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Abstract

We discuss the projective geometry defined in terms of the hollow factor modules of a given module.
In particular, we derive an explicit expression for the division ring obtained in coordinatizing such a
projective geometry.

1980 Mathematics subject classification (Amer. Math. Soc): 16 A 53, 05 B 35.

In [2] an independence structure was defined on the set of uniform submodules of
a module, and was shown to be modular. Thus, if it is connected and of rank at
least 3, it corresponds naturally to a projective geometry, which is Desarguesian.
The division rings obtainable by coordinatizing such projective geometries were
discussed there in detail. Dually, in [3], an independence space, also modular, was
defined on the set of hollow factor modules of a module. In this paper we discuss
the division rings obtained by coordinatizing the associated projective geometries.

An independence structure (?on a set £ is a collection of subsets (the independent
sets), satisfying certain axioms, not unlike the properties of linear independence
when £ is a subset of a vector space (see [7] for full details). The rank of A c E is
the cardinality of any maximal independent subset of A, and for r finite, an r-flat
is a maximal set of rank r. If rk(A) = r, then [A] denotes the unique r-flat
containing A, and we may write [a, b] for [{a, b}], for example. The 1-flats
partition E; by collapsing each to a single element we get the simple independence
space naturally associated with <?. A pair of elements e, f e E is connected if they
are both contained in some circuit (minimal dependent set); connectedness is an
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352 Jeremy E. Dawson [21

equivalence relation, the classes being called connected components. An indepen-
dence structure is modular if rk(A) + ik(B) = rk(A u B) + ik(A n B) for any
flats A, B c E; some equivalent definitions are quoted in [2]. Further details are
in [2], [7] etc.

Let R be a ring with 1; all modules will be unitary left /^-modules. A
submodule K of a module M is small (K ^SM) if K + L = M => L = M. A
hollow module is not the sum of two proper submodules; let Hf(M) = {N < M;
M/N is hollow}. We define 9d{M) c &(Hf(M)) (the set of subsets of Hf(M))
by

(&)FoT{K1,...,Kr}QHf(M),{K1,...,Kr}e9d(M)it,toreachl = l,...,r,
K, + n,*,Kj = M. (In this case, for </> c / c / = (1 , . . . , r } , n,G / vK, , + Oj^jKj

(b) For {Kt: i e / ) c Hf(M), {K^. i e / } is in <3d(M) if every finite subset
of it is, according to (a).

The next theorem outlines the background to the present work.

THEOREM 1. (i) &d(M) is a modular independence structure on Hf(M).
(ii) If a connected component has rank at least 3 then its 1-flats and 2-flats form

the points and lines of a projective geometry, which, if Desarguesian, is coordinatiz-
able over a unique division ring D.

PROOF, (i) is [3], Theorems 2.3 and 2.6. For (ii) combine standard results, as is
done in [2], Theorem 9.

In examining when &d(M) is connected, we obtain the following result; its
dual follows easily from [2], Lemma 10.

LEMMA 2. Let Nlf N2 e Hf(M). Then Nt and N2 are connected if and only if
and M/N2 have isomorphic non-trivial factor modules.

PROOF. Suppose Nx and N2 are connected. If {A 1̂( iV2} £ &d(M), then
M/(NX + N2) is a common non-trivial factor module. Otherwise, since &d(M)
is modular, there is a circuit {Nt, N2, N'} for some N' e Hf(M). If N = N' +
(JVi n N2), then by [3], Lemma 2.2, N < M. Also, N + Nx = N + N2 = ty + N2

= M. We define a map 6: M/Nx -» M/N by (m + NJ0 = n2 + N, where
m = «j + n2, nt e Nt. To show $ is well-defined, let m e Nlf m = nx + n2,
n,. e JV;.. Then «2 e Nxf\N2^N. As im0 = (JV2 + N)/N = M/JV, we have
(M/N^/ketd = M/N. Similarly M/N2 has a factor module isomorphic to
M/N.

Conversely, let <£,: (M/Nt) -» L # 0 (i = 1,2) be surjections. Define a map ^:
M -» L by m^ = (m + i ^ ) ^ + (m + Ar2)<fc. As N26 = ((iV2 + NJ/NJ^ = L,
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im0 = L. Let N = ker0, so M/N s l a n d i V e Hf(M). As Nx n N2 ^ N,
(A\ n N2) + N < M and {Nlt N2,N}£ <$d(M\ If {Nv N2} £ &d(M) then
clearly A\ and N2 are connected; otherwise, Nx + N2 = M and it remains to show
that NY + N = N2 + N = M, whence {Nx, N2, N} is a circuit. Let nx e Nt; as
M = Ni + N2 and </>2 is onto, we can choose n2e. N2 such that (n2 + Nx)^x =
(«! + Â 2)<>2- Then "1 = ("i ~ "2) + «2

 e ker0 + iV2, that is, Nx < iV + Â 2.
Thus M = N + N2, similarly M = N + Nv and the result is shown.

We may make assumptions about the structure of M while leaving the projec-
tive geometry, or at least one of its planes, unchanged.

LEMMA 3. (i) Let K^SM. Then $d(M/K) and &d(M) have isomorphic
associated simple independence spaces.

(ii) Let {Nv N2, N3} e &d(M), let K = JVj n #2 n N3. Then the associated
simple independence space of &d(M/K) is isomorphic to that of the subspace

PROOF. Define a map $: Hf(M) -> Hf(M/K)U {M/K} by 8{N) =
(N + K)/K. For (i), as K <f M, N + /C < M; for (ii), JV + /iT < M if and only if
N e [JVX, Â 2, Ay, as follows from [3], Lemma 2.2. In this case, N + K e Hf(M)
and, equivalent^, (N + K)/K e Hf(M/K); also [A'] = [iV + /i:] in &d(M).
Thus, if {Lt: i e / } c Hf(M) in (i), or {L,: 1 e / } c [JVi, N2, N3] in (ii), then

{L,: i e / ) e 9d(M) » {L, + i^: 1 e / }

*» {(L, + ^ ) / / i : : 1 e / } e <3d(M/K).

THEOREM 4. 77ie projective planes in the projective geometries of Theorem l(ii)
are precisely those arising from M — H3, H a hollow module; they are Desargue-
sian.

PROOF. Let {Nlt N2, N3) be independent, in a connected component of &d(M).
By Lemma 2, let Kt > N, such that M/Kx = M/K2 = M/K3 = H say, H # 0.
Let K = KlnK2n K3, M' = M/K and K\ = Kt/K (i = 1,2,3). Then, by
Lemma 3(ii), the projective plane determined by [A^, A ,̂ A3] (= [Klt K2, K3]) is
that of 9d(M'). As (K[ n K'2) + K'3 = M', (K{ n /i:2) + (A"{ n ^ ) = A"(; as
^ 0 ^ 0 ^ = 0, this sum is direct, as is K[ + (K'2 n ^3) = M'! This last also
implies K'2C\K'3 = M'/K[ s ^ ; similar results give M' = K[ C\ K'2 + K[ C\ K'3
+ K'2C\ K'3 = H3. Now 9d(H*) gives a projective geometry of rank4 (dimen-
sion 3), necessarily Desarguesian; therefore its planes, which are isomorphic to
9d(H3) by Lemma 3(ii), are Desarguesian. Conversely, for H hollow,
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(with basis {(H, H,0), (H,0, H), (0, H, H)}) is connected by Lemma 2, and
therefore gives a projective plane, which is again Desarguesian.

We now describe the results of coordinatizing &d(H3). Let us define the
natural projections/?: H2 - » ( i / , 0 ) ( = H e 0), and q: H2 -> (0, H).

THEOREM 5. The division ring which coordinatizes @d(H3) is anti-isomorphic to
the following.

Z>= {[A/]: M^H2,p(M) = H, (0, H)£M), where

[M] = [N] ~ M + N < H2 ~ (0, H) £ M + N.

0D=[(H,0)],0D=[M]~q{M)<H, and lD = [{(h, h): h e H}].
[M]+[N] = [(M,N,+)] and [M]x[N] = [(M,N,x)\, where
(A/, N, + ) = {(m1, m2 + n2): (m1, m2) e A/, (n1; n2) G N,m1 = nx) and
(M, N, X ) = { ( /« ! , n 2 ) : ( m 1 ( w 2 ) e M , (nlf n2) ^N,m2 = nl).

Also, -[M] = [{(m1,-m2): (m1( m2) e M}] and, for [M] * 0D, [M]~l =

[ { w 2 ' m l ) : ( ' M l ' ' " 2 ) G HI-

PROOF. We follow the coordinatization rule of [5], p. 209. Let the coordinate

line D U {ooD} be [(//, 0, H), (0, # , #)] . If iV e [{H, 0, ^ ) , (0, 7/, H)] then iV +

(0,0, H) < H* and so [N] = [N + (0,0, fT)]. We will therefore consider D U

{ccD} as the set of 1-flats of &d(H2), under the well-defined 1-1 correspondence

[N] *+[N® H](N<E hf(H2), N® H <= Hf(H*)). Choose 0D and \D as stated,

and oOp = [(0, # ) ] / Since, for M, N e Hf(H2), [M] = [N] when M + N < H2,

we have [M] = 0D whenqr(M) < ^Tand[M] = oo0when/?(M) < H. Let Af < if2

such that p{M) = H. Then M < H2 <* (0, # ) ^ M, and in this case M e

Hf(H2), by [3], Lemma 3.5(i), since M + (0, i / ) = H2. Likewise M + N < H2

<=> (0, / / ) ^ A/ + N. Thus Z> is as stated. The coordinatization procedure then

gives the operations. We omit the details, but the following Lemma is used in the

construction.

LEMMA 6. Let [A, B] and [C, D] be two distinct lines (with A , B,C,D <E

Hf(H3)). Then [A, B] n [C, D] = [N], where N = AnB + CnD.

PROOF. AS rkC&d(H3)) = 3, {A, B, C, D} contains a circuit, which is not
contained in either {A, B} or {C, D). Therefore, by [3], Lemma 2.2, N < H3.
We show H3/N is hollow. Suppose N < K', U < H3. Let K> K',L> L' such
that K, L e Hf(H3), by [3], Theorem 2.5. As K > N > A n B, and similarly, we
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have {K, L) c [A, B] n [C, D]\ as

rk([i4, B] n[C, D]) = rk([/l, B]) + rk([C, />]) - rk([^, 5 , C, />])

= 2 + 2 - 3 = 1,

[K] = [ I ] ; that is, K + L < H\ Thus TV e # / ( # 3 ) , and clearly TV e [4, 5] n
[C, £»]•

Naturally, it can be verified directly that D is a division ring. Clearly,
(Af, iV, +) and (A/, TV, X) are submodules of H2 which project onto (//,0). As
(0, # ) is hollow, (A/, TV, +) n (0, H) = A/ n (0, H) + N n (0, # ) < (0, i/), so
(A/, N,+)< H2. To check that (A/, N,X)<H2 requires the following interest-
ing lemma.

LEMMA l.LetN' < TV < i/2, such thatp(N) = ?(/V) = H. Thenp(N') = H «
case [TV'] = [TV].

PROOF. Suppose^(TV') = H. Then TV' e Hf(H2), and since N' + N = N < H,
[TV'] = [TV]. As ?(TV) = # , [TV'] = [TV] * 0D, so ?(TV') = H. The converse is by
symmetry.

Consider (A/, TV, X) where [M], [TV] e Z>, [TV] # 0 o . Let TV' = {(«1( n2) e TV:
(0, nx) e A/}. By the lemma, we get

(0, H) < (M, TV, X) =» ?(TV') = H=*p(N') = H ̂  (0, H) ̂  M,

which is not so. Thus (Af, TV, x ) < 772. It is easy to show that calculating
[M] - [TV] gives 0D if and only if [Af] = [TV], and this leads to a proof that the
operations are well-defined. The remaining details are easy to verify (noting that
to show, say, [̂ 4] = [B], it is enough to show that, for example, A > B).

We turn now to some special cases. Since a hollow module is either cyclic or
not finitely generated, we consider H cyclic, H = Rh. Let H = R/I, I a left ideal
of R. For [Af] e D, p(M) = H and so we may choose (h, m) e Af. Then by
Lemma 7, [R(h,m)] = [M], and it also follows that Rm = H if and only if
<7(Af) = H. If we denote [R(h, m)] by (m) , we get

D= {(m):m<EH,R(h,m)<H2}, where

(m) = (n) « R(h, m) + R(h, n) < H2,

0B = (0); 0D = (n) ~Rn<H;\D = (h),

(m)±(n) = (m±n),

(m) X (n) = (rn) and (n)'1 = (sh), where m = rh and h = sn.
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Note that, if / = Ana{h), then R{h, m) < H1 ** Im < H.
However, the case where H is cyclic is always covered by the following

Theorem (see [4], Corollary 2.2). Let the division ring D described in Theorem 5
be called Dd{H3).

THEOREM 8. If H is hollow and K < H, then Dd{H3) = Dd{{H/K)3). If H also
has a maximalsubmodule {that is, J(H) < H), then Dd{H3) = En{H/J{H)).

PROOF. AS H is hollow, K ^SH, K3 ^SH
3 (by [1], 5.20(1)), and, from Lemma

3(i), Dd{H3) = Dd{H3/K3) = Dd{{H/K)3). If H has a maximal submodule,
then it is unique, since H is hollow, and so J{H) is maximal. Let N = H/J{H)
and, as N is simple, let N = Rh = R/I.

Define/: En(iV) -> Dd{N3) by/(if) = (hi). Now ^ = 0 « H = 0 « (hi)
= 0D as N is simple. To show / is onto, let (m) e Dd(N3). Thus Im < N, so
Im = 0, and we may define rp e En(iV) by (rh)\p = rm. Also, for if e En(iV),

= {Ih)i = 0. Clearly/preserves the operations, and so is an isomorphism.

It can be verified that in the case where H is cyclic, H = Rh, then (hi) «-» i is
an isomorphism from Dd{H3) to En{H/J{H)). This last theorem is the dual of
part of [2], Theorem 15. The proof is not similar because projective covers need
not exist.

Suppose that in fact H does have a projective cover P, that is, H = P/K,
K < , P . Then P is also hollow. By [1], 17.14, P has a maximal submodule M; as
K 4:SP, K < M, and so M/K is maximal in H. Thus Theorem 8 applies. Also,
M/K and hence M are unique maximal submodules, of H and P respectively, so
P/J{P) s H/J{H). From [1], 17.12 and 17.10 we have En{P/J{P)) s
En{P)/J{En{P)). Thus Dd{H3) = En{P)/J{En{P)), corresponding to [2], Theo-
rem 14. It follows from this that En{P) is (quasi-)local, for P hollow projective;
this is also shown in [6], Proposition 4.1 and Theorem 4.2, which characterize
hollow projective modules (see also [1], 17.19).

There remain the hollow modules with no maximal submodule (and therefore
no projective cover). We look at the example H = Zp«, (a Z-module). This is
hollow, and has no maximal submodule, since all proper submodules are finitely
generated (indeed finite and cyclic), see [4], Section 5.

Let N e Hf{H2), with p{N) = H. As (0, H) < N, N n (0, H) = Z(0, \/pe)
for some e > 0. Thus, if {1/p', m) and (l/pJ, n) {i > j > 0) are in N, then

', m) - (!//>>, n) e Z(0,1/p3). So, if

p,-k-\
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then

pj-k pj-k-l pe + l

Let us therefore describe N by the power series expression akp
k + ak+1p

k+1 +
• • • (0 < a,< p, ak # 0). Any coefficient a, is determined by choosing j > I + e
and (l/pJ, n) e iV; then a, appears in the expression for n. Dd(H3) is the set of
such power series expressions, addition and multiplication being natural; it is the
p-adic completion of the rationals.

Another example would be H = Z[l//?]. However, since Zp«, — Z[l/p]/Z, the
same division ring arises, by Theorem 8.

I wish to thank Dr. M. Keating for some helpful discussions.
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