UNITS IN INTEGRAL GROUP RINGS OF SOME METACYCLIC GROUPS

BY
P. J. ALLEN AND C. HOBBY

Abstract

Let p be odd prime and suppose that $G=\langle a, b\rangle$ where $a^{p-1}=b^{p}=1, a^{-1} b a=b^{r}$, and r is a generator of the multiplicative group of integers $\bmod p$. An explicit characterization of the group of normalized units V of the group ring $Z G$ is given in terms of a subgroup of $G L(p-1, Z)$. This characterization is used to exhibit a normal complement for G in V.

Let $U=U(Z G)$ be the group of units in the integral group ring $Z G$. A number of authors have characterized U for special groups (see [1], [2], [5], [6], [7], [8]). In particular, characterizations of U as a group of integer matrices were obtained by Hughes and Pearson [5] for $G=S_{3}$, by Polcino Milies [7] for $G=D_{4}$, and by the authors [1] for $G=A_{4}$. These presentations as integer matrices relied on a technique introduced by Hughes and Pearson which, while theoretically adaptable to larger groups, is very difficult to use since it depends on solving a system of n linear congruences where n is the order of the group G.
In this article, we use a variation on the Hughes and Pearson technique to represent $V=V(Z G)=\{\alpha \in U \mid \alpha$ has augmentation I $\}$ as integer matrices for some metacyclic groups G of order $(p-1) p$. The procedure is straight-forward, with necessary and sufficient constraints on the matrices emerging as consequences of the nature of certain representations of G rather than as solutions of huge systems of congruences. A complete characterization of V is obtained when $p=3,5$, or 7 ; for larger primes, our representation characterizes V / z where $z \neq 1$ is the center of V. As an application of this representation, we show that for every $p>2, G$ has a normal complement in V.
Let p be an odd prime and let G be the group defined by

$$
a^{p-1}=b^{p}=1, a^{-1} b a=b^{r}
$$

where r is a generator of the multiplicative group of integers $\bmod p$. Each non-identity coset of $\langle b\rangle$ is a conjugate class, and the other conjugate classes consist of $\{1\}$ and of $\left\{b^{i} \mid i \neq 0\right\}$. Thus the number of 1 -dimensional representations of G is $p-1$ and there is a single representation of degree $p-1$. Any faithful representation is nonabelian and thus must be an absolutely irreducible representation of degree $p-1$. We shall be

AMS Subject Classification (1980): Primary 20D15; Secondary 16A26, 20 C05.
(C) Canadian Mathematical Society 1985.
concerned with the faithful representation σ of degree $p-1$ obtained by letting $\sigma(b)=B$ be the matrix which has a subdiagonal of 1 's, a last column consisting of -1 's, and 0 elsewhere, while $\sigma(a)=A$ is constructed by performing the permutation $i \rightarrow r i(\bmod p)$ on the columns of the identity matrix.

Let τ be the homomorphism of $Z G$ onto $Z\langle a\rangle$ obtained by setting $b=1$, and let $S=\{s \mid \tau(s)=1\}$. Then τ is the identity map on $V_{u}=V(Z\langle a\rangle)$, and V splits as $V_{a} D$ where $D=V \cap S$. Clearly, $D \triangleleft V$ and $D \cap V_{a}=\langle 1\rangle$. We shall see that the representation σ, when extended to $Z G$, is an isomorphism if restricted to V_{u} or to D. Theorem 1 gives an explicit characterization of $\sigma\left(V_{u}\right)$ and $\sigma(D)$. Consequently, $\sigma(V)$ is known. If the center of V is trivial (as it must be when $p=3,5$, or 7), $\sigma(V)$ is isomorphic to V.
Theorem 1. Let H be the set of all $X \in G L(p-1, Z)$ such that for each $k=$ $1,2, \ldots, p-2$
(i) $\operatorname{tr} X \equiv-1(p)$ and $\operatorname{tr} X A^{k} \equiv 0(p)$
(ii) $w(B-I)^{k} X(B-I)^{p-1-k} \equiv 0(p)$ where $w=(0,0 \ldots 0,-1,1)$.

Then σ is an isomorphism from D to $\sigma(D)=H$. Moreover, σ is an isomorphism from V_{a} to $\sigma\left(V_{a}\right)=V_{A}$, where V_{A} consists of the doubly stochastic matrices X in $G L(p-1, Z)$ which have the property that, for each i, all entries on the main diagonal of $X A^{i}$ are equal. Finally, σ is a homomorphism of V onto $V_{A} H$ which has z as its kernel, where $H \triangleleft \sigma(V)$.

We begin by verifying that σ is a faithful representation of G.
Lemma 1. The subgroup $\langle A, B\rangle$ of $G L(p-1, Z)$ is isomorphic to $G=\langle a, b\rangle$.
Proof. One can check that B^{k} has a column of -1 's as its $(p-k)^{\text {th }}$ column, 1 's in the $(k+1,1), \ldots(p-1, p-1-k)$ and $(1, p-k+1), \ldots,(k-1, p-1)$ entries, and has 0 elsewhere. Note for future reference that the $k^{\text {th }}$ row of B^{k} has -1 as its only nonzero entry, while each other row contains exactly one 1 and one -1 . It is clear that $B^{p}=I$. Also, since the matrix A arises from a permutation of order $p-1$, $A^{p-1}=I$. Conjugation by A sends the (i, j) entry of B to the $(r i, r j)$ entry (where $r i$, $r j$ are computed $\bmod p)$, thus $A^{-1} B A$ has I 's in the $(2 r, r),(3 r, 2 r), \ldots,((p-1) r$, $(p-2) r$) entries; these are precisely the entries where B^{r} has 1 's since, $\bmod p$, $\{(i r,(i-1) r) \mid i \neq 1\}=\{(j, j-r) \mid j \neq r\}$. Multiplying B on the right by A sends the $(p-1)^{\text {th }}$ column to the $(p-r)^{\text {th }}$ column, so $A^{-1} B A$ has -1 's in the same locations as B^{r}. Consequently, $A^{-1} B A=B^{r}$.

Lemma 2. $\sigma\left(V_{u}\right)=V_{A}$ and σ is an isomorphism on V_{a}.
Proof. Elements of V_{a} are of the form $\alpha=\sum c_{j} a^{j}$ where $\sum c_{j}=1$. It is easy to check that each c_{i} appears once in each row and column of $\sigma(\alpha)$, thus $\sigma(\alpha)$ is doubly stochastic. The main diagonal of $\sigma(\alpha)$ comes from $c_{0} I$, so each entry is c_{0}. The main diagonal of $\sigma(\alpha) A^{-i}$ comes from the entries c_{i} in $c_{i} \sigma\left(A^{i}\right)$, so each entry is c_{i}. Clearly, $\sigma(\alpha)=I$ implies $c_{0}=1, c_{j}=0$ for $j>0$. Thus σ is an isomorphism.

Lemma 3. Each element of $\sigma(S)$ satisfies conditions (i) and (iii).
Proof. If $s=\sum c_{i j} a^{i} b^{j} \in S$, then $\tau(s)=1$ so if $\bar{c}_{k}=\sum_{j} c_{k j}$, then $\bar{c}_{0}=1$ and $c_{k}=$ 0 for $k>0$. Each non-trivial coset $a^{i}\langle b\rangle$ of $\langle b\rangle$ is a set of conjugates, so for each $i>$ $0, \sigma\left(a^{i} b^{j}\right)$ has the same trace as $\sigma\left(a^{i}\right)$, namely 0 . Each non-trivial power of B has trace -1 , thus the trace of $\sigma(s)$ is $p c_{00}-\bar{c}_{0}$. Similarly, the trace of $\sigma(s) A^{-k}$ is $p c_{k 0}-\bar{c}_{k}$. Thus condition (i) holds.

Condition (ii) is almost equally obvious. If we think of B as a matrix over the integers $\bmod p$, the eigenvalues of B must be $p^{\text {th }}$ roots of 1 and thus must be 1 . The rank of $B-I$ is clearly at least $p-2$, so its must be exactly $p-2$. It follows that the Jordan form of $B(\bmod p)$ consists of a single block, so $(B-I)^{p-1} \equiv 0(\bmod p)$ while $(B-I)^{p-2} \not \equiv 0(\bmod p)$. Now $(B-I) A=A\left(B^{r}-I\right)$, where $B^{r}-I$ is a multiple of $B-I$. Consequently, if

$$
X=\sigma(s)=\sum c_{i j} A^{i} B^{j}
$$

Then $(B-I)^{k} X(B-I)^{p-1-k}$ can be rearranged to have a factor of $(B-I)^{p-1}$ on the right and therefore is $0 \bmod p$. Thus condition (ii) holds for all matrices in $\sigma(S)$.

It follows from Lemmas 2 and 3 that the conditions given in the theorem are necessary. Moreover, the calculation of traces in the proof of Lemma 3 plays an important role in showing that the conditions are sufficient. We found that if $X=$ $\sum c_{i j} A^{i} B^{j} \in \sigma(S)$, then

$$
\operatorname{tr}\left(\left[\sum c_{i j} A^{i} B^{j}\right] A^{-i}\right)=p c_{i 0}-\bar{c}_{i}
$$

where \bar{c}_{0} is 1 and $\bar{c}_{i}=0$ if $i>0$. Thus the coefficients $c_{i 0}$ of X can be written as

$$
c_{i 0}=\frac{\operatorname{tr}\left(X A^{-i}\right)+\bar{c}_{i}}{p} .
$$

Similar relations can be obtained for $c_{i j}$ by considering the trace of $X B^{-j} A^{-i}$. It follows that if $X=\sigma(s)$ where $s=\sum c_{i j} a^{i} b^{j}$, then
(1) $c_{i j}=\frac{\operatorname{tr} X\left(B^{-j} A^{-i}\right)+\bar{c}_{i}}{p}$, where $\quad \bar{c}_{0}=1 \quad$ and $\bar{c}_{i}=0 \quad$ for $\quad i>0$.

Let K denote the set of $(p-1) \times(p-1)$ matrices over Z which satisfy conditions (i) and (ii). Then $\sigma(S) \subseteq K$.

Lemma 4. If $X \in K$. then the $c_{i j}$ determined by (1) are coefficients of an element $\sum c_{i j} a^{i} b^{j} \in S$.

Proof. We first show that the numbers $c_{i j}$ given by (1) are integers. It is clear that condition (i) ensures that the numbers $c_{i j}$ given by (1) are integers when $j=0$. The only way (1) can fail to produce an integer is for there to be a j such that

$$
\operatorname{tr}\left(X B^{-j} A^{-i}\right) \not \equiv \operatorname{tr}\left(X A^{-i}\right)(\bmod p)
$$

We shall use condition (ii) to show that this cannot happen. Note first that $X A^{-i} B^{n}$ satisfies condition (ii) whenever X does since

$$
X A^{-i} B^{n}(B-I)^{p-1-k}
$$

can be written in the form

$$
X(B-I)^{p-1-k} A^{-i} f(B)
$$

where $f(B)$ is a polynomial in B. Next, rewrite

$$
X B^{-j} A^{-i} \text { as } X A^{-i} B^{t}
$$

for some t. Since each of $X, X A^{-i}, X A^{-i} B^{n}$ satisfy condition (ii), it will suffice to show that if Y satisfies condition (ii), then

$$
\operatorname{tr}(Y) \equiv \operatorname{tr}(Y B)(\bmod p)
$$

In what follows, all calculations are made $\bmod p$. Since 1 is an eigenvalue of B of multiplicity $p-1$, there is a matrix M such that $M^{-1} B M=J$ where J is the Jordan form with a superdiagonal of 1 's.

It is easy to find both M and M^{-1}. As noted in the proof of Lemma 1, if $k<p$ then the $k^{\text {th }}$ row of B^{k} contains -1 and zeroes while every other row contains $-1,1$, and zeroes. Consequently, if u is the vector of all l's, then the last two entries in $B^{i} u$ are zero for $i<p-2$ while $B^{p-2} u$ ends with -1 and 0 . Therefore $(B-I)^{p-2} u$ ends with -2 and -1 , so u is a generalized eigenvector $(\bmod p)$ of degree $p-1$. We may take M to be the matrix whose $j^{\text {th }}$ column is $(B-I)^{p-1-j} u$. From what has been said, $w=(0,0, \ldots, 0,-1,1)$ is clearly the first row of M^{-1}. Also, since $(B-I)^{p-1} \equiv 0$, successive rows of M^{-1} are $w(B-I)^{i}$ for $i=1,2, \ldots, p-2$.

Clearly,

$$
\operatorname{tr}(Y B)=\operatorname{tr}\left(M^{-1} Y M\right) J
$$

where $\operatorname{tr}\left(M^{-1} Y M\right) J$ differs from $\operatorname{tr}\left(M^{-1} Y M\right)=\operatorname{tr} Y$ only by the sum of the entries in the $(2,1),(3,2), \ldots,(p-1, p-2)$ locations of $M^{-1} Y M$. These entries are all of the form

$$
w(B-I)^{k} Y(B-I)^{p-1-k} u
$$

and hence are $0 \bmod p$ because of condition (ii).
So far, we have shown that any element of K, that is any $(p-1) \times(p-1)$ matrix which satisfies conditions (i) and (ii), is associated by (1) with an element of $Z G$. One consequence of (1) is that the $c_{i j}$ defined by it satisfy $\Sigma_{j} c_{i j}=\bar{c}_{i}$ since $I+B+\cdots+$ $B^{p-1}=0$, therefore the choice of the \bar{c}_{i} ensures that the $\sum c_{i j} a^{i} b^{j}$ is in the set S. Note that S must be closed under multiplication and that S contains D.

Lemma 5. $\sigma(S)=K$.
Proof. We must show that if X satisfies (i) and (ii), and if $\alpha=\sum c_{i j} a^{i} b^{j}$ has coefficients given by (1), then $\sigma(\alpha)=X$. We can write α in the form

$$
\alpha=\frac{1}{p} \sum_{g \in G} \operatorname{tr}\left(X \sigma\left(g^{-1}\right)\right) g+\frac{1}{p}\left(1+b+\cdots+b^{p-1}\right)
$$

where the second term, which comes from $\bar{c}_{0}=1$, can be disregarded since the sum of powers of B is 0 . If $\sigma_{r s}$ denotes the r, s entry, then

$$
\begin{aligned}
\sigma_{r s}(\alpha) & =\frac{1}{p} \sum_{g} \operatorname{tr}\left(X \sigma\left(g^{-1}\right)\right) \sigma_{r s}(g) \\
& =\frac{1}{p} \operatorname{tr}\left\{X\left(\sum_{g} \sigma\left(g^{-1}\right) \sigma_{r s}(g)\right\}\right.
\end{aligned}
$$

Since σ is absolutely irreducible, it follows from the Schur relations (see Hall [4], Theorem 16.6.4) that the u, v entry of the inner sum is

$$
\sum_{g} \sigma_{u v}\left(g^{-1}\right) \sigma_{r s}(g)=\left\{\begin{array}{lc}
|G| /(p-1), & \text { if } \quad u=s \quad \text { and } \quad v=\mathrm{r} \\
0, & \text { otherwise } .
\end{array}\right.
$$

Therefore the inner sum is $p E_{s r}$, where $E_{s r}$ is the matrix with 1 in the s, r entry and 0 elsewhere. Consequently, $\sigma_{r s}(\alpha)=x_{r s}$ and $\sigma(S)=K$.

Lemma 6. σ is a one-to-one map of S onto K.
Proof. If $\sigma(\alpha)=I$ for some $\alpha \in S$, then the trace of $\sigma(\alpha)$ is $p-1$, and the traces of $\sigma(\alpha) A^{-i}$ are 0 for $i>0$. Thus

$$
p c_{00}-\bar{c}_{0}=p-1
$$

and

$$
p c_{i 0}-\bar{c}_{i}=0 \quad \text { for } \quad i>0
$$

where $\bar{c}_{0}=1$ and $\bar{c}_{i}=0$ for $i>0$. Thus c_{00} must be 1 and $c_{i 0}=0$ for $i>0$. Next, note that $\sigma(\alpha b)=B$ has trace -1 while $\sigma(\alpha b) A^{-i}$ has trace 0 for $i>0$. Thus

$$
p c_{0, p-1}-\bar{c}_{0}=-1
$$

and

$$
p c_{i, p-1}-\bar{c}_{i}=0 \quad \text { for } i>0
$$

so $c_{i, p-1}=0$ for all i. Repeating this argument with higher powers of b shows that $\alpha=1$.

Lemma 7. σ is a one-to-one map of $D=V \cap S$ onto $H=K \cap G L(p-1, Z)$.
Proof. Since S is closed, it follows from Lemma 6 that K, and thus also H, is closed. The congruence subgroup H_{1}, consisting of invertible matrices which are I mod p, is contained in H and is of finite index in $G L(p-1, Z)$. Thus it follows from the closure of H that H is a group. We know that σ is homomorphism on D and it is clear the $\sigma(D) \subseteq H$. If $h \in H$, then $h^{-1} \in H$ and Lemma 6 implies that h and h^{-1} have preimages in S; the product of these preimages is mapped to I by σ, so $h=\sigma(d)$ for
some $d \in D$.
Lemma 8. If $v \in V$, then $\sigma(v)=I$ iff v is in the center of V.
Proof. Any central element of V can be written as $v=1+v_{1}\left(1+b+\cdots+b^{p-1}\right)$ so $\sigma(v)=I$ since $\sum B^{i}=0$. On the other hand, if v is not central then there is an x such that the commutator $(v, x) \neq 1$. We know that V / D is abelian, so $(v, x) \in D$. But σ is an isomorphism on D, therefore $\sigma(v, x) \neq I$. In particular, $\sigma(v)$ cannot be I.

Proof of Theorem 1. Observe that H is normal since D is normal in V, and the remaining assertions are consequences of Lemmas 2, 7, 8.

Remarks. We shall show in Lemma 9 that z is isomorphic to a group of non-trivial units of $V(Z\langle A\rangle)$. There are no non-trivial units in $Z\langle A\rangle$ when $p=3$, 5 , or 7 , consequently σ is an isomorphism on $V(Z G)$ and V_{A} is just $\langle A\rangle$.

When $p=3$, condition (ii) says merely that the column sums of X must be $1 \bmod 3$; given condition (ii), condition (i) holds automatically for any X which is non-singular mod 3. Thus the characterization of $V\left(Z S_{3}\right)$ obtained here is the same as the one given by Hughes and Pearson. The characterizations obtained for $p=5$ and $p=7$ seem to be new.

Lemma 9. The center $\%$ of $V(Z G)$ is isomorphic to the subgroup of V_{a} consisting of

$$
R=\{\alpha \in V(Z\langle a\rangle) \mid \alpha \equiv 1 \bmod p\}
$$

In particular, z is a torsion free abelian group of rank

$$
r=\frac{p+1}{2}-\ell
$$

where ℓ is the number of divisors of $p-1$.
Proof. Central units in V are of the form $1+u \lambda$ where $\lambda=\Sigma b^{i}$ and $u \in Z\langle a\rangle$; their images under τ are units of the form $1+p u$. Thus $\tau(z) \subseteq R$. Note that τ is one-to-one on z since $\tau(1+u \lambda)=1$ implies $p u=0$ so $u=0$. On the other hand, if $1+p u \in R$ then $(1+p u)^{-1}$ is some $1+p v$ such that $p(u+v+p u v)=0$, so

$$
u+v+p u v=0
$$

But then

$$
\begin{aligned}
(1+u \lambda)(1+v \lambda) & =1+(u+v+p u v) \lambda \\
& =1
\end{aligned}
$$

so $1+u \lambda \in z$ and we see that $\tau(z)=R$.
Next, if $\alpha \in V_{u}$, then

$$
\alpha^{p} \equiv \alpha \bmod p
$$

since $a^{p}=a$, therefore $\alpha^{p-1} \in R$. By a theorem of Higman (see [9], Theorem 3.1) the group V_{a} is the direct product of $\langle a\rangle$ and a free abelian group F of rank $(p+1) / 2$
$-\ell$. The only torsion elements in V_{a} lie in $\langle a\rangle$, and $\langle a\rangle$ has trivial intersection with R, thus R is torsion free. Since R has finite index in V_{a}, R must have the same rank as F.

In view of Lemma 9 , the characterization of V given by Theorem 1 is fairly complete even when $p>7$ since both z and V / z are known.

As an application of Theorem 1, we show that G has a normal complement in V. A theorem of Cliff, Sehgal, and Weiss [3] guarantees that G has a torsion free normal complement if $p=3,5$, or 7 . For these primes, the complement N which appears natural in $\sigma(V)$ turns out to be the same as the one produced from the ideal I_{0} in [3]. However, their description of N requires one to decide whether an element of $1+I_{0}$ is a unit, while the corresponding question in our description is whether a matrix belongs to $G L(p-1, Z)$. The matrix question may be easier to answer in a specific case.

Theorem 2. Let $u=(1,1, \ldots, 1), v=(1,2, \ldots, p-1)$, and let N be the subset of $H=\sigma(D)$ consisting of matrices X which satisfy

$$
u X v^{\prime} \equiv p(p-1) / 2 \bmod p^{2}
$$

Let C be the subset of V_{A} consisting of matrices $\sum c_{i} A^{i}$ such that $\sum c_{i} r^{i} \equiv 1(p)$, where r is the number for which $a^{-1} b a=b^{r}$. Then C is a subgroup and N a normal subgroup of $\sigma(V)$, and $C N$ is a normal complement of $\sigma(G)$ in $\sigma(V)$.

Note that in the special cases where $p=3,5$, or 7 , we have $\sigma(V)$ isomorphic to V, $V_{A}=\langle A\rangle$, and C turns out to be trivial, consequently N can be thought of as a normal complement of G.

The conditions used to define N arise in a natural way. The vector u is an eigenvector of A for the eigenvalue 1 and, $\bmod p$, is also an eigenvector for B for the eigenvalue 1; this property is what underlies the conditions on column sums found in [5] and in the second representation of $Z A_{4}$ given in [1]. The vector v^{\prime} is, $\bmod p$, an eigenvector of B for the eigenvalue 1 , and is at least an eigenvector for A. Clearly, u and v^{\prime} are still eigenvectors $(\bmod p)$ for each X in $\sigma(V)$. The requirement

$$
u X v^{\prime} \equiv p(p-1) / 2 \bmod p^{2}
$$

is satisfied by I but by no other power of B; imposing the additional condition that $N \subseteq \sigma(D)$ excludes the remaining elements of $\sigma(G)$ from N.

Lemma 10. N is a normal subgroup of $\sigma(V), H=\langle B\rangle N$, and $N \cap \sigma(G)=\{I\}$.
Proof. As noted above, it is easy to check that

$$
\begin{aligned}
u A & =u \\
u B & \equiv u \\
B v^{\prime} & \equiv v^{\prime} \\
A v^{\prime} & \equiv r v^{\prime},
\end{aligned}
$$

where $a^{-1} b a=b^{r}$ and all congruences are $\bmod p$. Thus if $X=\sum c_{i j} A^{i} B^{j}$, then there
are integer vectors u_{x} and v_{x} such that

$$
\begin{aligned}
u X & =u+p u_{x} \\
X v^{\prime} & =\lambda v^{\prime}+p v_{x}
\end{aligned}
$$

where $\lambda=\sum_{i} \Sigma_{j} c_{i j} r^{i}$. When $X \in H=\sigma(D), \lambda$ is 1 since $\sum c_{0 j}=1$ and $\Sigma_{j} c_{i j}$ is 0 for $i>0$. Therefore, if $X \in H$

$$
\begin{aligned}
u X v^{\prime} & =u v^{\prime}+p u_{X} v^{\prime} \\
& =u v^{\prime}+p u v_{X} .
\end{aligned}
$$

Thus each of the conditions $u_{X} v^{\prime} \equiv 0(p)$ and $u v_{X} \equiv 0(p)$ is a necessary and sufficient condition for $X \in H$ to imply $X \in N$.

When X and Y belong to H,

$$
\begin{aligned}
u X Y v^{\prime} & =\left(u+p u_{X}\right)\left(v^{\prime}+p v_{Y}\right) \\
& \equiv u v^{\prime}+p u_{X} v^{\prime}+p u v_{Y} \bmod p^{2}
\end{aligned}
$$

If X and Y are both in N, then the last two terms are $0 \bmod p^{2}$, so it follows that N is closed. Also, if X is in N, we let $Y=X^{-1}$ and see that $u v_{Y}$ is $0 \bmod p$, thus X^{-1} is in N. (H is a group, so there is no need to check that products and inverses of elements in N are also in H.)

Observe that $B v^{\prime}=v^{\prime}-p u^{\prime}$, thus

$$
u X B v^{\prime}=u X v^{\prime}-p(p-1)
$$

It follows that if $X \in H$, then $X B^{j}$ is in N for some j, so the powers of B are a complete set of coset representatives of N in H. Next, note that $u B^{-1}=u-(p, 0,0, \ldots, 0)$, so

$$
u B^{-1} X B v^{\prime}=(u X-(p, 0, \ldots) X)\left(v^{\prime}-p u^{\prime}\right)
$$

A straightforward calculation using $u X=u+p u_{X}$ and $X v^{\prime}=v^{\prime}+p v_{X}$ shows that B normalizes N. If $Y \in V_{A}$, then $u Y^{-1}=u$ and $Y v^{\prime}=\lambda v^{\prime}+p v_{Y}$. Therefore, if $X \in N$.

$$
\begin{aligned}
u Y^{-1} X Y v^{\prime} & =\left(u+p u_{X}\right)\left(\lambda v^{\prime}+p v_{Y}\right) \\
& \equiv u\left(\lambda v^{\prime}+p v_{Y}\right) \bmod p^{2}
\end{aligned}
$$

since $u_{X} v^{\prime} \equiv 0(p)$. Thus the right hand side is $u Y v^{\prime}=u v^{\prime}$, so Y normalizes N. (N is contained in the normal subgroup H so its is clear that $Y^{-1} X Y \in H$.)

Finally, $\sigma(G) \cap N=\{I\}$ since $\sigma(G) \cap H=\langle B\rangle$ and B is not in N.
Lemma 11. If C is the subset of V_{A} consisting of elements which centralize B modulo N, then C is a subgroup and $C N$ is a normal complement to $\sigma(G)$ in $\sigma(V)$.

Proof. It is clear that C is a subgroup. Modulo $N,\langle B\rangle$ is a normal subgroup of order p, and conjugation by A is an automorphism of order $p-1$. Thus $V_{A}=\langle A\rangle C$ where $\langle A\rangle \cap C=\{I\}$. The group C is central modulo N, so $C N$ is normal. Moreover, $V=$
$\sigma(G) C N$ and $\sigma(G) \cap C N=\{I\}$.
Proof of Theorem 2. The theorem will follow from Lemmas 10 and 11 as soon as we show that the C of Lemma 11 is the set of all $\alpha=\sum c_{i} A^{i}$ in V_{A} such that $\sum c_{i} r^{i} \equiv 1 \bmod p$. We use the fact that

$$
B^{-1} A^{i} B=A^{i} B^{1-r^{i}}
$$

to write the commutator $\alpha^{-1} B^{-1} \alpha B$ in the form

$$
\gamma=1+\alpha^{-1} \sum c_{i} A^{i}\left(B^{1-r^{i}}-I\right)
$$

This commutator is known to be in H so it will be in N iff $u \gamma v^{\prime} \equiv u v^{\prime} \bmod p^{2}$. Since $u B^{k}=u-(0,0, \ldots, p, \ldots 0)$, where the p appears in the $(p-k)^{\text {th }}$ column, we see that $u B^{k} v^{\prime}=u v^{\prime}-p(p-k)$. Moreover, $u A=u$, so

$$
u \gamma v^{\prime}=u v^{\prime}+\sum c_{i}\left\{u v^{\prime}-p\left[p-\left(1-r^{i}\right)\right]-u v^{\prime}\right\}
$$

Thus γ is in N iff $\sum c_{i}\left(1-r^{i}\right) \equiv 0(p)$. This completes the proof.
The following result in an immediate consequence of Theorems 1 and 2.
Corollary 1. G has a normal complement in V consisting of all units α such that $\sigma(\alpha) \in C N$.

There does not seem to be a tidy description of the normal complement in V when $p>7$; the difficulty is that one must take into account the nontrivial units in V_{a} and in z. This difficulty vanishes when p is 3,5 , or 7 since $V_{a}=\langle a\rangle$ and $z=\{1\}$.

Corollary 2. When p is 3,5 , or $7, G$ has a normal complement in V consisting of all $\alpha=\sum c_{i j} a^{i} b^{j}$ in V such that

$$
\sum_{j}\left(\sum_{i} c_{i j}\right) j \equiv 0(p)
$$

and

$$
\sum_{j} c_{i j}= \begin{cases}1 & \text { when } i=0 \\ 0 & \text { otherwise }\end{cases}
$$

Proof. For the primes in question, the normal complement in V consists of α such that $\sigma(\alpha) \in N$. The second condition holds iff $\sigma(\alpha) \in H$. The first condition is necessary and sufficient for $u \sigma(\alpha) v^{\prime} \equiv u v^{\prime} \bmod p^{2}$. To see this, we perform a calculation similar to the one in the proof of Theorem 2.

$$
\begin{aligned}
u \sigma(\alpha) v^{\prime} & =\sum_{j}\left(\sum_{i} c_{i j} u B^{j} v^{\prime}\right) \\
& \left.=\sum_{j}\left(\sum_{i} c_{i j}\left(u v^{\prime}-p \mid p-j\right]\right)\right)
\end{aligned}
$$

$$
\equiv u v^{\prime}+\sum_{j}\left(\sum_{i} c_{i j}\right) j p\left(\bmod p^{2}\right)
$$

The reader can check that the conditions given in Corollary 2 are equivalent to the conditions which hold for units in the complement $1+I_{0}$ found by Cliff, Sehgal, and Weiss [3]. They proved that their complements were torsion free when $p=3$, 5 , or 7 . We have been unable to determine whether our normal complement is torsion free when $p>7$.

References

1. P. J. Allen and C. Hobby, A Characterization of Units in $Z\left[A_{+}\right]$, J. Algebra 66(1980), 534-543.
2. A. K. Bhandari and I. S. Luthar, Torsion Units of Integral Group Rings of Metacyclic Groups, J. Number Theory 17(1983), 270-283.
3. G. H. Cliff, S. K. Sehgal and A. R. Weiss, Units of Integral Group Rings ZS ${ }_{3}$, Canad. Math. Bull. 15(1972), 529-534.
4. M. Hall, The Theory of Groups, Chelsea, New York, 1976.
5. I. Hughes and K. R. Pearson, The Group of Units of the Integral Group Ring $Z S_{3}$, Canad. Math. Bull. 15(1972), 529-534.
6. E. Kleinert, Einheiten in $Z\left|D_{2 m}\right|$ J. Number Theory 13(1981), 541-561.
7. C. Polcino Milies, The Units of the Integral Group Ring ZD + , Bol. Soc. Mat. Brasil 4(1972), 85-92.
8. J. Ritter and S. K. Sehgal, Integral Group Rings of Some p-Groups, Can. J. Math. 34(1982), 233-246.
9. S. K. Sehgal, Topics in Group Rings, Dekker, New York, 1978.

Department of Mathematics
University of Alabama
University, AL 35486

