Physical parameters of point-symmetric planetary nebulae

R. Vázquez¹, S. Ayala^{1,2}, L. F. Miranda², L. Olguín³,
M. E. Contreras¹, S. Zavala^{1,4}, G. Benítez¹, M. W. Blanco^{1,3},
P. F. Guillén¹, M. Y. Jiménez^{1,3}, and Y. González^{1,4}

¹Instituto de Astronomía, Universidad Nacional Autónoma de México, 22800 Ensenada, B. C., Mexico email: vazquez@astrosen.unam.mx
²Instituto de Astrofísica de Andalucía, CSIC, 18080 Granada, Spain
³Facultad de Ciencias, Universidad Autónoma de Baja California, 22800 Ensenada, B. C., México

⁴Instituto Tecnológico de Ensenada, 22780 Ensenada, B. C., México

Abstract. We present a systematic observational study of 32 PNe that present point-symmetric structures, multiple bipolar outflows or other related features.

Keywords. planetary nebulae: general

Most of the images have been obtained with the 1.5 m and 2.1 m UNAM telescopes (OAN-SPM), and the 1.5 m OSN telescope. Some images were also taken from the literature and the MAST-HST archive. Long-slit spectroscopy has been obtained with the 2.1 m UNAM telescope (OAN-SPM), using the Boller & Chivens spectrograph for low dispersion spectroscopy and the Manchester Echelle Spectrograph for high dispersion spectroscopy. The radio continuum data were obtained from the VLA archive.

Physical parameters are summarized in Table 1. Low dispersion data: left-hand values refer to point-symmetric structures, right-hand values refer to the main nebula. High dispersion data: left-hand values refer to observed radial velocity of the point-symmetric features, right-hand values refer to the expansion velocity of the main nebula.

Preliminary results indicate that, in general, (1) point-symmetric features have a lower electron density than their corresponding main nebula, and (2) point-symmetric features and the main nebula share a common velocity field. Other parameters do not present a clear systematic behavior and deserve a deeper analysis.

Different formation scenarios as well as a morphologically biased selection of the sample may account for the different cases of point-symmetry and related morphologies. Models for this kind of structures should predict not only the observed morphology but also the physical parameters.

Acknowledgements

This project was supported by PAPIIT-DGAPA-UNAM (IN111903-3) and CONACYT grant 45848. GB thanks support from CONACYT for a graduate scholarship. MWB, MYJ and YG thanks support from PAPIIT-UNAM for undergraduate scholarships. SZ was supported by the ITE-UNAM collaboration agreement 1500-479-3-V-04. Partially supported by grants AYA2002-00376 and AYA2005-01495 of the Spanish MEC (cofunded by FEDER funds). The Observatorio de Sierra Nevada (OSN) is operated by the Consejo Superior de Investigaciones Científicas through the Instituto de Astrofísica de Andalucía

531

	Low dispersion						High dispersion		Radio continuum	
Name	$\begin{array}{c} T_e[\text{O III}] \\ \text{(K)} \end{array}$		$\begin{array}{c} T_e[\mathrm{N~II}] \\ (\mathrm{K}) \end{array}$		$N_e[{ m S~II}]\ ({ m cm}^{-3})$		V_r (km s ⁻¹)	$\frac{V_{\rm exp}}{({\rm kms}^{-1})}$	n_e (cm ⁻³)	$M({ m H~II})$ (M $_{\odot})$
J 320 IC 2149	14 200 7400	13350 9400	11 000	12 400	6460 10 000	2840 > 10000	20 0	$30 \\ 25 \\ 22$	1100 1700	0.20 0.01
M 3-1 NGC 2371	11100 13850	$\frac{10500}{13370}$	10 900	10400 9400	560 440	$1250 \\ 1100$	$\frac{17}{93}$	$\frac{23}{67}$	100	$0.29 \\ 0.10$
NGC 2440 NGC 2452 NGC 3242 NGC 3587	$14000\\11200\\10950\\13000$	$13000 \\ 12250 \\ 11500 \\ 10200$	10 600 	13 900 	$8000 \\ 1200 \\ 3850 \\ 50$	$4000 \\ 1300 \\ 1000 \\ 50$	$150 \\ 27 \\ 18 \\ 20$	$22 \\ 36 \\ 31 \\ 40$	$3200 \\ 490 \\ 400 \\ 50$	$0.03 \\ 0.32 \\ 0.09 \\ 0.28$
NGC 4361 IC 972 Me 2-1 IC 4593	15 100 12 300 11 400 8700	18 300 11 360 12 950 9000	10 100 	10 100 		50 50 1780 > 10 000	$30 \\ 12 \\ 34 \\ 10$	26 20 33 31	$220 \\ 40 \\ 1200 \\ 250$	$\begin{array}{c} 0.40 \\ 0.16 \\ 0.11 \\ 0.60 \end{array}$
NGC 6210 IC 4634 NGC 6309 Sa 2-237	$10\ 200\\10\ 640\\$ 12\ 790	$10300\\9830\\12400\\12900$	 10 600 9400	10 300 	$1740 \\ 2660 \\ 1830 \\ 1200$	2970 > 10000 = 2300 = 1300	$45 \\ 27 \\ 20 \\ 161$	$34 \\ 20 \\ 15 \\ 50$	$3200 \\ 5340 \\ 1400 \\ 50$	$0.06 \\ 0.02 \\ 0.18 \\ 0.15$
NGC 6445 NGC 6543 Cn 3-1 PC 19	15000 8120 12 400	11 000 9800 11 300	8900 9120	9300 9260 —	200 7400 5700 7000	$1000 \\ 3100 \\ 7200 \\ 1830$	$ \begin{array}{r} 40 \\ 28 \\ 2 \\ 32 \end{array} $	$36 \\ 25 \\ 14 \\ 33$	$150 \\ 3500 \\ 4000 \\ 4500$	$0.58 \\ 0.07 \\ 0.04 \\ 0.07$
Pe 1-17 Hu 2-1 NGC 6765 He 2-429	$13000 \\ \\ 15200 \\ 10500$	$12500 \\ \\ 13700 \\ 9700$	10 900 	10 900 1160 	$ 1580 \\ 70 \\ 5500 $	$810 \\ > 10000 \\ 230 \\ 7550$	$26 \\ 48 \\ 23 \\ 2$	27 23 42 30	$40 \\ 5900 \\ 50 \\ 120$	$\begin{array}{c} 0.01 \\ 0.036 \\ 0.24 \\ 0.14 \end{array}$
He 1-1 NGC 6818 M 2-48 IC 5217	11 900 	11020 10850 	10 200 9200 	$9900 \\ 9400 \\ 10700 \\ 14200$	$1400 \\ 1300 \\ 100 \\$	$1400 \\ 1200 \\ 1260 \\ 4300$	$45 \\ 30 \\ 15 \\ 27$	$34 \\ 32 \\ 25 \\ 21$	$100 \\ 3500 \\ 40 \\ 3400$	$\begin{array}{c} 0.01 \\ 0.33 \\ 0.03 \\ 0.03 \end{array}$
NGC 7354 KjPn 8 NGC 7662 NGC 6369	9700 14 900	10 600 9300	 14500	8000 10 700	$1040 \\ 100 \\ 1460 \\ 1200$	$1780 \\ 550 \\ 3070 \\ 2100$	$30 \\ 230 \\ 34 \\ 54$	$24 \\ 50 \\ 27 \\ 46$	710 320 1550 700	$\begin{array}{c} 0.22 \\ 0.002 \\ 0.04 \\ 0.01 \end{array}$

Table 1. Physical parameters obtained from optical spectra and VLA radio continuum.

(Granada, Spain). The Observatorio Astronómico Nacional at San Pedro Mártir (OAN-SPM) is operated by the Instituto de Astronomía, UNAM (Mexico). We acknowledge the support from staff members of OSN and OAN-SPM.