UNITS IN INTEGRAL GROUP RINGS OF SOME METACYCLIC GROUPS

ΒY

P. J. ALLEN AND C. HOBBY

ABSTRACT. Let p be odd prime and suppose that $G = \langle a, b \rangle$ where $a^{p-1} = b^p = 1$, $a^{-1}ba = b'$, and r is a generator of the multiplicative group of integers mod p. An explicit characterization of the group of normalized units V of the group ring ZG is given in terms of a subgroup of GL(p - 1, Z). This characterization is used to exhibit a normal complement for G in V.

Let U = U(ZG) be the group of units in the integral group ring ZG. A number of authors have characterized U for special groups (see [1], [2], [5], [6], [7], [8]). In particular, characterizations of U as a group of integer matrices were obtained by Hughes and Pearson [5] for $G = S_3$, by Polcino Milies [7] for $G = D_4$, and by the authors [1] for $G = A_4$. These presentations as integer matrices relied on a technique introduced by Hughes and Pearson which, while theoretically adaptable to larger groups, is very difficult to use since it depends on solving a system of *n* linear congruences where *n* is the order of the group G.

In this article, we use a variation on the Hughes and Pearson technique to represent $V = V(ZG) = \{\alpha \in U \mid \alpha \text{ has augmentation 1}\}$ as integer matrices for some metacyclic groups *G* of order (p - 1)p. The procedure is straight-forward, with necessary and sufficient constraints on the matrices emerging as consequences of the nature of certain representations of *G* rather than as solutions of huge systems of congruences. A complete characterization of *V* is obtained when p = 3, 5, or 7; for larger primes, our representation characterizes V/3 where $3 \neq 1$ is the center of *V*. As an application of this representation, we show that for every p > 2, *G* has a normal complement in *V*.

Let p be an odd prime and let G be the group defined by

$$a^{p-1} = b^p = 1, a^{-1}ba = b$$

where *r* is a generator of the multiplicative group of integers mod *p*. Each non-identity coset of $\langle b \rangle$ is a conjugate class, and the other conjugate classes consist of $\{1\}$ and of $\{b^i | i \neq 0\}$. Thus the number of 1-dimensional representations of *G* is p - 1 and there is a single representation of degree p - 1. Any faithful representation is nonabelian and thus must be an absolutely irreducible representation of degree p - 1. We shall be

Received by the editors October 31, 1985.

AMS Subject Classification (1980): Primary 20D15; Secondary 16A26, 20C05.

[©] Canadian Mathematical Society 1985.

concerned with the faithful representation σ of degree p - 1 obtained by letting $\sigma(b) = B$ be the matrix which has a subdiagonal of 1's, a last column consisting of -1's, and 0 elsewhere, while $\sigma(a) = A$ is constructed by performing the permutation $i \rightarrow ri \pmod{p}$ on the columns of the identity matrix.

Let τ be the homomorphism of ZG onto $Z\langle a \rangle$ obtained by setting b = 1, and let $S = \{s \mid \tau(s) = 1\}$. Then τ is the identity map on $V_a = V(Z\langle a \rangle)$, and V splits as V_aD where $D = V \cap S$. Clearly, $D \triangleleft V$ and $D \cap V_a = \langle 1 \rangle$. We shall see that the representation σ , when extended to ZG, is an isomorphism if restricted to V_a or to D. Theorem 1 gives an explicit characterization of $\sigma(V_a)$ and $\sigma(D)$. Consequently, $\sigma(V)$ is known. If the center of V is trivial (as it must be when p = 3, 5, or 7), $\sigma(V)$ is isomorphic to V.

THEOREM 1. Let H be the set of all $X \in GL(p - 1, Z)$ such that for each k = 1, 2, ..., p - 2

(*i*) tr $X \equiv -1(p)$ and tr $XA^k \equiv 0(p)$ (*ii*) $w(B - I)^k X(B - I)^{p-1-k} \equiv 0(p)$ where $w = (0, 0 \dots 0, -1, 1)$.

Then σ is an isomorphism from D to $\sigma(D) = H$. Moreover, σ is an isomorphism from V_a to $\sigma(V_a) = V_A$, where V_A consists of the doubly stochastic matrices X in GL(p-1,Z) which have the property that, for each i, all entries on the main diagonal of XA^i are equal. Finally, σ is a homomorphism of V onto V_AH which has z_a as its kernel, where $H \triangleleft \sigma(V)$.

We begin by verifying that σ is a faithful representation of G.

LEMMA 1. The subgroup $\langle A, B \rangle$ of GL(p-1, Z) is isomorphic to $G = \langle a, b \rangle$.

PROOF. One can check that B^k has a column of -1's as its $(p - k)^{\text{th}}$ column, 1's in the $(k + 1, 1), \ldots (p - 1, p - 1 - k)$ and $(1, p - k + 1), \ldots, (k - 1, p - 1)$ entries, and has 0 elsewhere. Note for future reference that the k^{th} row of B^k has -1 as its only nonzero entry, while each other row contains exactly one 1 and one -1. It is clear that $B^p = I$. Also, since the matrix A arises from a permutation of order p - 1, $A^{p-1} = I$. Conjugation by A sends the (i, j) entry of B to the (ri, rj) entry (where ri, rj are computed mod p), thus $A^{-1}BA$ has 1's in the $(2r, r), (3r, 2r), \ldots, ((p - 1)r,$ (p - 2)r) entries; these are precisely the entries where B^r has 1's since, mod p, $\{(ir, (i - 1)r) | i \neq 1\} = \{(j, j - r) | j \neq r\}$. Multiplying B on the right by A sends the $(p - 1)^{\text{th}}$ column to the $(p - r)^{\text{th}}$ column, so $A^{-1}BA$ has -1's in the same locations as B^r . Consequently, $A^{-1}BA = B^r$.

LEMMA 2. $\sigma(V_a) = V_A$ and σ is an isomorphism on V_a .

PROOF. Elements of V_a are of the form $\alpha = \sum c_j a^j$ where $\sum c_j = 1$. It is easy to check that each c_i appears once in each row and column of $\sigma(\alpha)$, thus $\sigma(\alpha)$ is doubly stochastic. The main diagonal of $\sigma(\alpha)$ comes from $c_0 I$, so each entry is c_0 . The main diagonal of $\sigma(\alpha)A^{-i}$ comes from the entries c_i in $c_i\sigma(A^i)$, so each entry is c_i . Clearly, $\sigma(\alpha) = I$ implies $c_0 = 1$, $c_i = 0$ for j > 0. Thus σ is an isomorphism.

LEMMA 3. Each element of $\sigma(S)$ satisfies conditions (i) and (iii).

PROOF. If $s = \sum c_{ij}a^i b^j \in S$, then $\tau(s) = 1$ so if $\bar{c}_k = \sum_j c_{kj}$, then $\bar{c}_0 = 1$ and $c_k = 0$ for k > 0. Each non-trivial coset $a^i \langle b \rangle$ of $\langle b \rangle$ is a set of conjugates, so for each i > 0, $\sigma(a^i b^j)$ has the same trace as $\sigma(a^i)$, namely 0. Each non-trivial power of *B* has trace -1, thus the trace of $\sigma(s)$ is $pc_{00} - \bar{c}_0$. Similarly, the trace of $\sigma(s)A^{-k}$ is $pc_{k0} - \bar{c}_k$. Thus condition (i) holds.

Condition (ii) is almost equally obvious. If we think of *B* as a matrix over the integers mod *p*, the eigenvalues of *B* must be p^{th} roots of 1 and thus must be 1. The rank of B - I is clearly at least p - 2, so its must be exactly p - 2. It follows that the Jordan form of $B \pmod{p}$ consists of a single block, so $(B - I)^{p-1} \equiv 0 \pmod{p}$ while $(B - I)^{p-2} \not\equiv 0 \pmod{p}$. Now $(B - I)A = A(B^r - I)$, where $B^r - I$ is a multiple of B - I. Consequently, if

$$X = \sigma(s) = \sum c_{ij} A^i B^j.$$

Then $(B - I)^k X (B - I)^{p-1-k}$ can be rearranged to have a factor of $(B - I)^{p-1}$ on the right and therefore is 0 mod p. Thus condition (ii) holds for all matrices in $\sigma(S)$.

It follows from Lemmas 2 and 3 that the conditions given in the theorem are necessary. Moreover, the calculation of traces in the proof of Lemma 3 plays an important role in showing that the conditions are sufficient. We found that if $X = \sum c_{ii}A^{i}B^{j} \in \sigma(S)$, then

$$\operatorname{tr}\left(\left[\sum c_{ij}A^{i}B^{j}\right]A^{-i}\right) = pc_{i0} - \bar{c}_{i}$$

where \bar{c}_0 is 1 and $\bar{c}_i = 0$ if i > 0. Thus the coefficients c_{i0} of X can be written as

$$c_{i0}=\frac{\operatorname{tr}(XA^{-i})+\bar{c}_i}{p}.$$

Similar relations can be obtained for c_{ij} by considering the trace of $XB^{-j}A^{-i}$. It follows that if $X = \sigma(s)$ where $s = \sum c_{ij}a^ib^j$, then

(1)
$$c_{ij} = \frac{\operatorname{tr} X(B^{-j}A^{-i}) + \bar{c}_i}{p}$$
, where $\bar{c}_0 = 1$ and $\bar{c}_i = 0$ for $i > 0$.

Let K denote the set of $(p-1) \times (p-1)$ matrices over Z which satisfy conditions (i) and (ii). Then $\sigma(S) \subseteq K$.

LEMMA 4. If $X \in K$. then the c_{ij} determined by (1) are coefficients of an element $\sum c_{ij}a^ib^j \in S$.

PROOF. We first show that the numbers c_{ij} given by (1) are integers. It is clear that condition (i) ensures that the numbers c_{ij} given by (1) are integers when j = 0. The only way (1) can fail to produce an integer is for there to be a j such that

$$\operatorname{tr}(XB^{-j}A^{-i}) \not\equiv \operatorname{tr}(XA^{-i}) \pmod{p}.$$

June

We shall use condition (ii) to show that this cannot happen. Note first that $XA^{-i}B^n$ satisfies condition (ii) whenever X does since

$$XA^{-i}B^n(B-I)^{p-1-k}$$

can be written in the form

$$X(B - I)^{p-1-k}A^{-i}f(B)$$

where f(B) is a polynomial in B. Next, rewrite

$$XB^{-j}A^{-i}$$
 as $XA^{-i}B^{-i}$

for some t. Since each of X, XA^{-i} , $XA^{-i}B^n$ satisfy condition (ii), it will suffice to show that if Y satisfies condition (ii), then

$$\operatorname{tr}(Y) \equiv \operatorname{tr}(YB) (\operatorname{mod} p)$$

In what follows, all calculations are made mod p. Since 1 is an eigenvalue of B of multiplicity p - 1, there is a matrix M such that $M^{-1}BM = J$ where J is the Jordan form with a superdiagonal of 1's.

It is easy to find both M and M^{-1} . As noted in the proof of Lemma 1, if k < p then the k^{th} row of B^k contains -1 and zeroes while every other row contains -1, 1, and zeroes. Consequently, if u is the vector of all 1's, then the last two entries in $B^i u$ are zero for $i while <math>B^{p-2}u$ ends with -1 and 0. Therefore $(B - I)^{p-2}u$ ends with -2 and -1, so u is a generalized eigenvector (mod p) of degree p - 1. We may take M to be the matrix whose j^{th} column is $(B - I)^{p-1-j}u$. From what has been said, $w = (0, 0, \ldots, 0, -1, 1)$ is clearly the first row of M^{-1} . Also, since $(B - I)^{p-1} \equiv 0$, successive rows of M^{-1} are $w(B - I)^i$ for $i = 1, 2, \ldots, p - 2$.

Clearly,

$$tr(YB) = tr(M^{-1}YM)J$$

where tr($M^{-1}YM$)J differs from tr($M^{-1}YM$) = tr Y only by the sum of the entries in the (2, 1), (3, 2), ..., (p - 1, p - 2) locations of $M^{-1}YM$. These entries are all of the form

$$w(B-I)^k Y(B-I)^{p-1-k} u$$

and hence are $0 \mod p$ because of condition (ii).

So far, we have shown that any element of K, that is any $(p-1) \times (p-1)$ matrix which satisfies conditions (i) and (ii), is associated by (1) with an element of ZG. One consequence of (1) is that the c_{ij} defined by it satisfy $\sum_j c_{ij} = \overline{c}_i$ since $I + B + \cdots + B^{p-1} = 0$, therefore the choice of the \overline{c}_i ensures that the $\sum c_{ij}a^ib^j$ is in the set S. Note that S must be closed under multiplication and that S contains D.

LEMMA 5. $\sigma(S) = K$.

PROOF. We must show that if X satisfies (i) and (ii), and if $\alpha = \sum c_{ij}a^ib^j$ has coefficients given by (1), then $\sigma(\alpha) = X$. We can write α in the form

INTEGRAL GROUP RINGS

$$\alpha = \frac{1}{p} \sum_{g \in G} tr(X\sigma(g^{-1}))g + \frac{1}{p}(1 + b + \dots + b^{p-1})$$

where the second term, which comes from $\tilde{c}_0 = 1$, can be disregarded since the sum of powers of *B* is 0. If σ_{rs} denotes the *r*, *s* entry, then

$$\sigma_{rs}(\alpha) = \frac{1}{p} \sum_{g} \operatorname{tr}(X\sigma(g^{-1}))\sigma_{rs}(g)$$
$$= \frac{1}{p} \operatorname{tr}\left\{X\left(\sum_{g} \sigma(g^{-1})\sigma_{rs}(g)\right)\right\}.$$

Since σ is absolutely irreducible, it follows from the Schur relations (see Hall [4], Theorem 16.6.4) that the *u*, *v* entry of the inner sum is

$$\sum_{g} \sigma_{uv}(g^{-1})\sigma_{rs}(g) = \begin{cases} |G|/(p-1), & \text{if } u = s \text{ and } v = r \\ 0, & \text{otherwise.} \end{cases}$$

Therefore the inner sum is pE_{sr} , where E_{sr} is the matrix with 1 in the *s*, *r* entry and 0 elsewhere. Consequently, $\sigma_{rs}(\alpha) = x_{rs}$ and $\sigma(S) = K$.

LEMMA 6. σ is a one-to-one map of S onto K.

PROOF. If $\sigma(\alpha) = I$ for some $\alpha \in S$, then the trace of $\sigma(\alpha)$ is p - 1, and the traces of $\sigma(\alpha)A^{-i}$ are 0 for i > 0. Thus

$$pc_{00} - \bar{c}_0 = p - 1$$

and

$$pc_{i0} - \bar{c}_i = 0$$
 for $i > 0$

where $\bar{c}_0 = 1$ and $\bar{c}_i = 0$ for i > 0. Thus c_{00} must be 1 and $c_{i0} = 0$ for i > 0. Next, note that $\sigma(\alpha b) = B$ has trace -1 while $\sigma(\alpha b)A^{-i}$ has trace 0 for i > 0. Thus

$$pc_{0,p-1} - \bar{c}_0 = -1$$

and

$$pc_{i,p-1} - \bar{c}_i = 0 \quad \text{for } i > 0$$

so $c_{i,p-1} = 0$ for all *i*. Repeating this argument with higher powers of *b* shows that $\alpha = 1$.

LEMMA 7. σ is a one-to-one map of $D = V \cap S$ onto $H = K \cap GL(p - 1, Z)$.

PROOF. Since S is closed, it follows from Lemma 6 that K, and thus also H, is closed. The congruence subgroup H_1 , consisting of invertible matrices which are I mod p, is contained in H and is of finite index in GL(p - 1, Z). Thus it follows from the closure of H that H is a group. We know that σ is homomorphism on D and it is clear the $\sigma(D) \subseteq H$. If $h \in H$, then $h^{-1} \in H$ and Lemma 6 implies that h and h^{-1} have preimages in S; the product of these preimages is mapped to I by σ , so $h = \sigma(d)$ for

https://doi.org/10.4153/CMB-1987-033-5 Published online by Cambridge University Press

1987]

some $d \in D$.

LEMMA 8. If $v \in V$, then $\sigma(v) = I$ iff v is in the center of V.

PROOF. Any central element of V can be written as $v = 1 + v_1(1 + b + \dots + b^{p-1})$ so $\sigma(v) = I$ since $\sum B^i = 0$. On the other hand, if v is not central then there is an x such that the commutator $(v, x) \neq 1$. We know that V/D is abelian, so $(v, x) \in D$. But σ is an isomorphism on D, therefore $\sigma(v, x) \neq I$. In particular, $\sigma(v)$ cannot be I.

PROOF OF THEOREM 1. Observe that H is normal since D is normal in V, and the remaining assertions are consequences of Lemmas 2, 7, 8.

REMARKS. We shall show in Lemma 9 that \mathfrak{z} is isomorphic to a group of non-trivial units of $V(\mathbb{Z}\langle A \rangle)$. There are no non-trivial units in $\mathbb{Z}\langle A \rangle$ when p = 3, 5, or 7, consequently σ is an isomorphism on $V(\mathbb{Z}G)$ and V_A is just $\langle A \rangle$.

When p = 3, condition (ii) says merely that the column sums of X must be 1 mod 3; given condition (ii), condition (i) holds automatically for any X which is non-singular mod 3. Thus the characterization of $V(ZS_3)$ obtained here is the same as the one given by Hughes and Pearson. The characterizations obtained for p = 5 and p = 7 seem to be new.

LEMMA 9. The center z of V(ZG) is isomorphic to the subgroup of V_a consisting of

$$R = \{ \alpha \in V(Z\langle a \rangle) \mid \alpha \equiv 1 \mod p \},\$$

In particular, z is a torsion free abelian group of rank

$$r = \frac{p+1}{2} - \ell$$

where ℓ is the number of divisors of p - 1.

PROOF. Central units in V are of the form $1 + u \lambda$ where $\lambda = \sum b^i$ and $u \in Z\langle a \rangle$; their images under τ are units of the form 1 + pu. Thus $\tau(z) \subseteq R$. Note that τ is one-to-one on z since $\tau(1 + u\lambda) = 1$ implies pu = 0 so u = 0. On the other hand, if $1 + pu \in R$ then $(1 + pu)^{-1}$ is some 1 + pv such that p(u + v + puv) = 0, so

$$u + v + puv = 0$$

But then

$$(1 + u\lambda)(1 + v\lambda) = 1 + (u + v + puv)\lambda$$

so $1 + u\lambda \in \mathfrak{z}$ and we see that $\tau(\mathfrak{z}) = R$. Next if $\alpha \in V$ then

Next, if $\alpha \in V_a$, then

$$\alpha^p \equiv \alpha \mod p$$

since $a^p = a$, therefore $\alpha^{p-1} \in R$. By a theorem of Higman (see [9], Theorem 3.1) the group V_a is the direct product of $\langle a \rangle$ and a free abelian group F of rank (p + 1)/2

 $-\ell$. The only torsion elements in V_a lie in $\langle a \rangle$, and $\langle a \rangle$ has trivial intersection with R, thus R is torsion free. Since R has finite index in V_a , R must have the same rank as F.

In view of Lemma 9, the characterization of V given by Theorem 1 is fairly complete even when p > 7 since both $\frac{1}{3}$ and $V/\frac{1}{3}$ are known.

As an application of Theorem 1, we show that G has a normal complement in V. A theorem of Cliff, Sehgal, and Weiss [3] guarantees that G has a torsion free normal complement if p = 3, 5, or 7. For these primes, the complement N which appears natural in $\sigma(V)$ turns out to be the same as the one produced from the ideal I_0 in [3]. However, their description of N requires one to decide whether an element of $1 + I_0$ is a unit, while the corresponding question in our description is whether a matrix belongs to GL(p - 1, Z). The matrix question may be easier to answer in a specific case.

THEOREM 2. Let u = (1, 1, ..., 1), v = (1, 2, ..., p - 1), and let N be the subset of $H = \sigma(D)$ consisting of matrices X which satisfy

$$uXv' \equiv p(p-1)/2 \mod p^2.$$

Let C be the subset of V_A consisting of matrices $\sum c_i A^i$ such that $\sum c_i r^i \equiv 1(p)$, where r is the number for which $a^{-1}ba = b^r$. Then C is a subgroup and N a normal subgroup of $\sigma(V)$, and CN is a normal complement of $\sigma(G)$ in $\sigma(V)$.

Note that in the special cases where p = 3, 5, or 7, we have $\sigma(V)$ isomorphic to V, $V_A = \langle A \rangle$, and C turns out to be trivial, consequently N can be thought of as a normal complement of G.

The conditions used to define N arise in a natural way. The vector u is an eigenvector of A for the eigenvalue 1 and, mod p, is also an eigenvector for B for the eigenvalue 1; this property is what underlies the conditions on column sums found in [5] and in the second representation of ZA_4 given in [1]. The vector v' is, mod p, an eigenvector of B for the eigenvalue 1, and is at least an eigenvector for A. Clearly, u and v' are still eigenvectors (mod p) for each X in $\sigma(V)$. The requirement

$$uXv' \equiv p(p-1)/2 \mod p^2$$

is satisfied by *I* but by no other power of *B*; imposing the additional condition that $N \subseteq \sigma(D)$ excludes the remaining elements of $\sigma(G)$ from *N*.

LEMMA 10. N is a normal subgroup of $\sigma(V)$, $H = \langle B \rangle N$, and $N \cap \sigma(G) = \{I\}$.

PROOF. As noted above, it is easy to check that

$$uA = u$$
$$uB \equiv u$$
$$Bv' \equiv v'$$
$$Av' \equiv rv',$$

where $a^{-1}ba = b^r$ and all congruences are mod p. Thus if $X = \sum c_{ii}A^iB^j$, then there

are integer vectors u_x and v_x such that

$$uX = u + pu_x$$
$$Xv' = \lambda v' + pv_y$$

where $\lambda = \sum_i \sum_j c_{ij} r^i$. When $X \in H = \sigma(D)$, λ is 1 since $\sum c_{0j} = 1$ and $\sum_j c_{ij}$ is 0 for i > 0. Therefore, if $X \in H$

$$uXv' = uv' + pu_Xv'$$
$$= uv' + puv_X.$$

Thus each of the conditions $u_X v' \equiv 0(p)$ and $uv_X \equiv 0(p)$ is a necessary and sufficient condition for $X \in H$ to imply $X \in N$.

When X and Y belong to H,

$$uXYv' = (u + pu_X)(v' + pv_Y)$$
$$\equiv uv' + pu_Xv' + puv_Y \mod p^2$$

If X and Y are both in N, then the last two terms are $0 \mod p^2$, so it follows that N is closed. Also, if X is in N, we let $Y = X^{-1}$ and see that uv_Y is $0 \mod p$, thus X^{-1} is in N. (*H* is a group, so there is no need to check that products and inverses of elements in N are also in *H*.)

Observe that Bv' = v' - pu', thus

$$uXBv' = uXv' - p(p-1).$$

It follows that if $X \in H$, then XB^{j} is in N for some j, so the powers of B are a complete set of coset representatives of N in H. Next, note that $uB^{-1} = u - (p, 0, 0, ..., 0)$, so

$$uB^{-1}XBv' = (uX - (p, 0, ...)X)(v' - pu')$$

A straightforward calculation using $uX = u + pu_X$ and $Xv' = v' + pv_X$ shows that B normalizes N. If $Y \in V_A$, then $uY^{-1} = u$ and $Yv' = \lambda v' + pv_Y$. Therefore, if $X \in N$.

$$uY^{-1}XYv' = (u + pu_X)(\lambda v' + pv_Y)$$
$$\equiv u(\lambda v' + pv_Y) \mod p^2$$

since $u_X v' \equiv 0(p)$. Thus the right hand side is uYv' = uv', so Y normalizes N. (N is contained in the normal subgroup H so its is clear that $Y^{-1}XY \in H$.)

Finally, $\sigma(G) \cap N = \{I\}$ since $\sigma(G) \cap H = \langle B \rangle$ and B is not in N.

LEMMA 11. If C is the subset of V_A consisting of elements which centralize B modulo N, then C is a subgroup and CN is a normal complement to $\sigma(G)$ in $\sigma(V)$.

PROOF. It is clear that C is a subgroup. Modulo N, $\langle B \rangle$ is a normal subgroup of order p, and conjugation by A is an automorphism of order p - 1. Thus $V_A = \langle A \rangle C$ where $\langle A \rangle \cap C = \{l\}$. The group C is central modulo N, so CN is normal. Moreover, $V = \langle A \rangle C$

[June

238

 $\sigma(G)CN$ and $\sigma(G) \cap CN = \{I\}.$

PROOF OF THEOREM 2. The theorem will follow from Lemmas 10 and 11 as soon as we show that the C of Lemma 11 is the set of all $\alpha = \sum c_i A^i$ in V_A such that $\sum c_i r^i \equiv 1 \mod p$. We use the fact that

$$B^{-1}A^iB = A^iB^{1-r^i}$$

to write the commutator $\alpha^{-1}B^{-1}\alpha B$ in the form

$$\gamma = 1 + \alpha^{-1} \sum c_i A^i (B^{1-r^i} - I).$$

This commutator is known to be in *H* so it will be in *N* iff $u\gamma v' \equiv uv' \mod p^2$. Since $uB^k \equiv u - (0, 0, \dots, p, \dots, 0)$, where the *p* appears in the $(p - k)^{\text{th}}$ column, we see that $uB^k v' \equiv uv' - p(p - k)$. Moreover, $uA \equiv u$, so

$$u\gamma v' = uv' + \sum c_i \{uv' - p[p - (1 - r^i)] - uv'\}.$$

Thus γ is in N iff $\sum c_i(1 - r^i) \equiv 0(p)$. This completes the proof.

The following result in an immediate consequence of Theorems 1 and 2.

COROLLARY 1. G has a normal complement in V consisting of all units α such that $\sigma(\alpha) \in CN$.

There does not seem to be a tidy description of the normal complement in V when p > 7; the difficulty is that one must take into account the nontrivial units in V_a and in \mathfrak{Z} . This difficulty vanishes when p is 3, 5, or 7 since $V_a = \langle a \rangle$ and $\mathfrak{Z} = \{1\}$.

COROLLARY 2. When p is 3, 5, or 7, G has a normal complement in V consisting of all $\alpha = \sum c_{ij}a^ib^j$ in V such that

$$\sum_{j} \left(\sum_{i} c_{ij} \right) j \equiv 0(p)$$

and

$$\sum_{i} c_{ij} = \begin{cases} 1 & \text{when } i = 0 \\ 0 & \text{otherwise.} \end{cases}$$

PROOF. For the primes in question, the normal complement in V consists of α such that $\sigma(\alpha) \in N$. The second condition holds iff $\sigma(\alpha) \in H$. The first condition is necessary and sufficient for $u\sigma(\alpha)v' \equiv uv' \mod p^2$. To see this, we perform a calculation similar to the one in the proof of Theorem 2.

$$u\sigma(\alpha)v' = \sum_{j} \left(\sum_{i} c_{ij}uB^{j}v'\right)$$
$$= \sum_{j} \left(\sum_{i} c_{ij}(uv' - p[p - j])\right)$$

1987]

$$\equiv uv' + \sum_{j} \left(\sum_{i} c_{ij} \right) jp \pmod{p^2}.$$

The reader can check that the conditions given in Corollary 2 are equivalent to the conditions which hold for units in the complement $1 + I_0$ found by Cliff, Sehgal, and Weiss [3]. They proved that their complements were torsion free when p = 3, 5, or 7. We have been unable to determine whether our normal complement is torsion free when p > 7.

References

1. P. J. Allen and C. Hobby, A Characterization of Units in Z[A₄], J. Algebra 66(1980), 534-543.

2. A. K. Bhandari and I. S. Luthar, Torsion Units of Integral Group Rings of Metacyclic Groups, J. Number Theory 17(1983), 270-283.

3. G. H. Cliff, S. K. Sehgal and A. R. Weiss, *Units of Integral Group Rings ZS*₃, Canad. Math. Bull. **15**(1972), 529–534.

4. M. Hall, The Theory of Groups, Chelsea, New York, 1976.

5. I. Hughes and K. R. Pearson, *The Group of Units of the Integral Group Ring ZS*₃, Canad. Math. Bull. **15**(1972), 529–534.

6. E. Kleinert, *Einheiten in Z*[D_{2m}], J. Number Theory **13**(1981), 541-561.

7. C. Polcino Milies, The Units of the Integral Group Ring ZD₄, Bol. Soc. Mat. Brasil 4(1972), 85-92.

8. J. Ritter and S. K. Sehgal, Integral Group Rings of Some p-Groups, Can. J. Math. 34(1982), 233-246.

9. S. K. Schgal, Topics in Group Rings, Dekker, New York, 1978.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ALABAMA UNIVERSITY, AL 35486

240