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Can smart containment policies crowd out private efforts at social distancing?We analyse this question from
the perspective of network formation theory. We focus in particular on the role of externalities in social
distancing choices. We also look at how these choices are affected by factors such as the agents’ risk
perception, the speed of the policy intervention, the structure of the underlying network and the presence of
strategic complementarities.We argue that crowding out is a problemwhen the probability that an outbreak
may spread undetected is relatively high (either because testing is too infrequent or because tests are highly
inaccurate). This is also the case where the choice of relaxing social distancing generates the largest negative
externalities. Simulations on a real-world network suggest that crowding out is more likely to occur when, in
the absence of interventions, face-to-face contacts are perceived to carry relatively high risk.
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1. Introduction

In the absence of pharmaceutical interventions, containment is often the only tool available to policy-
makers seeking tomitigate the consequences of an epidemic. Nonetheless, indiscriminate lockdowns and
quarantines carry huge human and economic costs. In the immediate aftermath of the initial COVID-19
outbreak, these considerations have led the search for alternatives to total lockdowns. Across the world,
nearly all advanced economies have adopted, in different measures and with varying results, a combi-
nation of testing and contact tracing to detect and isolate outbreaks. These measures are usually
combined with localised interventions (school closures, event cancellations and quarantines) following
the detection of an outbreak. In this context, a concern shared by many behavioural scientists is the
extent to which these smart approaches to containment might displace personal efforts at social
distancing, a phenomenon reminiscent of ‘crowding out’ results familiar from macroeconomics. The
idea behind crowding out is that, if people perceive that containment is doing its job, they could relax
social distancing and enjoy more face-to-face contacts. However, as everybody does this, the risk of
infection may increase again. These behavioural responses are relatively difficult to measure empirically
because of the lack of a clear counterfactual. In cases like this, theory can help to understand some
qualitative features of the problem and narrow down the set of plausible scenarios. In this paper, we use
strategic network formation theory to analyse the effect of plausible responses to containment. In order
to better illustrate the mechanisms at work, we sketch a simple static model where agents optimally
choose the degree of social distancing they wish to keep. Consistent with a long-established tradition in
economics, we thus analyse how agents change their behaviour in response to policy interventions aimed
at reducing risk. More precisely, we assume that agents are part of an exogenously given social structure,
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which may reflect economic, social, geographical or regulatory constraints. Within this structure, agents
choose which of their links they wish to keep active. Active links provide monetary or nonmonetary
benefits, but increase the probability of contagion. Hence, agents may want to render some of their links
inactive to reduce risk (social distancing). For instance, peoplemaywant to refrain frommeeting some of
their friends, colleagues or extended family in person and interact with them online. Adriani and Ladley
(2021) formally analyse the model, and provide several analytical results and a number of insights from
simulations. Here, we informally review some of the results, analyse further implications and explore
some plausible counterfactuals by running simulations on a real-world network. In particular, we use
data from the BBC Four Pandemic project to construct simulated networks and analyse how the spread
of the disease is affected by policy interventions.

Specifically, the theory generates a number of insights that can help to answer the following questions:

1. When is crowding out an issue?
2. Can the intervention crowd out social distancing to the extent that the infection rate is actually

higher than under no intervention?
3. How fast should the intervention be?
4. Does the shape of the social network matter?

Previewing some of the results, the answer to the first question is rather intuitive: crowding out only
matters when chances that an outbreak will pass undetected are relatively high. Thismay, for instance, be
the case when testing is imperfect, either because agents are tested infrequently or because the test itself is
inaccurate. For example, evidence suggests that lateral flow tests (LFTs), which provide quick results and
are usually deployed for mass asymptomatic testing, tend to be far less accurate than polymerase chain
reaction tests.1 Accordingly, practitioners worry that LFTs may provide false reassurances to tested
individuals, which could potentially lead to an increased in overall risk. Our analysis suggests that a
sufficiently imperfect test, if not coupled with strict mandatory social distancing rules, may indeed end
up increasing the infection rate and reduce welfare.

This leads us straight into the answer to the second question. At first glance, the idea that the
behavioural responses to an intervention could actually lead to a higher infection rate might appear in
conflict with standard rational expectations arguments. After all, one is only going to relax social
distancing if the intervention reduces risk. If the intervention were to increase the infection probability,
people would be reluctant to resume face-to-face contacts. But then, according to this argument,
crowding out cannot possibly occur in the first place. The problem with this intuition is that it does
not take into account the role of externalities. When two agents agree to meet in person, they may not
fully internalise the negative externality they exert on their other contacts. As a result, the intervention
may trigger behavioural changes that, while individually optimal, may induce an increase in aggregate
risk. As we argue below, this problem is more severe when strategic complementarities are present.

Simulation results suggest that the agents’ risk perceptions play a crucial role in determining whether
the infection rate may increase as a consequence of the intervention. There is more scope for crowding
out when, in the absence of intervention, social contacts are perceived to carry high risk. The intuition is
as follows. As active links are perceived to be riskier, the marginal increase in risk from an additional
active link becomes sharply decreasing in the number of links one already has. Intuitively, if the chances
to catch the disease from one’s existing connections are already large, an additional connection does not
add much risk. In these circumstances, it is usually optimal to have either very few or a large number of
active links, but not a moderate number. This makes the optimal number of active links relatively elastic
with respect to policy interventions. Hence, even a very inaccurate intervention may induce agents to
significantly reduce social distancing, which in turn increases the infection rate.

Question 3 is the main focus of Adriani (2020) and Adriani and Ladley (2021). Keeping agents’
behaviour fixed, it is obviously optimal to stop the spread of the disease as soon as a case is detected.

1Source: The British Medical Journal news, doi: https://doi.org/10.1136/bmj.m4848.
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However, things change when social distancing is endogenous. Ex-ante, ‘fast’ interventions—which aim
at preventing any transmission to neighbours as soon as an outbreak is detected—are more effective
when accuracy is high. In contrast, when accuracy is low, ‘slow’ interventions—that allow a limited initial
spread of the outbreak—may sometimes perform better. Intuitively, a slow intervention does not protect
much those who choose high exposure, but may protect some of their contacts, since there is a chance
that the outbreak might be contained before it reaches them. In the context of the model, a slow
intervention does not provide much incentive to relax social distancing and, at the same time, it is
effective in limiting the extent of the negative externality provided by those who relax it. The drawback of
course is that an intervention that is too slow may fail to meaningfully contain the spread of the disease,
especially when the social network is very dense.

This in turn leads us to the last question. The worst outbreaks of COVID-19 have taken place in
densely populated urban areas like New York and London, and the large majority of cases can be traced
to relatively few ‘superspreaders’. This suggests the shape of the underlying network may be crucial for
shaping optimal containment policies. Simulated results show that indeed higher network density
facilitates the spread of the virus. However, the increase in infection rate appears to be uniform with
respect to the accuracy of the intervention and higher network density does not qualitatively affect the
extent of crowding out.

The paper is organised as follows. After a brief review of the literature, we sketch the model and
provide a number of theoretical insights in Section 2. Section 3 focuses on the simulation results.
Concluding remarks are in Section 4.

1.1. Related literature

At least since Peltzman (1975), economists have been interested in whether behavioural responses to risk
reducing interventions may offset the intervention’s direct effect.2 Following Kremer’s (1996) seminal
work, some of the recent works specifically focus on infection prevention and mitigation. These include
Geoffard and Philipson (1996), Gersovitz and Hammer (2004), Goyal and Vigier (2015), Greenwood
et al. (2019), Reluga (2010), Rowthorn and Toxvaerd (2012), and Toxvaerd (2020). These models,
however, tend to abstract from social structure.3

The epidemiological literature on contagion in social networks is too vast to be reviewed here (see
Keeling and Eames, 2005, for a review). We thus mainly restrict attention to the Economics literature.
Examples include Acemoglu et al. (2016a), Cabrales et al. (2012), Erol and Vohra (2018), Goyal et al.
(2016), and Goyal and Vigier (2014). These works tend to mostly focus on network design and/or
resilience andmostly abstract from specific policy interventions (notable exceptions are Demange, 2018,
and Galeotti and Rogers, 2013). A similar point broadly applies to the literature on financial contagion
(see the surveys in Acemoglu et al., 2016b, and Glasserman and Young, 2016).

More similar to us, Blume et al. (2013) analyse welfare in a static, reduced-form model of
contagion in networks (see also Bougheas, 2018). Decentralised equilibria are suboptimal because of
the externality outlined in the introduction: when forming links, agents do not internalise the
increase in the probability of infection of their neighbours. Using a variant of Blume et al. (2013),
Talamàs and Vohra (2020) study the welfare consequences of the introduction of an imperfect
vaccine. They point out how a sufficiently imperfect vaccine may increase the risk of contagion and
reduce welfare. In the context of testing, Acemoglu et al. (2020a) and Adriani (2020) both study
crowding out under an imperfect testing technology. The settings and the mechanisms at work are,
however, quite different. Acemoglu et al. (2020b) consider a setting with strategic substitutabilities
and benefits from social interaction linear in the level of social activity. This implies that, in

2See also Hoy and Polborn (2015).
3The current pandemic has prompted a number of works on social distancing and interventions (e.g., Acemoglu et al., 2020b;

Alvarez et al., 2020; Galanis, 2021; Kruse and Strack, 2020; Makris, 2021; Muscillo et al., 2020), which, however, do not
specifically focus on offsetting behaviour.
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equilibrium, agents randomise between perfect isolation and full exposure. In contrast, Adriani
(2020) considers a network formation game which displays strategic complementarities and
assumes decreasing returns from active links, so that agents tend to choose intermediate levels
of social activity.

2. Theoretical framework

2.1. A static model of contagion with endogenous network formation

In this section, we sketch the baseline model—full details are available in Adriani and Ladley (2021).
There are N ≥ 2 nodes organised on a graph (the underlying network). This network summarises the
links available to each node and reflects the contacts that people would normally have. During an
epidemic, each node can choose to make any of these links active or to keep them inactive. Only links
featured in the underlying network can be activated. This is meant to capture the presence of an
exogenous social structure generated by social or geographical constraints. On top of this structure,
agents choose their degree of social distancing (how many links they wish to keep active). If node i
already has n≥ 0 active links, an additional active link generates a benefit bδnþ1, with b> 0 and δ∈ 0,1ð Þ.
Since δ lies between 0 and 1, there are decreasing returns from active links. These may reflect time
constraints, the fact that some connections are more important/valuable than others, or other economic
considerations. After nodes have decided which links they want to keep active, one of the N nodes (the
initial carrier) becomes infected with exogenous probability θN , θ∈ 0,1=Nð �. If a node is infected, the
disease can spread through the active links. More precisely, we assume that each node is immune with
some probability ϕ. An immune node is protected from infection and does not infect its neighbours. A
node is therefore infected if and only if it is either the initial carrier or it is not immune and there is a path
of nonimmune nodes connecting it to the initial carrier.We assume nodes do not knowwhether they are
immune or not.4 Finally, nodes that become infected suffer a loss L> 0. The model’s parameters are
summarised in table 1 (see Section 3).

Table 1. Model’s parameters

Parameters Values Description

N 411 Number of nodes

θ 0.0124 Exogenous probability of infection

ϕ 0, 0.1, 0.2,…,0.5 Share of immune nodes

L 2045, 1700, 1400 Expected utility loss from infection

b 314 Utility from active links

δ 0.765 Rate of decay of utility from add. link

λ 0, 0.1, 0.2,…,1 Interv. accuracy (Pr outbreak detected)

π 0.0124, 0.0206, 0.0412,… Perceived prevalence

…,0.0824, 0.1648 (Pr neighbour is infectious)

4This would be the case if immunity were determined by genetic traits that tend to vary in the population. Alternatively, the
same would apply if, during previous outbreaks, a large number of infections were asymptomatic and/or tests were initially
restricted to clinically severe cases, as in Spring 2020. For instance, Verity et al. (2020) estimate that a large proportion of
COVID-19 cases were not identified.
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2.1.1. Intervention
Under an intervention, nodes are tested. If there is an outbreak, the initial carrier is detected and isolated
with probability λ. If the initial carrier is isolated, the infection does not spread to other nodes.We refer to
λ as the accuracy of the intervention. This reflects how systematically nodes are tested or how accurate the
test is.Wewill discuss, in some cases, the effect of ‘slow’ interventions, where the initial carrier has time to
infect her first-degree neighbours (provided they are not immune) before the outbreak is contained.

2.1.2. Information
Adriani and Ladley (2021) consider two versions of this model, which differ in the degree of agents’
sophistication. The first version analyses the case where agents are sophisticated and have full knowledge
of the underlying network. At the other extreme, we consider the case where agents only have local
knowledge of the underlying network, in the sense that they know what links are available to them but
ignore what links are available to other agents.

2.1.3. Equilibrium
The equilibrium concept we use for the full information version of the model is pairwise stability
(Jackson andWolinsky, 1996). In a pairwise stable network, no two agents could benefit from activating a
link and no agent could profit from unilaterally cutting one of their link.5 When agents only have local
knowledge of the network, it is natural to assume that each agent chooses a target number of links that
they want to keep active. An equilibrium is a profile of target numbers such that each agent’s target is
optimal given the strategy of other agents. Available links are then activated in random order until each
agent has either reached his/her target or has no available link to activate. This version of the model will
be used in the simulations.

2.2. Externalities, complementarity and substitutability

We illustrate the key mechanisms at work by considering a simple example with N ¼ 3. In the figure
below, suppose that Alice and Bobmeet frequently (the solid line). For instance, theymay be co-workers.
Bob and Charles are close friends, but they are currently only talking via Skype because of social
distancing (the dashed line).

Consider Bob’s incentive to activate his link to Charles. In the absence of any intervention, Bob’s
chances to be infected by Charles are 1�ϕð Þθ, that is, the probability that Bob is not immune times the
probability that Charles is a carrier. Since Bob already has an active link, his benefit from activating the
additional link to Charles is bδ2. If bδ2 < 1�ϕð ÞθL, then there is no incentive for Bob to activate the link.
Suppose now that Charles is tested but the test generates a false negative with probability 1� λ. In this
case, Bob’s probability to be infected by Charles drops to 1� λð Þ 1�ϕð Þθ. If

1� λð Þ 1�ϕð ÞθL< bδ2 < 1�ϕð ÞθL, (1)

then the intervention will induce Bob to activate the link. This is, however, not the only effect. Bob’s
decision provides a negative externality to Alice. In the absence of intervention, Alice’s probability to be
infected is θþ 1�ϕð Þθ, namely the probability that she is the carrier plus the probability to catch the
disease from Bob. After the intervention, her probability of infection increases by 1� λð Þ 1�ϕð Þ2θ,
namely the probability to be infected by Charles via Bob.6 As a result of the externality, it may thus be

5This version of the model is fully analysed in Adriani and Ladley (2021).
6This only happens when both Alice and Bob are not immune, which occurs with probability 1�ϕð Þ2.
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that, even if themeetings between Bob andCharles have indeed become less risky if taken in isolation, the
overall risk of infection has increased.7

The story does not end here, though. Suppose that Alice is also very fond of Charles. Upon hearing
that Bob and Charles regularly go out for a drink, she will probably decide that it does not make sense for
her to avoid meeting Charles while still bearing the risk of being infected by Charles via Bob. Hence, she
may decide to start meeting Charles as well. Indeed, if the link between Bob and Charles is already active,
activating a direct link to Charles increases Alice’s risk only in the event that Bob is immune (so that she
cannot catch the infection via Bob). Formally, when the link between Bob and Charles is active, her
probability of infection increases only by 1� λð Þ 1�ϕð Þϕθwhen activating her link to Charles, compared
to 1� λð Þ 1�ϕð Þθ when the link between Bob and Charles is inactive. Since Alice has stronger incentive
to activate her link to Charles when the Bob–Charles link is active, Bob’s and Alice’s propensities to meet
Charles are strategic complements. In a nutshell, if everyone you are in contact with has high levels of
social activity, only two options make sense. Either you cut all links (if you can afford it), or you start
partying as well. In the presence of externalities and complementarities, it is possible that the interven-
tion may actually generate a higher infection rate and lower welfare.

This result crucially rests on the testing technology being inaccurate. Indeed, it is always possible to
find (sufficiently high) values of λ such that the intervention reduces the overall probability of infection.8

Intuitively, even under maximum crowding out (e.g., agents choose to activate all their available links), if
we could immediately spot anyone who carries the virus, contagion would be negligible. This suggests
that crowding out is mostly a problem for low to intermediate levels of accuracy. Outbreaks must be
spotted frequently enough to induce agents to reduce social distancing but not so frequently that the
direct effect of the intervention in reducing risk outweighs the indirect crowding out effect.

This is not meant to imply that mass testing should be avoided if the available test is inaccurate.
However, it casts doubts on the extent to which mass testing can be used to ease mandatory social
distancing restrictions. Indeed, mass testing may increase the need for stricter restrictions.

2.3. Speed of intervention

Experts and policymakers worry that slow interventions may fall ‘one step behind’ the outbreak. If a
carrier is not identified and notified quickly, they may go on to infect others who then may infect others
and so on. In the absence of behavioural responses, it is indeed always better to have interventions that
are as fast as possible. This is witnessed by the scramble to find technological solutions that speed up
contact tracing. However, when we allow for behavioural responses, the picture becomes somehow
murkier. In particular, there is a complementarity between the accuracy and the speed of intervention.
Inaccurate interventions that are too fast may be counterproductive. This phenomenon is explored in
detail in Adriani and Ladley (2021). The logic of the result is that a slightly slower intervention may help
to weaken both the effect of the externality and strategic complementarities. To see this, consider again
figure 1. Suppose that contact tracing is not fast enough to prevent Bob from being infected if Charles is
infected but sufficiently fast to spare Alice so long as she does not enter in direct contact with Charles.
This has two effects. First, it reduces Bob’s incentive to resume hismeetingswithCharles in the first place,

7Formally, under no intervention, Charles has probability θ to catch the disease. Alice and Bob have both probability
θþ 1�ϕð Þθ. Hence, the average infection probability is

θþ 2
3 1�ϕð Þθ: (2)

If an intervention with accuracy λ induces Bob and Charles to activate their link, the average infection probability becomes

θþ 4
3 1� λð Þ 1�ϕð Þθþ 2

3 1� λð Þ 1�ϕð Þ2θ: (3)

Hence, if λ< 2�ϕð Þ= 3�ϕð Þ, the average probability increases.
8Formally, there always exists λ∗ < 1 such that the intervention reduces the overall infection probability for all λ< λ∗.
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since he knows that he has a fair chance to catch the virus if he does. Second, if Bob and Charles decide to
go on and meet anyway, it reduces Alice’s incentive to join them, since there is a good chance that a
possible outbreak may be contained before it reaches her—so long as she does not have direct contacts
with Charles. Another way to interpret this result is that it is unlikely that one needs to worry both about
containment falling one step behind the spread of the virus and about crowding out. One tends to exclude
the other.

2.4. Shape of the underlying network

We now consider how the results depend on the shape of the network. In dense networks, where
everyone constantly meets everyone else, the risk of falling one step behind the outbreak is a real one.
Moreover, if there are individuals who are central in the network or who tend to meet a lot of other
people, they should be tested with high frequency. For instance, consider the following three
networks:

The network on panel (a) is dense, and any outbreak is likely to spread very quickly to all nodes
that are not immune. The network in the middle is relatively sparse. It is sufficient that Bob or
Charles is immune (or that the outbreak is contained by the time it reaches them) to stop contagion
from spreading further. In panel (c), the network is again sparse, but contagion may hit most nodes if
Alice is infected. In panel (a), it seems natural to test everyone with the same frequency. In panel (c),
a more sensible approach would be to concentrate testing on Alice, since any infection spreading to
the others must pass through her. For instance, so long as visits are not allowed, staff are the main
gateway for outbreaks hitting care homes. It thus makes sense to test them frequently. Remember,
however, that the shape of the network is not independent of the approach to containment. For
instance, while in panel (a), an outbreak is likely to spread very quickly, the likelihood that networks
of such density may form depends on the type of intervention in place. In what follows, it will be
important to distinguish between the network’s underlying density—that is, the density of the network
formed by the available links—and its actual density, which refers to the portion of the network that is
active during an epidemic.

Alice

Bob Charles

Figure 1. A network with three nodes. Solid lines indicate active links. Dashed lines inactive links

Alice

Bob Charles

Dana

(a)

Alice

Bob Charles

Dana

(b)

Alice

Bob Charles Dana

(c)
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3. Simulations

The version of the model with fully rational agents who perfectly know the underlying network is
computationally demanding and unrealistic for large networks. We thus use the version with limited
knowledge of the network to simulate behavioural responses to an intervention. Moreover, we do not
constrain agents to have rational expectations, but instead introduce an additional expectation param-
eter, π, capturing the perceived prevalence of the virus among the population. More precisely, π is the
probability that each node assigns to any of their neighbours carrying the virus in the absence of any
intervention. The agent’s perceived risk is thus determined by two parameters: π and λ (the intervention’s
accuracy). We allow for multiple values of both parameters to see how behaviour depends on agents’
beliefs. Clearly enough, anchoring agents’ expectations on a fixed parameter instead of equilibrium
behaviour comes at the cost of ignoring potential strategic interactions. However, deriving probability
distributions over the set of all possible active networks resulting from the strategies of a large number of
agents is computationally daunting. The approach we follow places far less demands on the mental
capacity of agents.9 The model used for the simulations is explained in detail in the Appendix.

The underlying network is built using data from the BBC Four Pandemic project collected in 2017 in
the Surrey town of Haslemere. The data track the contacts (physical distance) of 469 participants in the
project over 3 days. As the data were collected before the Covid pandemic, we interpret the observed
contacts as the links that would be available to agents in normal circumstances (i.e., with a zero infection
rate).We restrict attention to contacts within 2- or 4-mdistance. This leaves us with 392 connected nodes
with degrees ranging from 1 to 37 links (average 2.77). Given this underlying network, we use the model
to determine howmany of these links agentsmay want to keep active under various configurations of the
model’s parameters. The values chosen for the parameters are displayed in table 1. Details on how the
parameters’ values were chosen and the methodology used in the simulations are available in the
Appendix. Here, it is worth noting that, inevitably, there is high uncertainty about the value of some
of the parameters.10

Although the BBC Four Pandemic dataset has been previously used by epidemiologists to study
disease transmission in networks (see Firth et al., 2020a, 2020b; Kissler et al., 2020; Klepac et al., 2018),
the data have several limitations. This calls for some caution in interpreting our results. We see our
simulations more like accounts of plausible counterfactuals rather than accurate measurements. A
potential problem is that we observe only a portion of the whole network available to participants
(i.e., only those who volunteered to take part in the project), which covers only a fraction of the town’s
population. This results in a relatively sparse underlying network if we restrict attention to contacts that
are within 2 m of distance. To partially compensate for this, we look at what happens when we vary the
underlying density by allowing for more or less physical distance. Another question is, of course, the
extent to which volunteers who participated in the project are representative of the population at large.11

Figure 2 shows the share of infected agents conditional on an outbreak occurring (solid line) for
multiple values of the intervention’s accuracy λ. The dashed line depicts the optimal number of active
links for each agent. We start with the case where agents perceive risk to be relatively low and then
gradually increase the value of π. The λ¼ 0 case returns the conditional infection rate under no
intervention. For low values of π (the top panels), the infection rate monotonically decreases with the
accuracy of the intervention. This implies that any intervention outperforms no intervention indepen-
dently of its accuracy, so that there is no crowding out. Things, however, change when agents assess risk
to be relatively high (the two bottom panels). In these cases, at low levels of accuracy, the intervention
increases the infection rate. The rationale for the relationship between risk perceptions and crowding out

9Adriani and Ladley (2021) characterise the equilibrium and provide comparative statics on the intervention accuracy for a
general version of the model which nests both this case and the rational expectations case.

10Moreover, while we take a representative agent approach for simplicity, some of the parameters’ values are likely to differ
across individuals.

11For instance, children under the age of 13 were not included in the project, and ownership of a smartphone—which was
necessary to participate—tends to be less frequent among over 65.
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Figure 2. Relation between share of infected agents (left axis, solid line) and intervention accuracy, λ, for different levels of perceived
risk π. The dashed line measures the target number of active links (right axis). Parameters: ϕ¼ 0:3, π¼ 0:0824, L¼ 2045, δ¼ 0:765,
b¼ 314. Links are contacts within a physical distance of 2 m. The share of infected agents is conditional on an outbreak hitting the
network
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Figure 3. Relationship between welfare (conditional on an outbreak hitting the network) and intervention accuracy, λ, for different
levels of perceived risk π. Parameters: ϕ¼ 0:3, π¼ 0:0824, L¼ 2045, δ¼ 0:765, b¼ 314. Links are contacts within a physical distance
of 2 m
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Figure 4. Relation between share of infected agents and intervention accuracy, λ, for different levels of perceived risk π and different
densities of the underlying network. The solid line refers to the network obtained by restricting attention to physical distances within
2 m. The dashed line refers to the denser network obtained with distances within 4 m. Parameters: ϕ¼ 0:3, π¼ 0:0824, L¼ 2045,
δ¼ 0:765. The share of infected agents is conditional on an outbreak hitting the network
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is the following.When face-to-facemeetings are perceived to carry high risk, themarginal increase in risk
from a second active link is quite smaller than the marginal increase from the first, since one can only be
infected once. In turn, themarginal increase from the third is much smaller than the second and so on. In
this situation, it is usually optimal to either have very few active links or to have many, but not an
intermediate number. This makes the desired number of active links very elastic with respect to the
policy intervention. Intuitively, even a very inaccurate intervention may be enough to induce agents to
switch from meeting almost no one to meeting a lot of people. Clearly enough, such an environment is
highly susceptible to crowding out. It is also worth noting that, while the results provided in figure 2 are
for a specific configuration of parameters, the relationship between π and crowding out is robust to using
different parameter values.

Looking at the infection rate provides an incomplete picture, since it takes into account the costs but
not the benefits of social activity. In order to also account for the benefits of active links, we consider
agents’ welfare in figure 3. To measure welfare, we take the average ex-post utility across agents and
repetitions conditional on an outbreak hitting the network. The pattern observed is consistent with the
results on the infection rate. For low perceived risk, welfare monotonically increases in the accuracy of
the intervention. In contrast, when risk is perceived to be high, we observe crowding out and, more
generally, nonmonotonicity.

Figure 4 considers what happens when we change the network’s underlying density by allowing
contacts within a 4-m physical distance.12 This increases the average number of available links from 2.77
to 3.06. It is, however, worth emphasising again that an increase in the average degree does not
mechanically translate into an increase in risk as agents can choose whether to activate or not these
links. In other words, higher underlying density does not necessarily imply higher density in the active
portion of the network. The solid line shows the effect of the intervention for the 2-m case, whereas the
dashed line depicts the effect for the denser network obtained in the 4-m case. As expected, higher density
increases the conditional infection rate. The effect of density is, however, pretty much uniform and does
not seem to interact with crowding out. The reason is that, as already explained, crowding out tends to
occur when agents perceive risk to be high, so that they tend to keep active only a subset of the available
links. In this situation, making more links available to them only has limited effects.

4. Concluding remarks

Network formation theory suggests that, in the presence of social distancing externalities, interventions
aimed at detecting and containing outbreaks may crowd out social distancing and end up increasing the
infection rate. Our results indicate that this is likely to happen only when interventions tend tomissmost
outbreaks, either because the testing technology is inaccurate or because of limited coverage. We also
found that crowding out tends to occur when, under no intervention, agents are reluctant to engage with
others because of high perceived risk. In this case, the marginal increase in the probability of infection
from an additional contact decreases sharply in the number of contacts one already has, so that agents’
optimal number of contacts become very elastic to policy changes. Further research is required to
determine whether these hypotheses have empirical support.

On the theoretical side, the analysis can be extended in several directions. First, we did not take into
account other regarding preferences. While these may appear at first sight as a way to redress/mitigate
the externalities, recent theoretical results suggest that their effect is more complex (see Toxvaerd, 2021).
Second, we essentially focused on a representative agent. However, agents are likely to differ in several of
their characteristics. For example, Acemoglu et al. (2020b) consider the interaction between two groups
(high and low risk) differing in their preferences. Empirical evidence suggests that differences in beliefs
may also play an important role (see Bordalo et al., 2020). Introducing heterogeneity of beliefs about the
prevalence of the disease or its potential harmmay thus provide another interesting avenue for research.

12Firth et al. (2020b) also use a 4-m distance.
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Appendix. Simulation methodology

In this section, we provide details for the simulations. Since the model used is a special case of Adriani
and Ladley (2021), we refer the reader to the companion paper for further details.

A.1. Simulated model

We consider a network with N > 1 nodes indexed by i¼ 1,…,N . In the first stage, each node chooses a
target number of active connections n¼ 0,…,N�1 to maximise its expected payoff. The active network
is then formed as follows. So long as there are at least two nodes with an available link who have not
reached their target, a link between any two nodes who are below their target is randomly selected to be
activated. The process stops when all nodes have either reached their target (or all their neighbours have
reached their target) or have no available link left to activate.

We use a reduced form to model the perceived probability to be infected when activating a link. In
particular, we assume that agents are totally unsophisticated and assign a fixed probability to be
infectious, π ∈ 0,1ð Þ, to all other nodes. Under no intervention, the perceived probability to be infected
for a node with n active links is thus

θþ 1�ϕð Þ 1� 1�πð Þn½ �, (4)

where the first term is the exogenous probability of infection and the second term is the probability that
the node is not immune and at least one of its neighbours is infectious. In this particular setting, (4) is
independent of the strategy of other nodes. See Adriani and Ladley (2021) for a general setting nesting a
number of potential behavioural models, ranging from the case of unsophisticated agents to fully
strategic agents with rational expectations. Consider now what happens when node i increases its target
by one, from n to nþ1. When no new link becomes active (either because there are no additional links
available to i or because all agents connected to i have reached their target), this is inconsequential.
Conditional on an additional link becoming active, i’s expected payoff changes by

bδnþ1�ΔnL, (5)

where bδnþ1 is the marginal benefit of an additional active link and Δn is the marginal increase in the
perceived probability to be infected due to the new link,

Δn ¼ 1�ϕð Þ 1� 1�πð Þnþ1� �� 1� 1�πð Þn½ �� �¼
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1�ϕð Þπ 1�πð Þn: (6)

The optimal target n∗ for node i is the highest integer satisfying

δ
1�ϕð Þπ

δ
1�π

� �n∗

≥
L
b
: (7)

We will choose parameters to ensure that δ< 1�π, so that the LHS of (7) is decreasing in n. This is
necessary for an interior solution where n∗ is greater than 0 and smaller than N�1.

The above describes the model under no intervention. Under an intervention, an outbreak is detected
and contained with probability λ. Hence, Δn ¼ 1� λð Þ 1�ϕð Þπ 1�πð Þn. As a result, the optimal target n∗

is the highest integer satisfying

δ
1� λð Þ 1�ϕð Þπ

δ
1�π

� �n∗

≥
L
b
: (8)

Once the agents’ optimal target is determined, the active network is formed as follows. So long as there
are at least two nodes with degree less than n∗ who have an available link, a link between any two nodes
with degree below n∗ is randomly selected to be activated. The process then stops when: 1) all links have
degree n∗, or 2) all neighbours of any link with degree less than n∗ have degree n∗.

A.2. Network construction and outbreak simulation

In this section, we outline the procedure for network construction and the simulation of an outbreak.
As described above, we employ the data presented in Kissler et al. (2020) as the basis for construction

of the network. These data contain regular observations of the distance, in meters, between a large
number of individuals over a period of 3 days in the town of Haslemere, UK. We specify the set of
potential interactions by identifying all links where the distance between the two individuals is less than
some specified distance. In the simulations conducted in this paper, the distance is either 2 or 4 m. All
connections greater than this distance are removed, leaving a network of potential links.We do not factor
time into this process but instead consider all interactions over the 3-day period to form the network.

The set of active links is determined through stochastic simulation. The simulation commences with
no active links. Links are then selected in random order from the set of all potential links as specified by
the data above. The current number of active links for each of the end points is checked. If, in both cases,
the number is less than the target number of links, the link is added to the active set. Otherwise, it remains
inactive. This process continues until all nodes have the target number of links or all edges have been
considered. The construction of the network through this approach is stochastic and dependent on the
order in which links are added. Large numbers of repetitions of the network construction process are
therefore carried out and the results are calculated through a Monte Carlo simulation.

Once the network of active links is identified, outbreaks are simulated. Each outbreak is modelled
iteratively. We first define two lists: LCt the list of those nodes currently infectious and L

A
t the list of those

nodes already infected. To start the infection at step 0, a single, nonimmune node is chosen at random
and added to LC0 .

Under the no intervention case, for each node in the infectious set at period t, each of their neighbours
is added to the infectious set at period tþ1, LCtþ1, if the neighbour is not immune and is not a member of
LAt or L

C
t . The set of already infected nodes at tþ 1 is equal to those previous infected and those currently

infectious, that is, LAtþ1 ¼ LCt ∪L
A
t . As such, the infection iteratively spreads through the network until

LCt ¼∅.
Under a fast intervention, at the start of period t, each member of LCt is tested, and with probability λ,

they are moved to LAt immediately, that is, prior to their neighbours being potentially infected.
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Under a slow intervention, during period t, when each node is considered with probability λ its
neighbours are added to LAtþ1 rather than LCtþ1, that is, they are infected but do not infect others.

This process is repeated with different start nodes in order to simulate the effect of outbreaks and the
impact of interventions on utility.

A.3. Parametric choices

Here, we give details of how the parameter values were chosen. Note that the model is constructed
around a representative agent. Hence, we try to derive values of the selected parameters for the average
person, while acknowledging that in reality there may be substantial heterogeneity for some of the
parameters (e.g., expected losses from infection, benefits from social activity and beliefs). A similar issue
emerges in relation to time. The model is static, but some of the parameters are likely to be time-varying
(risk perceptions and rate of immune individuals). In this case, we consider multiple values for the same
parameter to see how behaviour is likely to change during different phases of the epidemic.

• π (perceived probability to be infected by a new link). This parameter is related to the prevalence of
the disease in the population, which changes across time depending on the phase of the epidemic.
We take various measures for the prevalence of the disease. On average, between November 2020
and February 2021, 1.24 per cent of the English population was with COVID-19 every week
(source: own calculations based on data from the Office of National Statistics [ONS]). This peaked
in the week starting on 30 December 2020 at 2.06 per cent of the population. That said, in hotspots
affected by major outbreaks, the perceived risk was probably much higher. Hence, we consider
several values for π: 0.0124, 0.0206, and multiples (0.0412, 0.0824, 0.1648).

• L (expected loss for infected individuals). Given the obvious problems in quantifying disutility from
death or chronic illness/permanent injury, we restrict attention to earning losses. Hence, ourmeasure
is probably an underestimate. Average weekly pay in Britain in December 2020 was £571 (source:
ONS). A worker isolating for eight working days (10 days in total) stands to lose 8�571=5¼ £914.
Longer COVID-19 effects are taken into account as follows. Around 1 in 5 COVID-19 patients
experience symptoms after 5 weeks and around 1/10 after 12 weeks (source: ONS). We assume that
half of the 1/10 who have symptoms after 12 weeks were admitted to hospital and count that as
equivalent in terms of utility to losing 6 months of earnings. Hence,

L¼ 0:8�914þ0:1�571�5þ0:05�571�12þ0:05�571�24≈£2045: (9)

This, however, overestimates lost earnings, since some people are able to work from home and we are
not considering sick pay. If one includes statutory sick pay of approximately £96 (statutory sick pay is
£95.85 in the UK) per week, lost weekly earnings are £475. Hence, L≈£1700. If one further assumes that
half of those self-isolating without longer term consequences are able to work from home and face no
losses, we obtain L≈£1400. We thus consider all three values derived above (£1400, £1700 and £2045).

• b and δ (benefit from active links and rate of decay of benefit). We use the fines imposed by the
government for breaking COVID-19 rules to measure b and δ. Although these should arguably be
large enough to deter most people from meeting face to face, there is some evidence of low
adherence (see Smith et al., 2020). This implies that, while the numbers we derive may provide an
upper bound on the benefit of an additional link, the upper bound is probably tight for a significant
share of the population. The fine for breaking self-isolation starts at £1000.13 Since September 2020,
the government has restricted themaximumnumber of people who canmeet face to face at six. The

13It can reach £ 10,000 for repeat offences or egregious violations.
14Some caution is needed here, since a violation of the rule of six occurs whenmeetingmore than six people at the same time.
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fine for breaking the rule of six is £200. We use the self-isolation fine to determine the value of the
first active link (βδ) and the rule of six fine to determine the value of the seventh active link (bδ7).14

Assuming a detection rate of 24per cent (which, according to theHomeOffice, is the average detection
rate across all crimes and violations), one can look at the value of the first link as 0:24�£1000 and the
value of the seventh link as 0:24�£200. This would imply bδ¼ 0:24�£1000 and bδ7 ¼ 0:24�£200.
Solving for b and δ, one obtains δ≈0:765 and b≈£314. For robustness, we also consider other values
for δ. Note that b only enters themodel via the b=L ratio and, asmentioned above, we already consider
multiple values for L.

• ϕ (share of the population immune to the virus). This parameter is likely to change during the
course of an epidemic as more people develop antibodies (or lose them) over time. Models using
data from the Diamond Princess and accounting for asymptomatic cases estimate that approxi-
mately 2/3 of crew and passengers on the ship were not infected (Emery et al., 2020). This is
probably an overestimate for ϕ, since, even on a cruise ship, not everybody is necessarily exposed.
More to the point, for ϕ> 0:5, we should expect herd immunity to play a significant role. We
accordingly consider different levels of ϕ between 0 and 0.5, with 10 per cent increments.

• θ. This is the probability that an outbreak hits the network (θN ) divided by the number of nodes. In
this version of the model with unsophisticated agents, θ may only affect behaviour indirectly, via
the expectations parameter π. Since all results presented here are conditional on an outbreak
occurring and we consider different values for π, θ can be omitted.

• λ (intervention accuracy). As this is the main parameter of interest, we let it vary between 0 and
1 with 10 per cent increments. All our results are presented for all values of λ.

Cite this article: Adriani, F. and Ladley, D. (2021), ‘Endogenous social distancing and containment policies in social
networks’, National Institute Economic Review, 257, pp. 101–117. https://doi.org/10.1017/nie.2021.20
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