On the extension of orders in ordered modules

P. Ribenboim

We introduce the notion of a positively independent set of elements in an ordered module. With this concept we determine a necessary and sufficient condition which insures that on a strictly ordered module over a strictly ordered ring there exists a strict total order refining the given order. This generalizes a previous result of Fuchs, concerning the case of ordered abelian groups.

As an application, let R be a strictly ordered totally ordered ring and let M be the R-module of all mappings from a set Iinto R, with pointwise order; then this order on M may be refined to a strict total order.

Let R be a (commutative associative) ordered ring (with unit element $1 \neq 0$, let $P_R = \{r \in R \mid r \ge 0\}$ be the cone of positive elements of R (with respect to the given order). That is $P_R + P_R \subseteq P_R$, $P_R \cdot P_R \subseteq P_R$, $P_R \cap (-P_R) = \{0\}$. Moreover we shall assume that $1 \in P_R$. If $P_R \cup (-P_R) = R$ we say that R is totally ordered.

We say that (R, P_R) is strictly ordered when: $r, r' \in P_R$, rr' = 0 implies r = 0 or r' = 0. For example, if R is an ordered integral domain then it is strictly ordered. However, the ring Z^I of integral-valued functions on a set, with pointwise order, is not strictly

Received 23 August 1969.

81

ordered (when I has at least two elements).

Let *M* be an *R*-module. A subset *C* of *M* is called a *cone* when it satisfies the following properties: $C + C \subseteq C$, $P_R \cdot C \subseteq C$. A cone P_M such that $P_M \cap (-P_M) = \{0\}$ defines an order on *M*, making *M* into an ordered *R*-module: $m \ge m'$ whenever $m-m' \in P_M$. If $P_M \cup (-P_M) = M$ we say that *M* is totally ordered.

We say that (M, P_M) is a *strictly ordered* module over (R, P_R) when:

 $r \in P_p$, $x \in P_M$, rx = 0 implies r = 0 or x = 0.

Thus (R, P_R) is a strictly ordered ring when it is a strictly ordered module over itself.

For example, if R is a strictly ordered ring, if $M = R^{I}$ is the R-module of all functions from I to R, with pointwise order, then M is a strictly ordered module over R.

Let (R, P_R) be an ordered ring, let (M, P_M) be an ordered module over (R, P_R) .

We say that the set $\{x_1, \ldots, x_n\}$ of elements of *M* is *positively independent* when the following holds:

if
$$r_i \in P_R$$
 and $\sum_{i=1}^n r_i x_i \in P_M$ then each $r_i = 0$.

For example if $x \in P_M$ then $\{x\}$ is not positively independent.

- a) The following conditions are equivalent:
- 1) for every $x \notin P_M$ the set $\{x\}$ is positively independent;
- 2) if $0 \neq r \in P_R$ and $rx \in P_M$ then $x \in P_M$.

The proof is immediate.

We shall now indicate a generalization of Theorem 1, p. 113 in [1]: THEOREM. Let (M, P_M) be a strictly ordered module over the strictly ordered ring (R, P_R) . The following statements are equivalent:

- 1) There exists a total order T_M on M such that $P_M \subseteq T_M$ and (M, T_M) is a strictly ordered module over (R, P_R) ;
- 2) if a_1, \ldots, a_n are non-zero elements of M, there exist $\varepsilon_1, \ldots, \varepsilon_n \in \{1, -1\}$ such that the set $\{\varepsilon_1 a_1, \ldots, \varepsilon_n a_n\}$ is positively independent in (M, P_M) .

Proof: $1 \rightarrow 2$. Let a_1, \ldots, a_n be non-zero elements of M; then either $a_i \in T_M$ or $-a_i \in T_M$. Let $\varepsilon_i \in \{1, -1\}$ be such that $-\varepsilon_i a_i \in T_M$. Then $\{\varepsilon_1 a_1, \ldots, \varepsilon_n a_n\}$ is positively independent. For if $r_i \in P_R$ and $\sum_{i=1}^n r_i \varepsilon_i a_i \in P_M \subseteq T_M$, since $r_i \varepsilon_i a_i \in -T_M$ then $r_i (-\varepsilon_i a_i) = 0$ for every $i = 1, \ldots, n$. But (M, T_M) is strictly ordered, hence $r_i = 0$ for every $i = 1, \ldots, n$.

 $2 \rightarrow 1$. To prove this implication, we shall need a lemma. For every element $a \in M$ we denote by C(a) the intersection of all cones of M containing a; C(a) is clearly a cone, namely $C(a) = P_{R}a$.

LEMMA. Let (M, P_M) be a strictly ordered module over (R, P_R) satisfying condition (2). If $a \in M$ then either $P_M + C(a)$ or $P_M + C(-a)$ defines a strict order on M, satisfying condition (2).

Proof of the Lemma. The lemma is trivial when a = 0, so we may suppose that $a \neq 0$. We assume that M contains non-zero elements a_1, \ldots, a_n and non-zero elements b_1, \ldots, b_m such that for all $\varepsilon_i, n_j \in \{1, -1\}$ the sets $\{a, \varepsilon_1 a_1, \ldots, \varepsilon_n a_n\}$, $\{-a, n_1 b_1, \ldots, n_m b_m\}$ are not positively independent.

Then for all δ , ε_i , $\eta_j \in \{1, -1\}$ the sets { δa , $\varepsilon_1 a_1$, ..., $\varepsilon_n a_n$, $\eta_1 b_1$, ..., $\eta_m b_m$ } are not positively independent. This contradicts condition (2). Hence, there are two possibilities:

1) for all non-zero elements $a_1, \ldots, a_n \in M$ there exist $\varepsilon_i \in \{1, -1\}$ such that $\{a, \varepsilon_1 a_1, \ldots, \varepsilon_n a_n\}$ are positively independent; in particular $\{a\}$ is positively independent and $P_M \cap C(a) = 0$.

2) for all non-zero elements $a_1, \ldots, a_n \in M$ there exist $\varepsilon_i \in \{1, -1\}$ such that $\{-a, \varepsilon_1 a_1, \ldots, \varepsilon_n a_n\}$ are positively independent; in particular $P_M \cap C(-a) = 0$.

In case (1) let $P'_M = P_M + C(-a)$; in case (2) let $P'_M = P_M + C(a)$.

Then clearly $P'_M + P'_M \subseteq P'_M$ and $P_R P'_M \subseteq P'_M$. Now we show condition (2) for P'_M (for example in the first case). Let a_1, \ldots, a_n be non-zero elements of M, let $\varepsilon_i \in \{1, -1\}$ be such that $\{a, \varepsilon_1 a_1, \ldots, \varepsilon_n a_n\}$ are positively independent (relatively to P_M). We show that if $r_i \in P_R$ and $\sum_{i=1}^{n} r_i \varepsilon_i a_i \in P'_M$ then $r_i = 0$, $\forall i = 1, \ldots, m$. For $\sum_{i=1}^{n} r_i \varepsilon_i a_i = x - ra$ with $x \in P_M$, $r \in P_R$; thus $ra + \sum r_i \varepsilon_i a_i \in P_M$, hence $r = r_i = 0$, $\forall i = 1, \ldots, n$.

From this follows $P'_M \cap (-P'_M) = 0$. Because, if $0 \neq x \in P'_M \cap (-P'_M)$ then $x, -x \in P'_M$, so the sets $\{x\}$, $\{-x\}$ are not positively independent, against (2).

Hence P'_M defines an order on M which makes it strictly ordered over (R, P_R) . In fact, let $0 \neq r \in P_R$, $x-sa \in P'_M$, with $x \in P_M$, $s \in P_R$ and assume r(x-sa) = 0, so $rx = rsa \in P_M \cap C(a) = 0$; since the order P_M is strict then x = 0; since $\{a\}$ is positively independent then rs = 0; but (R, P_R) is a strictly ordered ring, hence s = 0; so x-sa = 0.

Thus we have established the lemma.

Continuation of the proof of the Theorem. We consider all subsets Q of M satisfying

- a) $P_M \subseteq Q$,
- b) $Q + Q \subseteq Q$,
- c) $P_{R}Q \subseteq Q$,
- d) $Q \cap (-Q) = 0$,
- e) if $r \in P_R$, $x \in Q$ and rx = 0 then either r = 0 or x = 0, f) condition (2) is satisfied by Q.
- The family Q of such subsets contains P_M . If $(Q_i)_{i=1,2,...,n}$

is any strictly increasing chain of subsets in Q, let $Q = \bigcup_{l=1}^{\infty} Q_{i}$; then $Q \in Q$. Everything but (f) is immediate. Now we check (f). Let $a_{1}, \ldots, a_{n} \in M$; for every i there exists $\varepsilon_{j}^{i} \in \{1, -1\}$ $(j = 1, \ldots, n)$ such that $\varepsilon_{1}^{i}a_{1}, \ldots, \varepsilon_{n}^{i}a_{n}$ are positively independent (with respect to Q_{i}). Since there are only finitely many *n*-tuples of elements 1, -1, then there exists an infinite chain $Q_{i_{1}} \subseteq Q_{i_{2}} \subseteq \ldots \subseteq Q_{i_{m}} \subseteq \ldots$ such

$$\begin{pmatrix} i_1 & i_1 \\ \varepsilon_1 & \dots & \varepsilon_n \end{pmatrix} = \begin{pmatrix} i_2 & i_2 \\ \varepsilon_1 & \dots & \varepsilon_n \end{pmatrix} = \dots = \begin{pmatrix} i_m & i_m \\ \varepsilon_1 & \dots & \varepsilon_n \end{pmatrix} = \dots$$
 Let $\delta_j = \varepsilon_j^{i_m}$ for $m = 1, 2, \dots, j = 1, \dots, n$.

Then $\delta_1 a_1, \ldots, \delta_n a_n$ are positively independent over Q; for if $r_j \in P_R$ and $\sum_{1}^{n} r_j \delta_j a_j \in Q$ then there exists m such that $\sum_{1}^{n} r_j \delta_j a_j \in Q_{i_m}$, hence $r_j = 0$ for $j = 1, \ldots, n$.

Thus $\mathcal Q$ is inductive and by Zorn's Lemma, there exists a maximal element $T_M \in \mathcal Q$.

Now, let $a \in M$. By the lemma, either $T_M + C(a)$ or $T_M + C(-a)$ defines an order satisfying condition (2) which is strict. By the

maximality of T_M we must have $a \in T_M$ or $-a \in T_M$, showing that T_M is a total order on M.

We shall turn to the special case where (R, P_R) is a strictly ordered ring, $M = R^I$ is the *R*-module of all functions from *I* to *R* and $P_M = \left\{ f \in M \mid f(x) \in P_R \text{ for every } x \in I \right\}$.

Let us consider the following condition:

3) If f_1, \ldots, f_n are non-zero elements of $M = R^I$ there exists k, $1 \le k \le n$, elements $x_1, \ldots, x_k \in I$, a partition of $\{1, \ldots, n\}$ into disjoint non-empty subsets S_1, \ldots, S_k and $\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\}$ such that

$$\begin{cases} \varepsilon_i f_i(x_j) < 0 & \text{when } i \in S_j , \\ f_i(x_j) = 0 & \text{when } i \in S_{j+1} \cup \ldots \cup S_k . \end{cases}$$

We prove:

b) If (R, P_R) is a strictly ordered ring then condition (3) implies condition (2) of the theorem.

Proof. Let f_1, \ldots, f_n be non-zero elements of M. We choose x_1, \ldots, x_k , S_1, \ldots, S_k and $\varepsilon_1, \ldots, \varepsilon_n$ as indicated in the hypothesis, and we proceed to show that if $r_1, \ldots, r_n \in P_R$ and $\sum_{i=1}^n r_i \varepsilon_i f_i \in P_M$ then each $r_i = 0$. We have $\sum_{i=1}^n r_i \varepsilon_i f_i(x_1) \in P_R$, but $f_i(x_1) = 0$ when $i \in S_2 \cup \ldots \cup S_k$, hence $\sum_{i \in S_1} r_i \varepsilon_i f_i(x_1) \in P_R$. From $\varepsilon_i f_i(x_1) < 0$ when $i \in S_1$ we deduce that $\sum_{i \in S_1} r_i \varepsilon_i f_i(x_1) \in P_R \cap (-P_R) = \{0\}$. Thus $r_i \varepsilon_i f_i(x_1) = 0$ for every $i \in S_1$. Since (P, R_P) is strictly ordered and $r_i (-\varepsilon_i f_i(x_1)) = 0$ with $-\varepsilon_i f_i(x_i) > 0$ we deduce that $r_i = 0$ for $i \in S_1$.

So we have $\sum_{i \notin S_1} r_i \varepsilon_i f_i \in P_M$ and we may proceed by induction showing successively that $r_i = 0$ for every $i \in S_j$ and j = 1, ..., k, hence that $r_i = 0$ for every i = 1, ..., n.

Now we prove:

c) If (R, P_R) is a totally ordered ring then condition (3) is satisfied by $M = R^{I}$ with pointwise order.

Proof. Let f_1, \ldots, f_n be non-zero elements of $M = R^I$, let $x_1 \in I$ be such that $f_1(x_1) \neq 0$ and $S_1 = \{i \mid 1 \leq i \leq n, f_i(x_1) \neq 0\}$. Since (R, P_R) is totally ordered, for every $i \in S_1$ there exists $\varepsilon_i \in \{-1, 1\}$ such that $\varepsilon_i f_i(x_1) < 0$. If $S_1 = \{1, \ldots, n\}$ then condition (3) is satisfied with k = 1.

If $S_1 \neq \{1, \ldots, n\}$ let n_2 be the smallest integer such that $n_2 \notin S_1$ (thus $1 < n_2 \le n$); since $f_{n_2} \neq 0$ and $f_{n_2}(x_1) = 0$ there exists $x_2 \in I$, $x_2 \neq x_1$ such that $f_{n_2}(x_2) \neq 0$; let $S_2 = \{i \mid i \notin S_1, f_i(x_2) \neq 0\}$. Since (P, R_P) is totally ordered, for every $i \in S_2$ there exists $\varepsilon_i \in \{-1, 1\}$ such that $\varepsilon_i f_i(x_2) < 0$. If $S_1 \cup S_2 \neq \{1, \ldots, n\}$ we may proceed in this way, and after a finite number of steps we establish the validity of condition (3).

We have therefore shown:

d) Let (R, P_p) be a strictly ordered, totally ordered ring; let

 $M = R^{I}$ be the ordered R-module with pointwise order. Then there exists a total order T_{M} on M such that $P_{M} \subseteq T_{M}$ and (M, T_{M}) is a strictly ordered module over (R, P_{R}) .

References

- [1] L. Fuchs, Partially ordered algebraic systems, (Pergamon Press, Oxford, London, New York, Paris, 1963).
- [2] P. Ribenboim, "On ordered modules", J. Reine Angew. Math. 225 (1967), 120-146.

Queen's University, Kingston, Ontario.