦), the bθ term will be large relative to the noise and instability terms, suggesting
that the flaps have good control authority.

4. Feedback control
The model (3.3) for the RSB mode describes a pitchfork bifurcation. In agreement

with the suggestion of Cadot et al. (2015), there is therefore an unstable equilibrium
corresponding to a symmetric flow. Furthermore, the model is seen to be valid over a
range of Re, justifying its use in the design of linear controllers that try to recover this
unstable equilibrium. It is important to note that unlike those scenarios in which the
suppression of unsteadiness is the key control goal (e.g. Dahan et al. 2012), here we
seek to stabilise a steady bifurcated mode. That is, we seek to change the equilibrium
position and therefore the steady behaviour of the closed-loop system. A schematic of
the feedback control loop is shown in figure 8.

4.1. System formation
Here, we form the transfer functions that appear in figure 8 for the plant, G1,2, and
actuator, A. As will be detailed further below, the wake is considered to comprise the
sum of the bistability dynamics (G1) and those of the shear layers and vortex shedding
occurring at higher frequencies (G2).

Using the model and results shown in § 3 we can form the linear model G1
of figure 8. The model described by (3.3) is a nonlinear time-delayed differential
equation. In order to design a linear controller we first linearise about the desired
equilibrium point of r = 0, which essentially eliminates the λr3 term. This is
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0
e

K A r

FIGURE 8. (Colour online) A schematic of the feedback control loop comprising the
wake G1,2, actuator A and feedback controller K; G1 captures the bistability dynamics
while G2 captures the vortex shedding and shear layer dynamics at higher frequencies.
The controller aims to make the metric r equal to zero in order to achieve a symmetric
wake.

unproblematic since this term provides a saturation so is likely to help the control
action. Moreover, the controller will be aiming to make r small, and thereby achieve
a flow state in which this term is negligible. Secondly, having transformed the system
to the Laplace domain, we use a first-order Padé approximation for the time delay
(Åström & Murray 2008). This gives the following transfer function between θ

and r:

G1(s)= r̄(s)
θ̄(s)
= b(2/τ − s)
(s− α)(2/τ + s)

, (4.1)

where s is the complex Laplace transform variable. This transfer function has one
unstable pole at s = α corresponding to the flow instability, as well as a pole and
zero at s = ±2/τ , resulting from the time delay. The presence of the unstable pole
and right half-plane zero both imply that control of the system will have limitations
(Skogestad & Postlethwaite 2005); in particular this implies that we cannot hope to
have control authority over a wide frequency range.

In addition to the transfer function specifying the dynamics of the bistability, it is
insightful to capture the dynamics present at higher frequencies. This dynamics is
evident for StW > 0.1, as shown in figure 5(a). Unlike for the RSB mode, we do
not have an a priori model describing the dynamics at these frequencies. Instead we
simply seek to fit a linear model that captures the necessary amplitude and phase
information, enabling us to take this into account in the control design. Our fit to the
higher-frequency dynamics is shown in figure 9. As shown, we only fit the response
for StW > 0.11. Below this frequency the bistability dynamics is dominant, and we
therefore do not require a linear fit to the (nonlinear) dynamics. For StW > 0.11 the
response of the flow to open-loop forcing is much more sinusoidal than at lower
frequencies (figure 5b) and a linear fit such as that applied in (Dahan et al. 2012)
may be appropriate. We emphasise that the purpose of this is simply to understand
any interactions between the controller and the higher-frequency dynamics; it is (4.1)
that captures the key information about the dynamics of the RSB mode.

Finally it is necessary to identify A, the dynamics of the actuator. This is important
since the finite bandwidth of the actuator, and the limitations this imposes, must be
included in the control design. As can be seen in figure 9, the actuator acts as a
linear oscillator, the properties of which can be tuned by the choice of springs or the
addition of masses. We choose the actuator to have a natural frequency corresponding
to StW ≈ 0.24 at 15 m s−1, giving sufficient bandwidth to control the bistability which
manifests for StW . 0.1. It can be seen that the linear second-order model in figure 9
captures the dynamics accurately.
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FIGURE 9. (Colour online) Linear fits to the actuator dynamics (a,c) and higher-frequency
wake dynamics (b,d). A fifth-order linear fit to the wake dynamics is found using the
MATLAB command fitfrd, applied only to the part of the frequency response to the
right of the shaded region. A second-order fit is found for the actuator, between an input
in volts and an output in degrees.

4.2. Preliminary control design
Based purely upon the transfer function G1 derived from our model, the system shown
in figure 8 has a closed-loop transfer function given by

T(s) = A(s)K(s)G1(s)
1+ A(s)K(s)G1(s)

= nAnKnG

dAdKdG + nAnKnG
, (4.2)

where n and d respectively denote the numerator and denominator of the individual
transfer functions. The stability, among other closed-loop properties, is determined by
the roots of the denominator of T(s) (denoted by dT(s)). For an initial analysis we
can consider the case without actuator dynamics, i.e. A= a0, a static gain. For K= kp,
a simple proportional gain, we have

dT(s)= s2 +
(

2
τ
− kpba0 − α

)
s+ 2

τ

(
kpba0 − α

)
. (4.3)

All variables here have the same meaning as in (4.1). For stability, the Routh–Hurwitz
criterion requires that each of the bracketed terms be positive (Åström & Murray
2008). This requires that

α

ba0
< kp <

2− τα
τba0

. (4.4)

There is therefore expected to be a gain margin, just as there is for the control of
vortex shedding over cylinders (Illingworth, Naito & Fukagata 2014). A necessary
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Controller ki 1CD (%) 〈1Cp〉 (%) Pact (%) Stmax

Open loop — −1.0 1.7 — —
K1 0.07 −0.9 1.7 11 0.22
K2 0.13 −1.6 3.7 15 0.19
K3 0.20 −2.0 3.9 24 0.13

TABLE 2. The controllers and their performance including the controller gain, drag
reduction, base pressure change, actuation power as a percentage of the power saving and
the most amplified frequency. For comparison, the results for the open-loop forcing giving
maximal drag reduction are also shown.

condition for the existence of a kp satisfying (4.4) is therefore

ατ < 1. (4.5)

This makes intuitive sense because if the time delay is equal to, or greater than, the
time scale of the RSB instability, the feedback system will be unable to respond
quickly enough. Inspection of the values in table 1 confirms that this condition is
satisfied and therefore that, in the absence of other wake dynamics, the bistable wake
mode can be stabilised using proportional feedback.

4.3. Detailed control design and performance
Given the models for G(s) and A(s) we can now design controllers, K(s). We present
the results here from three controllers of increasing complexity. In each case the form
of the controller is chosen before the gain is manually tuned to identify the condition
for maximum drag reduction. Each controller also features a low-pass filter (KLP) with
a 3 dB frequency corresponding to StW ≈ 10, intended to filter out noise in order to
reduce power consumption. The properties and results from the three controllers are
summarised in table 2.

4.3.1. Proportional controller, K1

Based upon the above analysis, a first controller was chosen to be of the form

K1(s)= k1
1

1+ sTL︸ ︷︷ ︸
KLP

, (4.6)

where TL is the time constant of the low-pass filter KLP. The optimal gain k1 with
respect to drag reduction was found by manual tuning. It can be seen from table 2
that such a controller achieves a drag reduction of 0.9 % and requires only 11 % of
the saved power in order to drive the actuators. By comparing the curves for K1 and
the uncontrolled case in figure 10(a), it can also be seen that the controller makes the
wake more symmetric on average, i.e. the mode of the PDF has moved to a smaller
value of r.

The limitations of the proportional controller can be seen by looking at the
sensitivity function S(s)= 1/(1+ A(s)K(s)G(s)). This is shown in figure 11(b,d). For
a stable system, the sensitivity function gives the expected ratio of fluctuations with
and without control; therefore values of greater than unity indicate that the controller
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FIGURE 10. (Colour online) PDF for r (a) and premultipled spectra (b) under the three
controllers. The solid black line shows the uncontrolled case for comparison.
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FIGURE 11. (Colour online) Bode plot for the controllers (a,c) and the expected sensitivity
function S (b,d).

amplifies fluctuations. It can be seen that for K1 there is a large peak at StW ≈ 0.23.
The prediction of the sensitivity function is borne out in the closed-loop PSD, shown
in figure 10(b), where there is evidently a large peak in the fluctuations at StW ≈ 0.22.
The open-loop results displayed in figure 6 demonstrate that fluctuations at this
frequency lead to a large drag increase, and most likely correspond to an interaction
with the vortex shedding. Since any further increase in gain increases the magnitude
of these fluctuations, the optimal gain is found as the trade-off between providing
increasing suppression of the bistability and avoiding this undesired interaction.

4.3.2. Filtered controller, K2

The limitation of the proportional controller arises in part from the actuator
dynamics: the peak sensitivity coincides with the resonant frequency of the actuator,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

49
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.495


742 R. D. Brackston and others

Real axis
–2.0 –1.5 –1.0 –0.5 0

Im
ag

in
ar

y 
ax

is

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

FIGURE 12. (Colour online) The Nyquist diagram for the three controllers. For
stabilisation of the RSB mode we require one encirclement of the −1 location, as marked
by the red cross.

as seen in figure 9. This dynamics may be catered for by the inclusion of a notch
filter (KN) that counteracts the resonant behaviour, giving a controller of the form

K2(s)= k2
1+ 2ζnsTA + s2T2

A

1+ 2ζdsTA + s2T2
A︸ ︷︷ ︸

KN

1
1+ sTL︸ ︷︷ ︸

KLP

, (4.7)

where ζn<ζd and TA is the time constant of the actuator. The controller may again be
tuned by minimising the drag with respect to the gain k2. The optimal drag reduction
and base pressure increase, shown in table 2, are significantly increased to 1.6 %
and 3.7 % respectively, while the control is only marginally less efficient than for
K1. Figure 10(a), demonstrates that bistability is suppressed further relative to the K1

case since the peak in the PDF is reduced.
As in the previous control case, the limitation to the gain comes from fluctuations

occurring at higher frequencies. This is consistent with the sensitivity function shown
in figure 11(b,d), which predicts amplification at StW ≈ 0.22, and is also confirmed by
the spectra in figure 10(b), which shows a distinct peak for StW ≈ 0.19. The controller
again represents a trade-off between achieving sufficient gain to stabilise the RSB
mode and avoiding amplification of high-frequency fluctuations that are detrimental
to the drag reduction.

4.3.3. Loop-shaped controller, K3

The previous two controllers are both limited by the presence of fluctuations at
higher frequencies that are detrimental to the drag. These fluctuations limit the gain
that can be achieved at lower frequencies, thus imposing a limitation on the extent to
which the bistability can be suppressed. In order to improve this, it is insightful to
look at the Nyquist diagram for each controller, as shown in figure 12.

The Nyquist diagram plots the real and imaginary parts of the loop transfer
function L(s) = G(s)A(s)K(s), and can be used to determine the expected stability
and robustness. In order to stabilise the instability that leads to the RSB mode,
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one encirclement of the −1 point on the Nyquist diagram is required (Åström &
Murray 2008). Practically, this means that the static gain must be sufficiently large,
as discussed in § 4.2. It can be seen from figure 12 that K1 does not achieve an
encirclement while K2 does. The nonlinear saturation means that an encirclement is
not strictly necessary in order for a positive effect to be achieved, but the Nyquist
curves still help explain why greater suppression of the asymmetry is achieved with
K2.

The Nyquist diagram also gives insight into the sensitivity function: since S(s) =
1/(1 + L(s)), the sensitivity at any given frequency is determined by the distance
between the Nyquist curve at that frequency and the −1 point (shown by the cross).
Minimising the sensitivity function therefore necessitates keeping the Nyquist curve
as far from the −1 location as possible. However, it is also important to understand
that there are fundamental limitations to the extent to which this can be achieved. A
well-known limitation comes from Bode’s sensitivity integral,∫ ∞

0
log |S(iω)| dω=π

∑
pk, (4.8)

where pk are the unstable poles of L(s). In our case π
∑

pk=πα. Therefore equation
(4.8) means that while the sensitivity function may be designed to be small at some
frequencies, over some other frequency range fluctuations must be amplified by the
controller. In terms of drag reduction, it is important to try to place these fluctuations
in a frequency range that has the least negative effect on the drag. This frequency
range is found from the open-loop forcing and shown in figure 6.

The final loop-shaped controller can be seen in figure 11(a,c), and the ‘loop’ seen
on the Nyquist diagram of figure 12. The controller consists of the same notch filter
as K2 but with the addition of a second-order resonant filter (KR), specified by the
parameters ζ3 and T3. The objective of this filter is to reduce the loop gain over the
frequency range in which vortex shedding is amplified, while minimising the phase
lag at lower frequencies. This shaped controller is given by

K3(s)= k3
1

1+ 2ζ3sT3 + s2T2
3︸ ︷︷ ︸

KR

1+ 2ζnsTA + s2T2
A

1+ 2ζdsTA + s2T2
A︸ ︷︷ ︸

KN

1
1+ sTL︸ ︷︷ ︸

KLP

. (4.9)

The loop shape can be seen to be improved by the wider encirclement of the −1
location, indicating that the low-frequency gain and phase are appropriate. This is
consistent with the sensitivity function of figure 11(b,d), which is seen to demonstrate
a much smaller peak and at a lower frequency compared to the previous two
controllers.

As shown in table 2, the loop-shaped controller K3 gives the highest drag reduction
and base pressure increase as 2.0 % and 3.9 %, while also maintaining good energy
efficiency. From figure 10(a), it is clear that the bistability has now been almost
entirely suppressed as there is no longer a peak present in the PDF. This can be
attributed to the higher gain of the controller, made possible by the loop shaping.
Conversely, it can be seen from figure 10(b) that K3 led to the largest energy
fluctuations of all the controllers, but was still able to achieve the highest drag
reduction. This was done by placing these fluctuations at lower frequencies at which
their effect on the drag is smaller, as demonstrated from the results in figure 6.

4.4. The controlled flow
Having observed that the controller may achieve up to a 2 % drag reduction, it is
worth assessing the changes that the controller makes to the flow. This may first be
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FIGURE 13. (Colour online) Time series of the mode (r), drag coefficient (CD) and lateral
force coefficient (Cy). The controller is turned on at t = 0. Red lines show the low-pass
filtered r and mean forces over the uncontrolled and controlled periods.

done by examining the time series of the mode r, as shown in figure 13. The complete
time series shows data before and after the controller is turned on at t= 0. For t< 0
r is seen to flip randomly, as is typical for the natural flow. With the application of
the control there is an abrupt change in the behaviour, the random flipping ends and
smaller values of r become much more probable, as also indicated in the PDF shown
in figure 10(a).

Figure 13 also displays the drag coefficient CD and lateral force coefficient Cy. It
is evident that with the application of control there is an almost immediate reduction
in CD. This reduction is seen to be accompanied by a significant change in the lateral
force. For t < 0, Cy is seen to switch between two equal and opposite extremes as
a result of the bistable wake. The average size of this lateral force is shown by
the dashed lines. For t > 0 the bimodal behaviour is suppressed and the average
magnitude of the lateral force is significantly reduced, although the fluctuations are
still significant. While the magnitude of the lateral force is shown here, it is important
to note that the drag is likely related to the square of the lateral force 〈C2

y〉, due to
induced drag effects (Grandemange et al. 2013a, 2014b). However, a quantitative
evaluation of 〈C2

y〉 may not be made from this experiment, as the inertial forces
associated with the flap motion provide a significant fluctuating contribution to Cy.

We may also assess the motion of the flaps, in order to deduce the mechanism
by which the controller is able to reduce the drag and lateral forces. Figure 14(a)
shows a snapshot of the time series of r and θ . It is clear from the time series
that the two signals are closely linked, resulting from the proportional action of the
controller. It can be seen that as the mode moves towards one extreme (e.g. at t ≈
29, 32 s), the flaps also move in order to compensate, thereby causing the mode
to move back towards a value of zero. The reactive motion of the flaps leads to a
broadband spectrum for their motion, as displayed in figure 14(b). This indicates that
the flaps do not achieve suppression of the bistability via a quasi-open-loop effect.
Rather, they rely on the nature of a true feedback control system.

Although the time series of r and θ look superficially similar, the spectra
demonstrates some key differences, principle among which is the peak in Srr at

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

49
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.495


Modelling and feedback control of bistability in a turbulent bluff body wake 745

24 26 28 30 32 34
–0.10

–0.05

0

0.05

0.10(a) (b)

r

24 26 28 30 32 34

t (s)

–10

–5

0

5

10

10–3 10–2 10–1 100

StW

10–8

102

Po
w

er
 s

pe
ct

ru
m

 (
ar

bi
tr

ar
y)

FIGURE 14. (Colour online) The dynamics of the actuator showing (a) a short time series
of the mode r and flap angles θ , and (b) the corresponding power spectra.

StW ≈ 0.13, just as displayed in figure 10(b). As noted above, this peak is predicted
by the sensitivity function displayed in figure 11(b,d), and is therefore a result of the
interaction between the flaps and the wake, arising due to the feedback. While we do
not have velocity measurements to confirm the exact nature of these oscillations, it is
likely that they result from an interaction with the vortex shedding of the wake since
both the forcing and the measurement are antisymmetric, just as for a von Kármán
vortex street. Furthermore, the open-loop results shown in figure 6 demonstrate that
open-loop forcing at StW = 0.13 leads to a small drag increase irrespective of the
amplitude. It is therefore reasonable to expect that these oscillations in the closed-loop
system act to increase the drag on the body and that if they could be avoided the
drag reduction may be improved.

Finally, it is important to note that the measurements here cannot distinguish drag
reduction from any thrust produced by the flaps. Such thrust could manifest as a force
directly on the flaps or as a pressure force on the body. However, any thrust-producing
mechanism would have negative efficiency: the power required would be greater than
the power saving. The efficiency of the system detailed in table 2 therefore suggests
that the primary drag reduction mechanism is not thrust generation.

5. Discussion and conclusions
5.1. The nature of the bistability

As we have seen in § 3, the bistability observed in 3-D bluff body wakes can be
modelled fairly accurately by a nonlinear Langevin equation. This can be seen not
only from the time-averaged behaviour in figure 4(a) but also from the qualitative
description that (3.3) gives: that of a wake flipping between two stable equilibrium
positions, perturbed by the noise arising due to turbulence. While it cannot be stated
that the model is more than a convenient approximation, we may still derive from
it insight concerning the dynamics of the process and the application of feedback
control.

The model of (3.3) can be seen to be consistent with observations of the flow
over different Reynolds numbers, both in the unperturbed case and under forcing with
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the flaps. We find that the PDF of the mode r exhibits only a slight trend with Re,
indicating that the topology of the RSB mode remains almost constant. Furthermore,
the forced results of figure 5(a) indicate that the dimensionless time scales of the
process also remain constant with changing Re. Neither of these observations may be
surprising, since the large-scale structures are dominated by inertial forces that should
be more or less independent of viscosity.

The bistability may be quantified in terms of the time scales δ and T , respectively,
the instability time scale and the flipping period. We have demonstrated here through
the use of forcing flaps that the former is finite and notably larger than the vortex
shedding period. Our model suggests that the ratio of these time scales may be
related to the ratio σ 2/α, which the experimental results demonstrate to be roughly
constant. This indicates that any increase in the growth rate α is accompanied by
a proportionate change in the noise intensity σ 2. Our model and observations are
consistent with those of Grandemange et al. (2013c), who found a linear increase in
the flipping rate with increased free-stream velocity, corresponding to a reduction in
the time scale T and therefore an increase in σ 2. Since we find that α ∝ U∞, this
increased flipping rate is accompanied by an increased growth rate and therefore the
ratio σ 2/α may remain constant with changing Re.

Finally, the feedback control implementation reinforces the results of Cadot et al.
(2015), who show that suppression of bistability can lead to a drag reduction. We find
that by reducing the asymmetry of the wake, as measured by the base pressure, the
drag may be reduced by as much as 2 %. Furthermore, this coincides with suppression
of the mean magnitude of the lateral force (but not its fluctuations), and as suggested
by Grandemange et al. (2013c) confirms the link between the lateral and streamwise
forces. Finally, the idea that the bistability may be controlled by proportional feedback
provides a possible explanation for the suppression achieved via a control cylinder
(Cadot et al. 2015), and may give insight into other passive techniques.

5.2. Implications for feedback control design
As seen in § 4.1, the present model can be transformed into a system for which
a feedback controller can be designed. This is demonstrated to be an energetically
efficient way to reduce the pressure drag on a 3-D bluff body. The model and results
suggest that an adequate proportional feedback is required for good suppression of the
instability leading to bistability. However, the results also suggest that other dynamics
must be taken into account if an effective controller is to be designed. In particular,
a linear fit to the frequency response around the frequencies of the vortex shedding
and shear layers may be used to adjust the dynamics of the controller. In this way
fluctuations may be placed at frequencies at which their negative impact is minimised,
and an adequate proportional feedback may be achieved.

A key feature in terms of achieving efficiency is the choice of actuator. The flaps
used here provide forcing on the wake by deflecting the shear layers either inwards
or outwards. In this way a lateral momentum flux can be generated by the flaps with
little energy input. This is in contrast to actuators such as massless jets in which
the momentum flux is generated directly by the actuator and therefore requires direct
energy input. Because the flaps used here consist of a mass–spring system, minimising
their power consumption requires a trade-off against control efficacy. Much of the
power consumption arises due to inertial loads and the work done in deforming the
springs: low power consumption therefore requires a low mass and soft springs. This
is in contrast to the requirements of the control for which a stiff spring is required to
maximise the actuator bandwidth.
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Also key for control design is the choice of sensors used for feedback. We have
demonstrated here that the use of only six suitably positioned base pressure sensors
may be adequate for feedback control. Moreover, it is likely that the same control
may be achieved with as few as two sensors, albeit at the expense of a noisier
measurement.

Despite the demonstrated efficacy of the controller, it is possible that improvements
may be made with a different arrangement of sensors. For the unforced case, base
pressure measurements perform well as they pick up the strong asymmetry imposed by
the recirculation bubble. However, as seen from the frequency response in figure 5(a),
there is a frequency at which no response is detected. Furthermore, this feature is
indicative of non-minimum-phase behaviour of the system, as indicated by the abrupt
decrease in phase angle that accompanies the low response. Such behaviour is often
due to the specific choice of sensor type and location (Åström & Murray 2008),
and will always impose control limitations (Skogestad & Postlethwaite 2005). It is
therefore possible that future improvements may be achieved with a different sensor
configuration.

5.3. Concluding remarks
In this paper we have demonstrated that the RSB mode of rectilinear bluff body wakes
can be modelled by a nonlinear Langevin equation, in which the deterministic part
describes the evolution of the large-scale structure and the stochastic part models the
influence of the turbulent forcing. The dimensionless model parameters are seen to
remain approximately constant with changing Re, demonstrating the validity of the
approach over a range of conditions. Furthermore, the model can be used in the design
of a feedback controller that uses dynamic flaps to try to restore the naturally unstable
symmetric flow condition. This feedback controller was implemented experimentally
and was demonstrated to both suppress the bistability of the wake and efficiently
reduce the drag experienced by the body.

The results shown in this paper appear to be the first demonstration of an efficient
feedback control strategy applied to a high-Re 3-D bluff body wake. The results
confirm that, given a sufficiently good understanding and suitably positioned actuators
and sensors, suppression of large-scale flow structures is a valid method to efficiently
reduce the drag of bluff bodies. Furthermore, these results suggest that the equations
modelling the laminar large-scale structures provide a suitable starting point for
control design. We therefore expect this work to pave the way for future advances,
not only in the suppression of the symmetry-breaking mode of 3-D wakes but also
in the suppression of other dominant wake features.
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Appendix. Time delay estimation
Estimation of the convective time scale τ can be achieved from the frequency

response shown in figure 15. The magnitude response allows the definition of a
linear, minimum-phase system using the fitmagfrd MATLAB function. This fitted
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FIGURE 15. (Colour online) The response of the wake shown in figure 5(a) along with
the linear fit used to estimate the time delay τ .

system has a phase corresponding to the minimum-phase part of the system. Any
remaining phase response can be attributed to the dead zone (evaluated for the
lowest-frequency case) and the delay, both of which are non-minimum-phase features.
A delay term simply gives a linear decrease in phase angle with frequency while the
dead zone gives a constant (negative) phase angle. This delay can simply be adjusted
until the phase response of the modelled system matches that of the experiment.
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