J. Austral. Math. Soc. (Series A) 37 (1984), 351-357

## THE PROJECTIVE GEOMETRY ARISING FROM A HOLLOW MODULE

## JEREMY E. DAWSON

(Received 5 May 1983)

Communicated by R. Lidl

## Abstract

We discuss the projective geometry defined in terms of the hollow factor modules of a given module. In particular, we derive an explicit expression for the division ring obtained in coordinatizing such a projective geometry.

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 53, 05 B 35.

In [2] an independence structure was defined on the set of uniform submodules of a module, and was shown to be modular. Thus, if it is connected and of rank at least 3, it corresponds naturally to a projective geometry, which is Desarguesian. The division rings obtainable by coordinatizing such projective geometries were discussed there in detail. Dually, in [3], an independence space, also modular, was defined on the set of hollow factor modules of a module. In this paper we discuss the division rings obtained by coordinatizing the associated projective geometries.

An independence structure  $\mathscr{E}$  on a set E is a collection of subsets (the independent sets), satisfying certain axioms, not unlike the properties of linear independence when E is a subset of a vector space (see [7] for full details). The rank of  $A \subseteq E$  is the cardinality of any maximal independent subset of A, and for r finite, an r-flat is a maximal set of rank r. If rk(A) = r, then [A] denotes the unique r-flat containing A, and we may write [a, b] for  $[\{a, b\}]$ , for example. The 1-flats partition E; by collapsing each to a single element we get the simple independence space naturally associated with  $\mathscr{E}$ . A pair of elements  $e, f \in E$  is connected if they are both contained in some circuit (minimal dependent set); connectedness is an

This paper was written while the author was at the National University of Singapore.

<sup>© 1984</sup> Australian Mathematical Society 0263-6115/84 \$A2.00 + 0.00

equivalence relation, the classes being called *connected components*. An independence structure is *modular* if  $rk(A) + rk(B) = rk(A \cup B) + rk(A \cap B)$  for any flats  $A, B \subseteq E$ ; some equivalent definitions are quoted in [2]. Further details are in [2], [7] etc.

Let R be a ring with 1; all modules will be unitary left R-modules. A submodule K of a module M is small  $(K \leq_s M)$  if  $K + L = M \Rightarrow L = M$ . A hollow module is not the sum of two proper submodules; let  $Hf(M) = \{N \leq M; M/N \text{ is hollow}\}$ . We define  $\mathscr{Gd}(M) \subseteq \mathscr{P}(Hf(M))$  (the set of subsets of Hf(M)) by

(a) For  $\{K_1, \ldots, K_r\} \subseteq Hf(M), \{K_1, \ldots, K_r\} \in \mathcal{G}d(M)$  if, for each  $l = 1, \ldots, r$ ,  $K_l + \bigcap_{j \neq l} K_j = M$ . (In this case, for  $\phi \subset J \subset I = \{1, \ldots, r\}, \bigcap_{i \in I \setminus J} K_i + \bigcap_{j \in J} K_j = M$ .)

(b) For  $\{K_i: i \in I\} \subseteq Hf(M)$ ,  $\{K_i: i \in I\}$  is in  $\mathscr{G}d(M)$  if every finite subset of it is, according to (a).

The next theorem outlines the background to the present work.

**THEOREM 1.** (i)  $\mathcal{G}d(M)$  is a modular independence structure on Hf(M).

(ii) If a connected component has rank at least 3 then its 1-flats and 2-flats form the points and lines of a projective geometry, which, if Desarguesian, is coordinatizable over a unique division ring D.

**PROOF.** (i) is [3], Theorems 2.3 and 2.6. For (ii) combine standard results, as is done in [2], Theorem 9.

In examining when  $\mathscr{G}d(M)$  is connected, we obtain the following result; its dual follows easily from [2], Lemma 10.

LEMMA 2. Let  $N_1, N_2 \in Hf(M)$ . Then  $N_1$  and  $N_2$  are connected if and only if  $M/N_1$  and  $M/N_2$  have isomorphic non-trivial factor modules.

PROOF. Suppose  $N_1$  and  $N_2$  are connected. If  $\{N_1, N_2\} \notin \mathscr{G}d(M)$ , then  $M/(N_1 + N_2)$  is a common non-trivial factor module. Otherwise, since  $\mathscr{G}d(M)$  is modular, there is a circuit  $\{N_1, N_2, N'\}$  for some  $N' \in Hf(M)$ . If  $N = N' + (N_1 \cap N_2)$ , then by [3], Lemma 2.2, N < M. Also,  $N + N_1 = N + N_2 = N_1 + N_2 = M$ . We define a map  $\theta$ :  $M/N_1 \to M/N$  by  $(m + N_1)\theta = n_2 + N$ , where  $m = n_1 + n_2$ ,  $n_i \in N_i$ . To show  $\theta$  is well-defined, let  $m \in N_1$ ,  $m = n_1 + n_2$ ,  $n_i \in N_i \cap N_2 \leq N$ . As  $\operatorname{im} \theta = (N_2 + N)/N = M/N$ , we have  $(M/N_1)/\ker \theta \cong M/N$ . Similarly  $M/N_2$  has a factor module isomorphic to M/N.

Conversely, let  $\phi_i: (M/N_i) \rightarrow L \neq 0$  (i = 1, 2) be surjections. Define a map  $\theta: M \rightarrow L$  by  $m\theta = (m + N_1)\phi_1 + (m + N_2)\phi_2$ . As  $N_2\theta = ((N_2 + N_1)/N_1)\phi_1 = L$ ,

**Projective geometry** 

im  $\theta = L$ . Let  $N = \ker \theta$ , so  $M/N \cong L$  and  $N \in Hf(M)$ . As  $N_1 \cap N_2 \leq N$ ,  $(N_1 \cap N_2) + N < M$  and  $\{N_1, N_2, N\} \notin \mathscr{G}d(M)$ . If  $\{N_1, N_2\} \notin \mathscr{G}d(M)$  then clearly  $N_1$  and  $N_2$  are connected; otherwise,  $N_1 + N_2 = M$  and it remains to show that  $N_1 + N = N_2 + N = M$ , whence  $\{N_1, N_2, N\}$  is a circuit. Let  $n_1 \in N_1$ ; as  $M = N_1 + N_2$  and  $\phi_2$  is onto, we can choose  $n_2 \in N_2$  such that  $(n_2 + N_1)\phi_1 =$  $(n_1 + N_2)\phi_2$ . Then  $n_1 = (n_1 - n_2) + n_2 \in \ker \theta + N_2$ , that is,  $N_1 \leq N + N_2$ . Thus  $M = N + N_2$ , similarly  $M = N + N_1$ , and the result is shown.

We may make assumptions about the structure of M while leaving the projective geometry, or at least one of its planes, unchanged.

LEMMA 3. (i) Let  $K \leq_s M$ . Then  $\mathcal{G}d(M/K)$  and  $\mathcal{G}d(M)$  have isomorphic associated simple independence spaces.

(ii) Let  $\{N_1, N_2, N_3\} \in \mathscr{Gd}(M)$ , let  $K = N_1 \cap N_2 \cap N_3$ . Then the associated simple independence space of  $\mathscr{Gd}(M/K)$  is isomorphic to that of the subspace  $[N_1, N_2, N_3]$  of  $\mathscr{Gd}(M)$ .

**PROOF.** Define a map  $\theta$ :  $Hf(M) \to Hf(M/K) \cup \{M/K\}$  by  $\theta(N) = (N+K)/K$ . For (i), as  $K \leq_s M$ , N+K < M; for (ii), N+K < M if and only if  $N \in [N_1, N_2, N_3]$ , as follows from [3], Lemma 2.2. In this case,  $N+K \in Hf(M)$  and, equivalently,  $(N+K)/K \in Hf(M/K)$ ; also [N] = [N+K] in  $\mathcal{G}d(M)$ . Thus, if  $\{L_i: i \in I\} \subseteq Hf(M)$  in (i), or  $\{L_i: i \in I\} \subseteq [N_1, N_2, N_3]$  in (ii), then

$$\{L_i: i \in I\} \in \mathscr{G}d(M) \Leftrightarrow \{L_i + K: i \in I\} \in \mathscr{G}d(M)$$
$$\Leftrightarrow \{(L_i + K)/K: i \in I\} \in \mathscr{G}d(M/K).$$

THEOREM 4. The projective planes in the projective geometries of Theorem 1(ii) are precisely those arising from  $M = H^3$ , H a hollow module; they are Desarguesian.

PROOF. Let  $\{N_1, N_2, N_3\}$  be independent, in a connected component of  $\mathscr{G}d(M)$ . By Lemma 2, let  $K_i \ge N_i$  such that  $M/K_1 \cong M/K_2 \cong M/K_3 \cong H$  say,  $H \ne 0$ . Let  $K = K_1 \cap K_2 \cap K_3$ , M' = M/K and  $K'_i = K_i/K$  (i = 1, 2, 3). Then, by Lemma 3(ii), the projective plane determined by  $[N_1, N_2, N_3]$  (=  $[K_1, K_2, K_3]$ ) is that of  $\mathscr{G}d(M')$ . As  $(K'_1 \cap K'_2) + K'_3 = M'$ ,  $(K'_1 \cap K'_2) + (K'_1 \cap K'_3) = K'_1$ ; as  $K'_1 \cap K'_2 \cap K'_3 = 0$ , this sum is direct, as is  $K'_1 + (K'_2 \cap K'_3) = M'$ . This last also implies  $K'_2 \cap K'_3 \cong M'/K'_1 \cong H$ ; similar results give  $M' = K'_1 \cap K'_2 + K'_1 \cap K'_3$ +  $K'_2 \cap K'_3 \cong H^3$ . Now  $\mathscr{G}d(H^4)$  gives a projective geometry of rank 4 (dimension 3), necessarily Desarguesian; therefore its planes, which are isomorphic to  $\mathscr{G}d(H^3)$  by Lemma 3(ii), are Desarguesian. Conversely, for H hollow,  $\mathscr{G}d(H^3)$  (with basis  $\{(H, H, 0), (H, 0, H), (0, H, H)\}$ ) is connected by Lemma 2, and therefore gives a projective plane, which is again Desarguesian.

We now describe the results of coordinatizing  $\mathscr{G}d(H^3)$ . Let us define the natural projections  $p: H^2 \to (H, 0) \ (= H \oplus 0)$ , and  $q: H^2 \to (0, H)$ .

THEOREM 5. The division ring which coordinatizes  $\mathscr{G}d(H^3)$  is anti-isomorphic to the following.

$$D = \{ [M]: M \leq H^2, p(M) = H, (0, H) \leq M \}, \text{ where} \\ [M] = [N] \Leftrightarrow M + N < H^2 \Leftrightarrow (0, H) \leq M + N. \\ 0_D = [(H,0)], 0_D = [M] \Leftrightarrow q(M) < H, \text{ and } 1_D = [\{(h,h): h \in H\}]. \\ [M] + [N] = [(M, N, +)] \text{ and } [M] \times [N] = [(M, N, \times)], \text{ where} \\ (M, N, +) = \{(m_1, m_2 + n_2): (m_1, m_2) \in M, (n_1, n_2) \in N, m_1 = n_1\} \text{ and} \\ (M, N, \times) = \{(m_1, n_2): (m_1, m_2) \in M, (n_1, n_2) \in N, m_2 = n_1\}. \\ Also, -[M] = [\{(m_1, -m_2): (m_1, m_2) \in M\}] \text{ and, for } [M] \neq 0_D, [M]^{-1} = \\ [\{m_2, m_1\}: (m_1, m_2) \in M]. \end{cases}$$

PROOF. We follow the coordinatization rule of [5], p. 209. Let the coordinate line  $D \cup \{\infty_D\}$  be [(H, 0, H), (0, H, H)]. If  $N \in [(H, 0, H), (0, H, H)]$  then  $N + (0, 0, H) < H^3$  and so [N] = [N + (0, 0, H)]. We will therefore consider  $D \cup \{\infty_D\}$  as the set of 1-flats of  $\mathscr{G}d(H^2)$ , under the well-defined 1-1 correspondence  $[N] \leftrightarrow [N \oplus H]$  ( $N \in hf(H^2)$ ,  $N \oplus H \in Hf(H^3)$ ). Choose  $0_D$  and  $1_D$  as stated, and  $\infty_D = [(0, H)] / \text{Since}$ , for  $M, N \in Hf(H^2)$ , [M] = [N] when  $M + N < H^2$ , we have  $[M] = 0_D$  when q(M) < H and  $[M] = \infty_D$  when p(M) < H. Let  $M \leq H^2$ such that p(M) = H. Then  $M < H^2 \Leftrightarrow (0, H) \leq M$ , and in this case  $M \in Hf(H^2)$ , by [3], Lemma 3.5(i), since  $M + (0, H) = H^2$ . Likewise  $M + N < H^2$  $\Leftrightarrow (0, H) \leq M + N$ . Thus D is as stated. The coordinatization procedure then gives the operations. We omit the details, but the following Lemma is used in the construction.

LEMMA 6. Let [A, B] and [C, D] be two distinct lines (with  $A, B, C, D \in Hf(H^3)$ ). Then  $[A, B] \cap [C, D] = [N]$ , where  $N = A \cap B + C \cap D$ .

**PROOF.** As  $rk(\mathscr{G}d(H^3)) = 3$ ,  $\{A, B, C, D\}$  contains a circuit, which is not contained in either  $\{A, B\}$  or  $\{C, D\}$ . Therefore, by [3], Lemma 2.2,  $N < H^3$ . We show  $H^3/N$  is hollow. Suppose  $N \leq K'$ ,  $L' < H^3$ . Let  $K \geq K'$ ,  $L \geq L'$  such that  $K, L \in Hf(H^3)$ , by [3], Theorem 2.5. As  $K \geq N \geq A \cap B$ , and similarly, we

have  $\{K, L\} \subseteq [A, B] \cap [C, D]$ ; as

$$rk([A, B] \cap [C, D]) = rk([A, B]) + rk([C, D]) - rk([A, B, C, D])$$
$$= 2 + 2 - 3 = 1,$$

[K] = [L]; that is,  $K + L < H^3$ . Thus  $N \in Hf(H^3)$ , and clearly  $N \in [A, B] \cap [C, D]$ .

Naturally, it can be verified directly that D is a division ring. Clearly, (M, N, +) and  $(M, N, \times)$  are submodules of  $H^2$  which project onto (H, 0). As (0, H) is hollow,  $(M, N, +) \cap (0, H) = M \cap (0, H) + N \cap (0, H) < (0, H)$ , so  $(M, N, +) < H^2$ . To check that  $(M, N, \times) < H^2$  requires the following interesting lemma.

LEMMA 7. Let  $N' \leq N < H^2$ , such that p(N) = q(N) = H. Then  $p(N') = H \Leftrightarrow q(N') = H$ , and in this case [N'] = [N].

**PROOF.** Suppose p(N') = H. Then  $N' \in Hf(H^2)$ , and since N' + N = N < H, [N'] = [N]. As q(N) = H,  $[N'] = [N] \neq 0_D$ , so q(N') = H. The converse is by symmetry.

Consider  $(M, N, \times)$  where  $[M], [N] \in D, [N] \neq 0_D$ . Let  $N' = \{(n_1, n_2) \in N: (0, n_1) \in M\}$ . By the lemma, we get

$$(0, H) \leq (M, N, \times) \Rightarrow q(N') = H \Rightarrow p(N') = H \Rightarrow (0, H) \leq M,$$

which is not so. Thus  $(M, N, \times) < H^2$ . It is easy to show that calculating [M] - [N] gives  $0_D$  if and only if [M] = [N], and this leads to a proof that the operations are well-defined. The remaining details are easy to verify (noting that to show, say, [A] = [B], it is enough to show that, for example,  $A \ge B$ ).

We turn now to some special cases. Since a hollow module is either cyclic or not finitely generated, we consider H cyclic, H = Rh. Let  $H \cong R/I$ , I a left ideal of R. For  $[M] \in D$ , p(M) = H and so we may choose  $(h, m) \in M$ . Then by Lemma 7, [R(h, m)] = [M], and it also follows that Rm = H if and only if q(M) = H. If we denote [R(h, m)] by  $\langle m \rangle$ , we get

$$D = \{ \langle m \rangle : m \in H, R(h, m) < H^2 \}, \text{ where}$$
$$\langle m \rangle = \langle n \rangle \Leftrightarrow R(h, m) + R(h, n) < H^2,$$
$$0_D = \langle 0 \rangle; 0_D = \langle n \rangle \Leftrightarrow Rn < H; 1_D = \langle h \rangle,$$
$$\langle m \rangle \pm \langle n \rangle = \langle m \pm n \rangle,$$
$$\langle m \rangle \times \langle n \rangle = \langle rn \rangle \text{ and } \langle n \rangle^{-1} = \langle sh \rangle, \text{ where } m = rh \text{ and } h = sn.$$

Note that, if I = Ann(h), then  $R(h, m) < H^2 \Leftrightarrow Im < H$ .

However, the case where H is cyclic is always covered by the following Theorem (see [4], Corollary 2.2). Let the division ring D described in Theorem 5 be called  $Dd(H^3)$ .

THEOREM 8. If H is hollow and K < H, then  $Dd(H^3) \cong Dd((H/K)^3)$ . If H also has a maximal submodule (that is, J(H) < H), then  $Dd(H^3) \cong En(H/J(H))$ .

**PROOF.** As *H* is hollow,  $K \leq_s H$ ,  $K^3 \leq_s H^3$  (by [1], 5.20(1)), and, from Lemma 3(i),  $Dd(H^3) \cong Dd(H^3/K^3) \cong Dd((H/K)^3)$ . If *H* has a maximal submodule, then it is unique, since *H* is hollow, and so J(H) is maximal. Let N = H/J(H) and, as *N* is simple, let  $N = Rh \cong R/I$ .

Define f: En(N)  $\rightarrow Dd(N^3)$  by  $f(\psi) = \langle h\psi \rangle$ . Now  $\psi = 0 \Leftrightarrow h\psi = 0 \Leftrightarrow \langle h\psi \rangle$ =  $0_D$  as N is simple. To show f is onto, let  $\langle m \rangle \in Dd(N^3)$ . Thus Im < N, so Im = 0, and we may define  $\psi \in En(N)$  by  $(rh)\psi = rm$ . Also, for  $\psi \in En(N)$ ,  $I(h\psi) = (Ih)\psi = 0$ . Clearly f preserves the operations, and so is an isomorphism.

It can be verified that in the case where H is cyclic, H = Rh, then  $\langle h\psi \rangle \leftrightarrow \psi$  is an isomorphism from  $Dd(H^3)$  to En(H/J(H)). This last theorem is the dual of part of [2], Theorem 15. The proof is not similar because projective covers need not exist.

Suppose that in fact H does have a projective cover P, that is,  $H \cong P/K$ ,  $K \leq_s P$ . Then P is also hollow. By [1], 17.14, P has a maximal submodule M; as  $K \leq_s P$ ,  $K \leq M$ , and so M/K is maximal in H. Thus Theorem 8 applies. Also, M/K and hence M are unique maximal submodules, of H and P respectively, so  $P/J(P) \cong H/J(H)$ . From [1], 17.12 and 17.10 we have  $\operatorname{En}(P/J(P)) \cong \operatorname{En}(P)/J(\operatorname{En}(P))$ . Thus  $Dd(H^3) \cong \operatorname{En}(P)/J(\operatorname{En}(P))$ , corresponding to [2], Theorem 14. It follows from this that  $\operatorname{En}(P)$  is (quasi-)local, for P hollow projective; this is also shown in [6], Proposition 4.1 and Theorem 4.2, which characterize hollow projective modules (see also [1], 17.19).

There remain the hollow modules with no maximal submodule (and therefore no projective cover). We look at the example  $H = \mathbb{Z}_{p^{\infty}}$  (a Z-module). This is hollow, and has no maximal submodule, since all proper submodules are finitely generated (indeed finite and cyclic), see [4], Section 5.

Let  $N \in Hf(H^2)$ ; with p(N) = H. As  $(0, H) \leq N$ ,  $N \cap (0, H) = \mathbb{Z}(0, 1/p^e)$ for some  $e \geq 0$ . Thus, if  $(1/p^i, m)$  and  $(1/p^j, n)$  (i > j > 0) are in N, then  $p^{i-j}(1/p^i, m) - (1/p^j, n) \in \mathbb{Z}(0, 1/p^3)$ . So, if

$$m \in \frac{a_k}{p^{i-k}} + \frac{a_{k+1}}{p^{i-k-1}} + \cdots + \frac{a_{i-e-1}}{p^{e+1}} + \mathbb{Z}\left(\frac{1}{p^e}\right),$$

then

[7]

$$n \in \frac{a_k}{p^{j-k}} + \frac{a_{k+1}}{p^{j-k-1}} + \cdots + \frac{a_{j-e-1}}{p^{e+1}} + \mathbb{Z}\left(\frac{1}{p^e}\right).$$

Let us therefore describe N by the power series expression  $a_k p^k + a_{k+1} p^{k+1} + \cdots$   $(0 \le a_i < p, a_k \ne 0)$ . Any coefficient  $a_i$  is determined by choosing j > l + e and  $(1/p^j, n) \in N$ ; then  $a_i$  appears in the expression for n.  $Dd(H^3)$  is the set of such power series expressions, addition and multiplication being natural; it is the p-adic completion of the rationals.

Another example would be  $H = \mathbb{Z}[1/p]$ . However, since  $\mathbb{Z}_{p^{\infty}} = \mathbb{Z}[1/p]/\mathbb{Z}$ , the same division ring arises, by Theorem 8.

I wish to thank Dr. M. Keating for some helpful discussions.

## References

- F. W. Anderson & K. R. Fuller, Rings and categories of modules (Springer-Verlag, New York, 1973).
- [2] J. E. Dawson, 'Independence spaces and uniform modules', European J. Combinatorics, to appear.
- [3] J. E. Dawson, 'Independence spaces on the submodules of a module', European J. Combinatorics, to appear.
- [4] P. Fleury, 'Hollow modules and local endomorphism rings', Pacific J. Math. 53 (1974), 379-385.
- [5] G. Grätzer, General lattice theory (Birkhaüser, Basel, 1978).
- [6] R. Ware, 'Endomorphism rings of projective modules', Trans. Amer. Math. Soc. 155 (1971), 233-256.
- [7] D. J. A. Welsh, Matroid theory (Academic Press, London, 1976).

CSIRO Division of Mathematics and Statistics P. O. Box 218 Lindfield, NSW 2070 Australia