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Abstract: A numerical solution for the luni-solar precession and 
nutation of the rigid Earth is obtained and compared with the result 
from the analytical theories which are the basis of the current IAU 
precession and nutation formulas. We have developed a new scheme of 
numerical calculation by modifying the equations of motion, which 
enables us to avoid the numerical integration with a small step. Some 
errors are found in the long periodic region of nutation in the current 
IAU theory. 
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1. Introduction 

The present value of precession in the astronomical ephemerides is that 
described in the paper of Lieske et al (1977), which is fundamentally 
based on the theories by Newcomb (1894, 1906) and Andoyer (1911). As 
for nutation, the authority is the 1980 IAU nutation theory (IAU, 1982) 
which was developed by Wahr (1981) for a non-rigid Earth using as the 
basis the nutation theory of the rigid Earth obtained by Kinoshita et 
al. (1979)· This theory for the rigid Earth is no more than a thorough 
recomputation of the preceding work of Woolard (1953). 

All these theories on precession and nutatioin for the rigid Earth 
are analytical. The precision of the theory of precession is believed 
to be better than 0.Imas(milli-arcsecond) except for the obliquity of 
ecliptic at the epoch and the coefficient of the linear term in the 
precession in longitude which must be determined by observation. The 
nutation series for the rigid Earth, which is the basis of the 1980 IAU 
theory, contains all the terms with the amplitude greater than 0.05mas. 
However each term has an error of 0.05mas at most since the expression 
of its amplitude is truncated to be integrals of 0.1mas. The number of 
terms in the series exceeds 100, thus the precision of the whole series 
is considered to be several 0.1mas. This comes from the fact that the 
target precision of Kinoshita and his coworkers was 1mas. 
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Rather curiously, no numerical treatment has been attempted for 
precession and nutation. One of the reasons may be a great rapidity of 
the rotational motion of the Earth, i.e. one rotation in a day. This 
makes one feel at the first glance that the step in numerical 
integration of the equations of motion must be very small. Of course, 
another reason may be full confidence in the analytical theories. 

Having a slight doubt about the precision of the current theories 
and introducing a method which enables to avoid numerical integration 
with a very small step, the present authors develop a numerical solution 
to luni-solar precession and nutation. 

The present work is in the nature of a pilot study. A more 
complete treatment such as changing the theory of Sun and Moon from the 
old ones (Newcomb and Brown) to the latest ones or considering the 
higher order luni-solar torques, planetary torques, geodesic rotation 
and other minute effects should be made later. 

2. Equation of motion 

We describe the equations of motion for the rotation of rigid Earth in a 
fixed coordinate system. The ecliptic and mean equinox of J2000.0 are 
adopted as this fundamental reference frame. The precession thus 
obtained can be compared directly with the expressions given by Lieske 
et al., but the result for the nutation must be reduced to the ecliptic 
and mean equinox of date before comparison because the nutation in 
astronomical ephemeris is referred to this frame. 

Eulerian angles ψ, θ and φ shown in Figure 1 are used as the 
dependent variables. The obliquity of ecliptic £ used in the precession 
and nutation theory is just the same as θ· We must note that ψ in 
Figure 1 is different from that used in the precession and nutation the-
ory, which is measured on the ecliptic westward from the X-axis to the 
above mentioned node. Hence it is equal to 180°-^, ψ being one of our 
Eulerian angles. 

In order to formulate the equation of motion, we first write down 
L, the classic Lagrangean of the axially symmetric rigid Earth rotating 
around its center of mass under external forces. It is given by 

2L = A( Ô 2 + ^ 2 s i n 2 0 ) + C( φ + ̂ c o s 0 ) 2+ 2U( Φ, Θ; t ) (1) 

where A and C are the moments of inertia with respect to an axis in the 
equatorial plane and the axis perpendicular to the plane, respectively, 
the latter of which we call the figure axis hereafter. The symbol U is 
the perturbing function. 

From this Lagrangean, we obtain the following equation of motion 
for the orientation of the figure axis: 

Α θ = - Οωφ sin6 + AJ^ sin t?cosβ + 9U/90, 
(2) 

A «/'sin2© = Ccuêsin© - Α φθ sin20 + 3U/3f 

Here * denotes the time-derivative and cu = 0+/rcos#is a constant named 
the siderial angular velocity of the rotation of the Earth. 
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Figure 1 Adopted Eu le r ian Angles 

Usual ly t h e above e q u a t i o n s a r e d i r e c t l y numer ica l i n t e g r a t e d as 
two second o rde r o r d i n a r y d i f f e r e n t i a l e q u a t i o n s . This approach, 
however, i s not p r a c t i c a l . The motion of the f i g u r e a x i s c o n t a i n s t he 
well-known E u l e r i a n motion or f r e e n u t a t i o n which i s a c i r c u l a r 
o s c i l l a t i o n wi th t he pe r iod of about one day in s p a c e . This f r ee 
n u t a t i o n i s independent of p r e c e s s i o n and n u t a t i o n which a r e a forced 
mot ion, t h e r e f o r e i t i s not t aken i n t o account in t h e computat ion of 
p r e c e s s i o n and n u t a t i o n . N e v e r t h e l e s s , as long as we s t i c k t o t h e form 
of equa t ion ( 2 ) , we would have t o so lve t h i s motion s imu l t aneous ly in 
o rde r t o o b t a i n t h e forced motion of the f i gu re a x i s of t h e Ear th by 
performing a numer ica l i n t e g r a t i o n , in which the s t e p would have t o be 
taken very smal l because of t he r a p i d i t y of the mot ion . 

3 . Numerical scheme 

Solv ing equa t ion (2) with r e s p e c t t o θ and ψ, we have a mod i f i ca t ion of 
equa t ion of motion as f o l l o w s : 
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άψ 2( 3ϋ/3θ - At? ) 

dt Ccosinô+ [(Ccosin0) 2 - 2A sin20 ( 3 ϋ / 2 0 - Αθ )]1/2 

6θ dV/dt - A^sin^ö 

dt Cco sinÔ - A # sin20 

The above equation has the form of 

y = f ( y , y , t ) (4) 

where y is a vector ( ψ, θ ). We should note that in our case the 
contribution of y in f is much smaller than that of y and t in f. If we 
apply the Picard's method ( method of succesive approximation ) to this 
differential equation, we have a following iteration formula: 

y ( n + 1 ) = (f( y ( n ) ( t ) , y ( n ) ( t ) , t ) dt ( η = 0, 1, . . . ) (5) 

where y (t) is a suitable initial guess. It is nclear that if the 
above iteration procedure converges, the limit of y will be a special 
solution of the differential equation (4). The convergibility of this 
procedure depends on whether the iteration produces any rapidly 
oscillating term which destroys the numerical stability. The functional 
form of equation (3) assures that there comes no rapidly oscillating 
terms in the above iteration procedures as long as the first guess y 
includes no rapidly oscillating terms. 

In our case, we have already a very well approximated solution of 
y, i.e. the analytical one. Then only two iterations were actually 
needed; the one to obtain the difference from the analytical one and the 
other to assure the convergence. 

4. Perturbing function 

As for the perturbing function U, we consider only the attractions of 
the Moon and the Sun. Further we assume both the Moon and the Sun as 
masspoints and neglect the contribution from the third and higher order 
multipole moments of the Earth. All these assumptions are adopted in 
order to make the environment of our computation same as that of 
Kinoshita et al.. It is easy for our formulation to omit all of the 
above assumptions since ours is a purely numerical one. 

Then U is written as 

U = U M + U s (6) 

where two constituents have the same form: 

U D = - 3k 2m(C-A)z 2/(2r 5) (7) 
D 

Here the suffix Β denotes the disturbing body, i.e. M(Moon) or S(Sun) in 
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our case, k is the Gaussian gravitational constant and m, r and ζ are 

respectively the mass, the geocentric distance, the z-coordinate of the 

disturbing body (Moon or Sun) referred to the equator of the Earth. 

The coordinates of the Moon and the Sun are taken from an abridged 

trigonometric series for them developed by Kubo (1980). This series is a 

subset of Newcomb's theory for the Sun and Brown's one for the Moon. The 

error of the series is estimated to be 2" in average and 10" at maximum. 

However, the effect of this error is small as less than a few O.OImas in 

nutation and less than 0.2mas in precession. We remark that Woolard or 

Kinoshita et al. also made such truncation of the series of coordinates 

of the Moon and the Sun. 

In the following we will state our treatment needed in dealing 

with the old ephemerides of the Moon and the Sun. 

In terms of the ecliptic longitude Λ and latitude β of the Moon or 
the Sun, equation (7) can be expressed as 

U = - (3/2)Ciü [(C-A)/C][k2m/( ω a 3)] χ 

(a/r) 3[ c o s 0 sinyffQ + sin© cos /SQsin C X Q - V ^ ) ] 2 . (8) 

where a is a conventional unit in which r of the Moon or the Sun is 

expressed. The suffix Β will be dropped hereafter. The suffix 0 

assigned to ^ and β means that they are referred to the ecliptic and 

mean equinox of J2000.0. 

We now discuss on the quantity k m/(CJa ) in the coefficients in 

equation (8). Here (A) is the sidereal mean motion of the rotation of the 
Earth with the value 1299548.204"/day. In case of the Moon, we take as 

a the equatorial radius of the Earth a^. Introduce a^ defined by 

a M = [ k
2 ( m E + m M ) / n M

2 ] 1 / 3 = 0.002571881428 AU, (9) 

where m and rru. are the masses of the Earth and the Moon, respectively, 

and η ( = 47434.88963"/day ) is the sidereal mean motion of the Moon. 

Further, we have a relation among a , a^ and the mean distance of the 

Moon a Q:
 e 

a M = a n / F o = a /(3422.448"F^) = 60.32291182 a , (10) 
M 0 2 e 2 e 

F 2 being a constant, whose value is 0.999093142. Hence, 

k 2 V ( C U a M 3 ) = ( V % ) 3 [ V ( m E + m M ) ] [ k 2 ( V m M ) / ( C : 0 a M 3 ) ] 

= (60.32291182) 3 χ 0.01215056777 x (n^2/ ω ) 

- 4617924.822"/day. (11) 

In case of the Sun, we take 1 AU as a. Introduce a^ defined by 

a s = [ k
2 ( m s + m E + m M ) / n s

2 ] 1 / 3 = 1.000000036 AU, (12) 
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where m is the mass of the Sun and η ( = 3548.192807"/day ) is the 
sidereal mean motion of the Sun. Then, 

k 2m s/(6ü AU
3) = (a s/AU)

3[m s/(m s+m E+m M)][k
2(m s+m E+m M ) / ( a ; a s

3 ) ] 

= (1.000000036) 3 χ 0.9999969596 χ (η^/ω ) 

= 9.687701648"/day. (13) 

Finally, we adopt the following value of common factor in U w and U : 

M S 

(C-A)/C = 0.0032739935. (14) 

All the numerical values adopted above are coincident with the IAU 
(1976) system of astronomical constants and are the same as those used 
in Kinoshita et al.. 

5. Integration 

The integration is carried out by the Simpson 1s formula for definite 
integral with a step of 2 hours. In doing this, the perturbing force by 
the Sun is evaluated at Oh every day and interpolated to every 2 hours, 
while for the Moon the coordinates are evaluated at Oh every day and 
interpolated to every 2 hours and then the force is calculated. 
Differences up to the fourth order are taken into consideration in the 
interpolation. As for the geodesic precession, we added compulsively a 
linear term of the amount of 1.92"/cy or 0.0526mas/day to our ψ as 
Kinoshita et al. did. 

The initial values (suffixed i) adopted in the integration are 

t = JD 2446066.5 or Jan. 1, 1985 0 h TD ( Ί± = -0.1499931553 ), 

θ± = 23° 26 1 21.448" + 4.849", and 

ψ± = -5038.7784" Τ + 1.07259" Ί \ 2 + 0.001147" 

+ 13.715" + 180°, 

where Τ is measured from J2000.0 in the unit of Julian century. The 
values 4,849" and 13.715" were added to Θ. and ψ, respectively so that 
they coincide with the corresponding analytical1values for the rigid 
Earth at the epoch t.. 

It should be noticed that since our formulation obtains the forced 
oscillation only, a slightly different value for Θ. or ψ. substantially 
results a mere constant bias of the same amount to all tne values of Q 
or ψ throughout the period to be integrated. 

6. Result and discussion 

The integration has been carried out for a period of about 18,000 days. 
In the following discussion, £ is used in place of θ and 180°-$^in the 
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p reced ing s e c t i o n s i s r ep l aced by ψ9 accord ing t o t h e conven t i ona l 
n o t a t i o n s used in p r e c e s s i o n and n u t a t i o n t h e o r y . 

As mentioned in Sec t ion 2 , t h e n u t a t i o n ob ta ined in t he f ixed 
r e f e r e n c e frame δΨπ and ΔΒ must be reduced t o t h a t in t h e frame of 
t h e e c l i p t i c and mean equinox of d a t e /ϊψ and ΔΒ $ r e s p e c t i v e l y . The 
r e d u c t i o n formulas a r e 

(15) 
Δψ=Δψ0 + (ttcosTTcotE )Δψ0 + ( 7 t s i n 7 T / s i n 2 e )4SQ, 

4 6 = 4 E Q - (ftsinTTM^, 

where 

71 = 47.0029" Τ - 0.03302" Τ 2 + 0.000060 Τ 3, 

Ρ ? ( 1 6 ) 

ΤΓ= 5° 0 7 ' 25 .018" - 4168.9695" Τ + 1.03723" Τ* + 0.001147" Ί3. 

I t should be noted t h a t 9t must be conve r t ed t o be measured in r a d i a n s in 
equa t ion ( 1 5 ) . We f i r s t examine t h e s h o r t p e r i o d i c te rms of n u t a t i o n . 
We compare our r e s u l t wi th t he a n a l y t i c a l one for a pe r i od of 250 days 
beg inn ing from JD 2446066.5 . In F i g u r e 2 t he d i f f e r e n c e s between our 
numer ica l va lue s (N) and a n a l y t i c a l v a l u e s (A) for Δψ and J £ a re shown. 
F i g u r e 3 shows t h e i r power s p e c t r a . The cons t an t b i a s e s of some mas in 
Δψ^ . and Δ Ε ^ a a r e meaningless because of the reason mentioned in 
S e c t i o n 5 . As Ear as t h e s h o r t p e r i o d i c r e g i o n of n u t a t i o n i s concerned , 
t h e d i f f e r e n c e s between Ν and A in Δψ and ΔΕ a re r e a s o n a b l e c o n s i d e r i n g 
t h e p r e c i s i o n of t h e a n a l y t i c a l c o m p u t a t i o n s . 

When we proceed t o p r e c e s s i o n and long p e r i o d i c r eg ion of n u t a t i o n , 
however, we see a f a i r l y d i f f e r e n t a s p e c t . F igure 4 shows t h e Δψ . and 
zJ£ for a pe r iod from JD 2445106.5 t o JD 2462706.5. In F igure 47 one 
d o t m e a n s t h e average for 32 d a y s . F i g u r e 5 i s t h e i r power s p e c t r a . 

In άψ^ . a l l t h e a n a l y t i c a l v a l u e s of p r e c e s s i o n and n u t a t i o n have 
been s u b t r a c t e d from t h e numer ica l s o l u t i o n . Therefore i t would be a 
h o r i z o n t a l s t r a i g h t l i n e i f both 4 ^ and Δψ^ were c o r r e c t . In Δ £ ^ , 
however, only t h e a n a l y t i c a l n u t a t i o n has been s u b t r a c t e d from t n e 
numer ica l r e s u l t . Therefore from t h e graph of ΔΕ^ A should be f u r t h e r 
s u b t r a c t e d t h e a n a l y t i c a l p r e c e s s i o n , i . e . , 

+ 51.27 T 2 - 7.726 T 3 ( i n m a s ) . (17) 

An a n a l y s i s of Δψ ^ and^E^ A , where t h e t h e o r e t i c a l p r e c e s s i o n (17) in 
Δ£ has been removed, g i v e s t h e fo l lowing e x p r e s s i o n s for t h e 
d i f f e r e n c e s in p r e c e s s i o n and long p e r i o d i c terms of n u t a t i o n : 

^ Ν _ Α = + 15.1 (± 2 .5 ) Τ - 2 . 2 (±14.9) Τ 2 

+ 0.6 s i n ( Ο - 26°) + 1.3 s i n ( 2 f l - 2°) ( i n mas) , 
p (18) 

ΔΕ* A = - 0 .3 (+ 1.2) Τ - 6 .7 (+ 6 .2) Ύά 

+ 0 .8 cos (0+ 26°) - 0 .3 cos ( 2 Ω + 37°) (in mas) , 
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Figure 2 Difference between Numerical(N) and Analytical(A) Nutation 
for a period of 250days from JD 2446066.5 ( Jan. 1, 1985 ) 
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Figure 3 Power Spectra of Differences showed in Figure 2 
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Figure 4 Difference between Numerical(Ν) and Analytical(A) Nutation 
for a period of 17,600 days from JD 2445106.5 to JD 2462706.5 

Figure 5 Power Spectra of Differences showed in Figure 4 
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the first and the second terms being for precession and the third and 
the fourth terms for nutation in each equation. The angle Ο is the 
longitude of the ascending node of the Moon's orbit on the ecliptic. 

Among the four terms for precession in (27), only the linear term 
+ 15.1mas Τ in Δψ^ A is significant judging from the mean errors. Since 
this term is to be determined by observation, the difference is not 
important physically. Rather, this indicates that the adopted numerical 
value of (C-A)/C in equation (14), which was determined by the 
comparison of analytical theories with the observed amount of luni-solar 
precession, would be wrong. On the other hand, all the terms for 
nutation in (27) are significant. Among them the terms with the 
argument of 2Û. (9.3yr period) are well coincident with the result which 
Kubo (1982) obtained analytically: 

Stety) = + 1.2 mas sin2fl, and SUZ) = - 0.2 mas cos2Q. (19) 

As for the remaining two terms of nutation + 0.6mas sin ( Q-26°) and 
+ 0.8mas cos(0+26°), as well as phase shifts in the arguments of 9.3yr 
terms, we can say nothing at present about whether our numerical way or 
the analytical theory is wrong. The differences arising from the 
modification of the equations of motion and from the integration in our 
solution are estimated to be small enough. The largest source of the 
error in our calculation would be in the low precision of the 
coordinates of the Moon and the Sun we adopted. Especially, some long 
periodic terms which are missing because of their smallness in the 
trigonometric series for the Moon might be questionable, although the 
effect to our result does not seem so large as 0.2mas. 

However, it is desirable to follow the present scheme once again 
using latest precise ephemerides of the Moon and the Sun and taking into 
some other minute effects. 
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