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A NOTE ON CONNECTED SUBMETALINDELOF SPACES

NOBUYUKI KEMOTO

In this paper, we shall show that if m is a natural number and for every O S n ^ m , 2U" <
2W"+1 and 2" < u>m are assumed, then connected, locally Lindelof, submetaLindelof,
normal spaces of character ^ 2" a r e Lindelof. Furthermore, we shall show that 2W < 2"1

if and only if connected, locally Lindelof, submetaLindelof, normal spaces of character
^ 2" and lightness ^ u> are Lindelof.

1. INTRODUCTION

It is known that 2" < 2"1 implies connected, locally Lindelof, submetaLindelof,
normal spaces of character £ 2" and tightness < u> are Lindelof (hence, connected,
locally Lindelof, normal Moore spaces are metrisable) see [1]. In this paper, we shall
show that if m is a natural number and for every 0 < n £ m, 2Wn < 2""+' and
2U < wm are assumed, then connected, locally Lindelof, submetaLindelof, normal spaces
of character ^ 2W are Lindelof. We shall also show that, in fact, the converse of Balogh's
result above is also true (that is, if connected, locally Lindelof, submetaLindelof, normal
spaces of character < 2" and tightness < w are Lindelof, then 2" < 2"1 ).

First we present topological and set theoretical notation. All topological spaces are
assumed to be regular T\. A subset S of a topological space is said to be normalised if
for any S' C. S, S' and S — S' can be separated by disjoint open sets. A subset 5 of
a topological space is said to be separated if for any x of 5 there is a neighbourhood
Ux of x such that {Ux : x € S} is disjoint. For a point x of space X, x{.x)X) denotes
the least cardinality of a neighbourhood base at x.

A space is Lindelof if every open cover has a countable subcover. But in this paper,
in order to consider Lindelof properties for liniit cardinals, we define /c-Lindelofness
which is different from K-Lindelofness in the usual sense, as follows: for a cardi-
nal K, a space is K-Lindelof if every open cover has a subcover of cardinality < n.
Thus Lindelbfness is equivalent to w1-Lindel6fness, and compactness is equivelent to
OJ- Lindelofness.

A space is submetaLindelof (submetacompact) if every open cover has a countable
family {lAn \ n S w} of open covers refining it such that for any x in X there is an n
in w such that |(Wn)J ^ w (< u>, respectively), where {Un)x = {U 6 U | x 6 U}.
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A space is locally n-Lindelof if every point has a «-Lindelof neighbourhood.

For an ordinal a and a set X, aX denotes the set of all functions from a to X

and Xa denotes the cardinality of aX. Furthermore < a X denotes the set (J &X

and similarly X<a denotes the cardinality of <aX. A subset of an ordinal is said to
be club if it is closed and unbounded in the order topology. For a function f, f \ A
denotes the restriction of / to A. For other set theoretical or topological notions or
notations, see [4, 5] and [6].

2. RESULTS

To prove topological results, firs,t ,we present a set theoretical assertion $ and a
topological assertion N.

Definition. Let « be an uncountable regular cardinal, A be a cardinal, and 5 be a
subset of K. $ (« , A, 5) denotes the following assertion:

For every F: <KX —> 2, there exists a g in "2 such that for any f in "A,

{a £ S: F(f | a ) = <7(«)} is stationary in K.

Note that if $(K, X, S) holds, then such an S must be stationary in At.

N(K,X, S) denotes the following assertion:

For every topological space X and every normalised sequence {xa: a £ 5} of distinct
points, if for every a in 5 , x(xa,X) ^ A, then there is a stationary subset 5 ' of 5
such that {xa: a £ 5'} is separated.

Using the techniques of [3] and [7], we can prove the next result.

LEMMA 1. [3, 7]. Let K be an infinite cardinal. Then the following assertions are
equivalent

(1) 2" < 2K+ ;
(2) $(/c+,2,«;+);

(3) $(K+,2K,K+);

(4) N{K+, 2K,AC+).

(1) and (2) of the following result come directly from the definition. (3) of the
following result is proved as in [3]. (4) is an easy consequence of (3).

LEMMA 2. Let K bean uncountable regular cardinal. Then the following assertions

hold:

(1) If S C 5 ' C AC and $ ( A C , 2 , S ) holds, then so does $ ( « , 2 , 5 ' ) .

(2) Let S be a stationary subset of K. Then the following are equivalent

(i) $(/c,2,S) holds;
(ii) $(«;, 2, S n C) holds for any club C of K;

https://doi.org/10.1017/S0004972700003518 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003518


[3] Connected subnietaLindelof spaces 85

(iii) $(« , 2, S fl C) holds for some club C of K.

(3) Let {Sa: a < K} be a family of subsets of K. If $(«;, 2, V a < K 5 a ) holds,

then there is an a < K such that $(«; ,2,5a) holds, where V a < K 5 a = { / ? < « : 3a <

(4) Let X < K and {Sa: a < A} be a family of subsets of K. If $( K,2, \J Sa)
V a<A /

holds, then there is an a < A such that $(«, 2, 5a) holds.

The next lemma can be proved as in [7].

LEMMA 3. Let K be an infinite cardinal, and S be a subset of K+ . If $(/t+,2,S)
holds, then so does N(n+,2K,S).

From now on we will prove our results.

LEMMA 4. Let K be an infinite cardinal, S be a stationary subset of K+ , X be a
subnietaLindelof normal space of character < 2", and Y be a subset {xa: a £ 5} of
distinct points of X such that for any point x of X there is a neighbourhood Ux of
x with \UX D Y\ ^ K. Assume $(/c+,2,5). Then there is a stationary subset S' of S
such that $(/c+,2,5') holds and {xa: a £ 5'} is closed discrete in X.

PROOF: Take Ux for each point x in X as above. Then U = {Ux: x G X}
is an open cover of X. By submetaLindelofness, there is a sequence {Un- n £ ui}
of open covers refining U such that for any point x in X, there is an n(x) £ w with
|(Wn(x)) | 5: u>. Let Yn be the subset {za £ Y: n(xa) = n} oiY, and 5 n be the subset
{a G S-"xa G r , J of 5 . Then y = (J Fn and 5 = U 5 n . By $(«+,2,5) and (4) of

n£w nEu»

Lemma 2, there is an n £ w such that $(«+, 2, 5n). Define an equivalence relation ~
on Sn as follows: for a and a' in Sn, a ~ a' if and only if there is a finite sequence
(70, • • • ,Ui of elements of Un such that xa € f/0, £«' G t/i and Uj f] Uj+i f) Yn ^ 0 for
i G i .

Since Un is a refinement of U, each equivalence class of ~ is of cardinality
£ K. Let {5 n 7 : 7 G T} enumerate these equivalence classes. For 7 in F, enumer-
ate Sny = {a-r/3: /? < «} in type K. For 0 < K, let Tp be the set {a7/3: 7 G F}.
Then {{&„: a G Tp]: /?<«;} is a partitioii of Yn; and since Wn is an open cover,
{xa: a G Tft) is closed discrete in X for each /3 < K. Then by (4) of Lemma 2, there
is a j3 < K such that ^(K+,2,Tp). Hence this T^ is the desired 5 ' . D

From now on, we assume that K is an infinite cardinal.

LEMMA 5. [2K < 2" ]. Let X be a submetaLindelof, normal space of character

< 2". Tiien tiie closure of n+ -Lindelof subspaces of X are K+ -Lindelof.
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PROOF: Suppose, on the contrary, that there is a /t+-Liiidel6f subspace Z such

that c\Z is not /«+-Lindelof.

FACT. clZ contains a closed discrete subspace A of cardinality K+ .

Proof of the FACT. Let U be an open cover of cl Z with no subcover of cardinality

< K. Since X is submetaLindelof, so is dZ. Hence there is a sequence {Un: n £ u>} of

open covers of cl Z each refining U such that for any point x in cl Z there is an n(x) £ w

such that |(Wn(x))J <| w. For n g w, let Zn be the subspace {a; E c\Z: n(x) = n} .

By the axiom of choice, take a maximal subset An of Zn such that no member of Un

contains two elements of An. Since the Un 's are open covers of the closed subspace cl Z,

the An 's are closed discrete in X . Let. U'n be the subfamily {U £ Un: U f) An ^ 0} of

Un. Then by maxiniality, U'n covers Zn for each n £ w. Thus W — \J U'n is an open

cover of cl Z which refines U. Since U has no subcover of cardinality ^ K, there is an

n £ w such that the cardinality of U'n is greater than K. But since for any point x in

An, |(Wn)x| < u>, it follows that K < \An\. Take a subset A of .4.,, of cardinality K+ .

This yl is as desired. The proof of the fact is complete.

By the fact, let {xa: a < K+} be a closed discrete subset of clZ. By 2K < 2K+

and Lemma 1, there is a stationary subset S of K+ such that {ajQ : a £ 5} is separated.

Then by normality, take a discrete family {Ua: a £ 5} of open sets such that xa £ Ua

for each a £ S. Then {Uaf]Z: a £ 5} is a discrete family of open sets of Z of

cardinality K+ . This contradicts the K,+-Lindel6fness of Z. D

THEOREM 6. [2" < 2K+] Let X be a connected, K++ -Lindelof, locally Lindelof,

submetaLindelof, normal space of character < 2". Tiien X is K^-Lindelof.

PROOF: Assume that X is /c++-Lindel6f but not K+-Lindel6f. Then there is an

open cover U = {(/„: a < K+} of X such that for any a < K+ , cl Ua is Lindelof and

Ua — (J Up ^ 0. By connectedness, take a point xa of CM |J Up I for each a < K+ .
/3<a \P«* /

For a < K+ , take g(a) > a such that xa £ t^g(a) • Then C = {a < K+ : g"a C a}

is a club set in n+, and the points of Y — {xa: a £ C'} are all distinct. Then by

Lemma 1 and 2) of Lemma 2, $(/c+,2,(7) holds. Since U is aii open cover of X such

that each member of U intersects Y in at most K-many points, by Lemma 4 there is

a stationary subset 5 of C such that {xa: a £ 5} is closed discrete and $(/c+,2, 5)

holds. Hence by Lemma 3, there is a stationary subset SQ of S such that {xa: a £ So}

is separated. Using normality, take a discrete open family {Va: a £ So} such that

£a G V<* f°r each a in So • Since xa is in CM (J Up I for any a £ So, there is anv><« /
/ ( a ) < a such that t//(a) f~) Fa is non-empty. By the pressing down lemma, there are a
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stationary subset Si of 5 0 and a /3 < K+ such that f(a) - 0 for every a in St. Then

{VandU0-. a E SO} is a discrete open family of cardinality K+ . This contradicts the

Lindelofness of cl Up. U

THEOREM 7. Let m be a natural number. Assurne that for each n, 0 ^ n ^ rn,
2«n <• 2w"+i holds. Let X be a. connected, locally Lindelof, submetaLindelof, normal
space of character ^ 2" and tightness < w m . Then X is Lindelof.

PROOF: Let W be an open cover of X whose elements have non-empty Lindelof
closures. By Lemma 5 and 2Wm < 2a>m+1 , the closures of u>m+i-Lindelof subspaces
are <j)m+\-Lindelof. Hence by induction on w m + i , take a sequence {Up: 0 £ w m + i} c
[U)=Wm . such that Up is non-empty and c\{\}Up) C \JUp+1 for each y5 in um+1.

Let W be the family |J Up. Then \JW is clopen in X . Indeed, take a point x
y3<<"m+i

ill c l ( | JW) . Since the tightness is ^ u)m, take an u;m-sequence A — {xa: a < um}
of points in (JW such that x 6 cl.4.. For a < u>m, take a /3(a) < w m + 1 such that
xa € [jUp(a). Let /? = sup{/3(a): a < wm} < u>m+1. Then A C |JW^. Hence,
x € cldJWjg) C U ^ ' - This implies \JW is a closed supspace of X. It is evident that
\JW is open. Heiice it is clopen in X . Then by the connectedness of X , IJW = X.
Since \U'\ < w m + 1 , the above argument implies that X' is u>m+2-Lindel6f. Therefore by
Theorem 6, X is wm+i-Lindelof. Then by a finite number of applications of Theorem
6, it follows that X is u>i-Lindelof (that is, X is Lindelof). The proof is complete U

COROLLARY 8. Let m be a naturai number. Assume that for each n, 0 5: n ^ m,
2"n < 21"n+l holds. Let X be a locally connected, locally Lindelof, submetaLindelof,

normal space of character ^ 2"1 and tightness ^ w m . 2'iieii X is a free union of Lindelof

subspaces (hence it is strongly paraconipact).

PROOF: Apply the above theorem to each connected component. D

COROLLARY 9. Assume that for each n, 0 ^ n < m, 2Wn < 2"n+1 holds and 2W <j
wm.. Then connected (locally connected), locally Lindelof, submetaLindelof, normal

spaces of character ^ 2"1 are Lindelof (a free union of Lindelof subspaces, respectively).

PROOF: Since the tightness is not greater than the character wliich is 2W < uim,

we can apply Theorem 7 (Corollary 8, respectively). D

The next result was announced in [1].

COROLLARY 10. [Cff+21"! < 21"*] Connected (locally connected) locally Lindelof,

submetaLindelof, normal spaces of character ^ 21" are Lindelof (a free union of Lindelof

subspaces, respectively).

The next result was proved in [1].
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COROLLARY 11. If 2W < 2Wl holds, then connected (locally connected), locally

Lindelof, submetaLindelof, normal spaces of character ^ 2W and tightness ^ w are
Lindelof (a free union of Lindelof subspaces, respectively).

Next we shall show that, in fact, the converse of Corollary 11 is also true.

THEOREM 12. Tie following assertions are equivalent:

(1) 2U < 2"i holds;

(2) connected, locally Lindelof, submetaLindelof, normal spaces of character

^ 2W and tightness 5: a> are Lindelof;

(3) connected, locally Lindelof, submetacompact, normal spaces of character

(weight) ^ 2W and tightness 5= u> are Lindelof.

PROOF: (1) -> (2): by Corollary 11.

(2) -+ (3): evident.

(3) -» (1): assume 2" = 2"1 . We shall show that the negation of (3) holds. Then
there is a collection of ui-many free nltrafilters on w, say {xa: a < u>i}, such that for
any subset D of wj there is a subset U of u> such that U £ xa for every a £ D and
w - C f £ i o for every a £ « | — £>, by [2].

Let R be the real line. Since R is normal and w is closed in R (hence w is
<7*-embedded in R), /3ui = CLJRW C /?R is valid. Here f3Y denotes the Stone-Cecli
compactiiication of a Tychonoff space Y. Let X be R(J{a;a: a < u>i}. Equip X with
the subspace topology on /?R. We shall show that this X has the desired properties.

Since R is connected and dense in X, X is connected.

To show the normality of -X", it is enough to show that the subspace X — R is
normalised in X. Let D be a subset of wj, and U be a subset of w as above. Let W be
the set \J{(n - 1/2, n + 1/2): n £ U}, aud W be an open set of X such that W f) R =
W. Then it is not hard to show that {xa: a € D) C W and clW'f]{xa: a €
wi — D} — 0. Hence X is normal. This argument implies {xa: a < u>i} is closed
discrete in X. Therefore X is not Lindelof.

Since points of R have compact neighbourhoods in X, to show the local Liu-
delofness of X we must show that points of X — R have closed Lindelof neighbourhoods
in X. Take an open neighbourhood U of xa such that elf/ D {xa: a < Wj} = {.Ta}.
Since R is hereditarily Lindelof, it follows that cl U is Lindelof. Thus X is locally
Lindelof.

To show X is submetacompact, let U be an open cover of X. For a < uii, fix
an Ua € W such that xCT G f/a. For n £ w and a £ a>j, let Uan be the open set
Ua — ([—n,n] U {xp : (3 ^ a, /3 < wj}) of X. By the paracompaclness of R, take a
locally finite open family V refining U such that (J V = R. Then {£/„: n € w}, where
Un = V U \JJan: a < wj}, shows the subnietacompactiiess of X.
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Since R has a countable basis, the weight of X is not greater than 2W.
Finally since R is hereditarily separable, the tightness of X is w. The proof is

complete. U
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