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DEFERRED CORRECTION FOR THE
ORDINARY DIFFERENTIAL EQUATION

EIGENVALUE PROBLEM*

KING-WAH ERIC CHU

This paper considers the improvement of approximate eigenvalues

and eigenfunctions of ordinary differential equations using the

technique of deferred correction. A convergence theorem is

proved and a numerical example is given to illustrate the theory.

1. Introduction

The deferred correction technique by Fox [6], Mayers [S], has been

generalized and applied to the solution of differential equations, [7],

•[9], and Fredholm integral equations of the second kind [7]. (See also

[10].) In [2], [4], the author extended the technique to apply to integral

equation eigenvalue problems. The aim of this paper is to extend the

deferred correction technique to deal with ordinary differential equation

eigenvalue problems. Only the small eigenvalues and the corresponding

eigenfunctions are considered.

In §2, the deferred correction technique for eigenvalue problems is

presented and a convergence theorem is proved in §3- Some programming

details are described in §U. In §5, a numerical example illustrating the

theory is given.

Received 18 June 1982.

* This paper is based on a talk given at the Australian Mathematical
Society Applied Mathematics Conference held in Bundanoon, February 7-11>
1982. Other papers delivered at this Conference appear in Volumes 25 and
26.
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2. Deferred correction technique for eigenvalue problems

Consider the eigenvalue problem

(1) Ly = \y

where L is an ordinary differential operator and

y € D = {/ € (f[a, b] : f{a) = f(b) = o}

for some 8 and finite a, b . Assume the existence of a stable,

consistent, qth order discretization L of L . (l) is approximated by

(2) I U = VU .

For a given step-size h = (b-a)/(n+l) , L is an n x n matrix and U

an w-vector.

We further assume that X and v are simple and

(3) |X-v|5 \\Tny-xx\\m = 0[x
qUj)) = 0[hq)

with

r : C(a, b) •*• Ft is the restriction operator with

and x. = a + ih , i = 1, ..., n . T (y) , the discretization error, can

usually be represented by a series in powers of h with coefficients

involving derivatives of y . It can be estimated by using finite

differences.

From (l), (2) and (k), we obtain the perturbed equation

(5) Lj = \y - xq(y) ,

with y = *y/ .

Define the corrections

(6a) u A X - v
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z 4y - u .

L(U+z) = (v+u)(u+z) - Tq(y) ,

and

(6b)

Obviously, (3) implies

(7) y, llzll̂, = O[ht) .

Rewrite (5), using notation in (6), to

(8)

which is equivalent to

(9) (i - v J j z - uu = -Tq(y) + viz .

An iteration for U and Z can be derived from (9) in the following

manner.

Assume that llyll,,,, = IIulloo = -*- an^L the first component of U equals

1 . Thus

(10)

and

(ii) z = [o,

[E and n are (n-l)-vectors.)

Partition L in the form

(12) Lq =
11 , n-l

"i

: , ' A ,n-l | n-l.

(9) can then be rearranged to

(13a) T\--\ =

with
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(13b) T =

V-l

-d
n - i

vJ -A ,
n-1 n-1

L , and

It can be proved that T is non-singular, if V is a simple eigenvalue of

= 0(1) . (See [Z] and M L )

We can estimate "C (y) by a pth order finite difference operator

such that

fi^y) = xq{y) + o{fP) , p » q .

An iteration process can then be derived from (13);

0

(15)

with

= sV*1-10) -

p ( 0 ) = 0 and = 0 , for r = 1, 2, . . . .

3. The convergence theorem

On the basis of §2, we now prove the following convergence theorem.

THEOREM 1. Assume that L is of qth order, consistent and stable

and (lU) holds. In addition we assume that

Al. v is a simple eigenvalue of L ,

A2.

€ B =

^-CglL for Cx and

for a small e .

the iterates y , n ] £« (15) satisfy
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(16)

r = 1, 2, ... . (See the theorem in 111, §1*].)

Proof. Subtract (13) from (15) to obtain

(IT) y(r-l)
0

(r-1)
Vi _

- y

0

ViJ.
for r = 1, 2, . . . .

Al implies that T i s non-singular and \\T~ \\m = 0(l) .

Using A2 and (lU), the f irst term in the right hand side of (17)

becomes

(18) o{lP) .

The second term in the right hand side of (17) can be written as

(19)

V i
,(1-1)
Vi-i

From (17), using (7), (l8) and (19), we prove that

with

for r = 1, 2, ... .

Equations (7) and (20) then imply (l6). //

Note that (lU) and A2 will involve some extra smoothness conditions on

y •

Judging from (l6), if a moderate value of n yields reasonable

approximations v and U and T is estimated well enough by 5^ , the

deferred correction process in (15) will improve the accuracy of V and U
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to a great extent. Note that the computation only involves w-dimensional

matrices and vectors, a feature of deferred correction. The extra

smoothness conditions imposed on y , which enables the estimation of

X by the finite difference operator ft , may be a disadvantage.

4. Programming details

In this section, we give a few brief notes concerning the actual

implementation of the deferred correction process (15) on computers.

(a) The Li/-decomposition of T

In general, the fcth component of U is the maximum one. T will be

a banded matrix with an extra kth column;

xx x
xxx Ox
xxx x

''.'.,'. O

T =
xxx
xxx
xxx

o

fcth

X
X

X

1
0

column

X X
X

X
X

X

X
X

assuming a tridiagonal matrix L

The extra feth column of T can be shifted to the first (last)

column to form T if k < n/2 (> n/2) ; for example
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T =

X X X
X X X X
X 0 X X X

0 . .

0

0

X X X

0 X X 0
0 x x 0

0 x x 0
X X X

. . 0
X X X

X X

fcth column

if k 5 n/2 . The two super-diagonals (sub-diagonals) can then be

eliminated and the resulting operation counts for both the

Ltf-decomposition and back-substitution are of 0(n) . The strategy of

shifting the kth column to the first or last column, depending on the

value of k , improves the operation counts slightly because the outermost

super-diagonal (sub-diagonal) will contain more zeros.

A computer program implementing the above method is contained in [3],

for the LiZ-decomposition and back-substitution of tridiagonal matrices

with an extra full column. It has been used in the solution of Sturm-

Liouville problems, using the deferred correction process.

(b) Estimation of \q

The process of differencing in 6 should be carried out with care in

computer programs. Multiprecision accumulation of differences of opposite

signs should be employed to avoid the overflow of round-off error.

In [6] and LSI, the differences in 6 are calculated until all

significant terms are included. Note also that any non-convergence of

differences in &" indicates non-smoothness in y .

Alternatively, an iterated deferred correction technique can be

applied. More differences are included as the iteration goes on. (See

[9].)
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(c) Hr"1!!.

The size of \\T~ H^ should \se monitored. A large \\f W^ implies

that v is close or equal to another eigenvalue of L , that is, X

is a multiple eigenvalue, and thus invalidates the theory. The

technique in [5] for estimating condition numbers can be used.

5. A numerical example

Assume that the Stunn-Liouville eigenvalue problem in (l) is

discretized using second order central differences. Thus q = 2 in

(3). For v? in (lU), pth order central differences are used for points

near the centre of [a, b] and onesided differences near the edges

x = a, b . We required y € (? [a, b] in order to have (lU) satisfied.

The highest order of the differences used in 6^ will be (p+1) . The

main result (l6) becomes

(21) IK'L^o

for P = 1, 2, ... .

We give the following example. Consider Mathieu's equation

D y + (A - 2 cos 2x)y = 0

with i/(0) = y(ir) = 0 . The smallest eigenvalue A = -0.1102U88168 , with

the corresponding eigenfunctlon

41 — \ A QTni ?y*+T 1T

Table 1 contains Er = |A-(v+u )| , the errors of the improved

eigenvalues for various values of n and r , with p = 5 •

Table 2 contains the ratios tP /!<£ , which indicate the

numerical rate of convergence.

As expected the method produces good results. The theoretical rate in

(21) is in good agreement with the numerically estimated one. Recall that
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TABLE 1. n,r

n
r

0

1

2

3

15

.6125-2

.168S-3

.1525-3

.1275-3

31

.1595-2

.5795-5

. niE-6

.2355-6

63

.3965-3

.3525-6

.3305-8

.2605-8

TABLE 2. Ratios

r

0

1

2

3

3.85

29.03

712.01

E31,r / F63,r

U.01

16.U3

51.73

90.5k

Rate of Convergence

Numerical

0{h ' )

0 [h ' )

o[h )

Theoretical (21)

0[h )

0 (h?)

(p+l)th order central differences are used in 6 for most points in

[a, b] except those near the edges x = a, b . Thus the numerically

estimated rate of convergence is usually better than the theoretical one.

The behaviour of the approximations to the eigenfunctions is similar

to that of the eigenvalues.
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