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HOMOMORPHISMS OF DISTRIBUTIVE LATTICES 
AS RESTRICTIONS OF CONGRUENCES 

GEORGE GRÂTZER AND HARRY LAKSER 

1. Introduction. Given a lattice L and a convex sublattice K of L, it is 
well-known that the map Con L —> Con K from the congruence lattice of L 
to that of K determined by restriction is a lattice homomorphism 
preserving 0 and 1. It is a classical result (first discovered by R. P. 
Dilworth, unpublished, then by G. Grâtzer and E. T. Schmidt [2], see also 
[1], Theorem II.3.17, p. 81) that any finite distributive lattice is isomorphic 
to the congruence lattice of some finite lattice. Although it has been 
conjectured that any algebraic distributive lattice is the congruence lattice 
of some lattice, this has not yet been proved in its full generality. The best 
result is in [4]. The conjecture is true for ideal lattices of lattices with 0; see 
also [3]. 

In this paper we modify the proof of the characterization of congruence 
lattices of finite lattices to show that any 0, 1-preserving homomorphism 
of finite distributive lattices can be realized by restricting the congruence 
lattice of some finite lattice L to the congruence lattice of a convex 
sublattice K, where K can actually be chosen to be an ideal of L, and L can 
be chosen to be sectionally complemented. 

2. Categoric preliminaries. In our proof we shall make use of several 
algebraic structures. It will be useful to use the language of category 
theory. (P. Pudlâk [3] also uses a categorical approach; his line of attack is 
completely unrelated to ours.) We list here the various categories and 
some of the associated functors that appear. Note that all the structures 
are finite. 

1. D denotes the category of finite distributive lattices. The morphisms 
are lattice homomorphisms that preserve the 0 and the 1. 

2. L denotes the category whose objects are the finite lattices. The 
morphisms are embeddings as an ideal. 

There is a contravariant functor Con:L —> D that associates with each 
lattice L its congruence lattice Con L. If K, L are finite lattices and 
i.K —> L is an embedding with i(K) an ideal of L, that is, if / is a 
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morphism in L, then Con / denotes the restriction map 

Con z':Con L —» Con K 

defined by setting, for x, y e K and 0 e Con L, 

x = y ( (Con i)6) if and only if ix = iy(S). 

Con / is then a morphism in D. 

3. P denotes the category whose objects are finite posets and whose 
morphisms are isotone maps. 

If P is a finite poset with partial order ^ , then a hereditary subset H of P 
is a (possibly empty) subset H of P such that x e H and y ^ x imply 
y <E H. The setJfP of hereditary subsets of P is a distributive lattice; the 
join is set union, the meet is set intersection, the 0 is 0, and the 1 is P. We 
then have a contravariant functor Jf :P —> D; if/:P —̂  0 is an isotone map 
of posets then the map Jff'.JfQ ->J?P that sets (Jiff)H = f~ X(H) for each 
hereditary H Q Q is a morphism in D. 

4. S denotes the category whose objects are finite partial lattices that are 
meet-semilattices. More specifically, an object S of S is a poset such that, 
for each pair x, y G S, inf{je, y } exists, yielding the total operation 

A:x A y = inf{x, y}\ 

V is a partial operation: x V y is defined only if sup{x, y) exists, and 
then 

xV y = sup{x, >>}. 

To describe the morphisms in S we need the concept of an "ideal" of a 
partial lattice. A nonempty subset / Q S is said to be an ideal if the 
following two conditions are satisfied: 

(a) x e / and y = x imply that y G /; 
(b) x, y G / and x V y defined imply that xV y G /. 

The morphisms of S are then embeddings i:S ~^> T of S as an ideal of T. 
By an "embedding" / we mean that / is one-to-one, preserves A, and 
preserves V in the strong sense: ix V iy exists if and only if 
xV y exists and in this event 

i(x V y) = ix V iy. 

By a congruence relation 0 on an object S of S we mean an equiva
lence relation 0 on S that preserves A and all existing V. That is, an 
equivalence relation 6 is a congruence relation if 

(a) 0 is a congruence relation of the underlying meet-semilattice; 
(b) x, y, w, v G S, x = y (6), u = v(0), x V u defined, and y V v defined 

imply that 
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J C V W E J / V v(0). 

We shall show that the functor Con:S —> D that associates with each 
object S of S its congruence lattice Con S is a contravariant functor. As in 
the case of L, if i:S —> T is an embedding as an ideal, then Con z:Con T —» 
Con S is the map with 

x = y ((Con i)0) if and only if ix = (y(0). 

Of course, L is a subcategory of S and Con:L -» D is the restriction of 
Con:S —> D; there should thus not be any confusion in using the same 
notation "Con" in the two places. 

5. The last category Q that we consider is of a more technical nature. Its 
significance will become clear in the subsequent discussion. 

An object of Q is a finite nonempty set Q with a binary relation p 
satisfying the following three conditions: 

a) p is antireflexive, that is, JC # x for all x e Q\ 
b) p is antisymmetric; 
c) for each x e Q there is a y e Q with y p x. 
If Q and R are objects of Q a morphism/:<2 —> i? in Q is a one-to-one 

map that preserves p in the following strong sense: 

(fx) p (/y) if and only if x p y. 

Let g be an object of Q; a subset H of Q is hereditary if x Œ H and x p jy 
imply that y <E H. The set J f g °f hereditary subsets of Q is then a 
distributive lattice with 0 the 0 and (2 t n e 1- We have a contravariant 
functor Jf:Q —» D such that if / : g —» i? is a morphism in Q, then 
Jff-.JfR -> JTg, given by ( ^ / ) # = f~\H), is a morphism in D. There 
should be no confusion in using the same symbol 3^ for the functors 
^ : P - * D and^:Q-^D. 

3. From D to P. We recall the very fundamental theorem of duality 
between finite distributive lattices and finite posets. 

Given an object D of D, that is, a finite distributive lattice Z), we 
consider the poset PD of join-irreducible members of D. Then P is a 
contravariant functor P:D —» P. If <p:D —» E is a morphism in D then 
Py.PE —> Pi) with P<px = A<p_1(x) is an isotone map. We then have the 
following result of G. Birkhoff. 

LEMMA 1 ( [1], Corollary II. 1.10, p. 62). There is a natural equivalence 
^:idD —> JifT that associates with each object D of D the isomorphism 
xPD:D -^JtfPD given by 

\pDx = [y ^ x | y join-irreducible}. 

More specifically, Lemma 1 states that, given finite distributive lattices 
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D, E and a 0, 1-preserving homomorphism <p\D —» Ey the diagram in Fig. 1 
commutes, and \pD, \pE are lattice isomorphisms. 

D *2 •JTPZ) 

£ 1£ •JÉTJÊ 

Figure 1 

4. From P to Q. Let P, Q be objects in P and let f:Q -> P be a 
P-morphism. We construct objects B(Q), A(f) in Q and define 
a Q-morphism u:B(Q) —> A(f). Parenthetically, the notation reflects the 
fact that 5 ( 0 ) depends only on Q while v4(/) and y depend on Q, P, and 
f:Q-+P. 

Set P ( g ) = g X {L, M, P } , and f o r ^ e g denote the ordered pairs by 
aL, aM, aR rather than (a, L) etc. Define p on B(Q) by setting: 

a) aLp aM p aRp aL for a e Q; 
b) aM p /3M whenever a >- 6 in (), "^-" denoting the cover relation in the 

poset Q. 
Set 

A (J) = (P X {L, M, P } ) U (Q X {L, M, P } ), 

where we assume that P and g are disjoint. Define p on A(f) by 
setting: 

d) aL p aM p aR p aL'\î a e P U g; 
b) aM p bM if a ^- b, a, b e P or a, b e g; 
c) #L p ( /a)L for all A e g; 

d) CAO/? P aR f° r all a *= Q-
Define if.B(A) —> >4(/) by setting y % = % for a e g, I G {L, M, P } . 
Then zV is a Q-morphism. 

We define maps u:B(Q) —» g and v:^l(/) —> P by setting 

uaK = a for « G g, I G {L, M, P } ; 
v% = / a f o r a e g ^ e {L, M, P } ; 
v% = a for a G P, K e {L, M, P } . 

These then determine maps u'\3tifQ —> 3tifB(Q) with w'// = w~ (7/) and 
v ' : ^ P -> J04( / ) with v '# = v _ 1 (#) -

LEMMA 2. i/:J^<2 -> J fP (g ) and v'\3féT -> ^ ( / ) flr^ faff/re 
isomorphisms and the diagram in Fig. 2 is commutative. 

<P 
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Figure 2 

Proof. The computations for this proof are completely straight
forward. 

We interrupt the formal presentation to discuss the raison-d'être for the 
constructions B(Q) and A(f). Given a D-morphism <p:Z) —> E, we shall 
construct lattices L and K, K an ideal in L, with Con L = D, Con K = £, 
and <p represented as congruence restriction from L to K The elements of 
PD and PE will give rise to the join-irreducible congruence relations on L 
and K. We take the set PD U PE and the subset PE, and construct lattices 
from these. The relation p determines the order relation on the 
join-irreducible congruences of the lattices derived from PD U PE and PE. 
Essentially, a p b forces the congruence relation corresponding to b to be 
included in that corresponding to a. Consequently, to get Con K = E,we 
set a p b whenever a >- b in PE, and similarly for PD U PE. At this stage, 
however, we would get 

Con L ~ D X E; 

to kill off the contribution of E, we must identify in PD U PE each 
a <E PE with Pq>a Œ PD. This requires that a p P<pa and P<pa p a. However, 
our construction of the lattices works only if p is antisymmetric, although 
its closure p* need not be. To take this difficulty into account, we triple 
each element, setting, for a >- b, a p b on the "middle" elements aM, bM, 
a p P<pa on the "left" elements aL, bL, and P<pa p a on the "right" ele
ments aR, bR. The condition aL p aM p aR p aL then identifies the 
congruence relations corresponding to aL, aM, and aR, yielding only 
one congruence for the triple aL, aM, aR and so cancelling the tripling 
on the congruence level. 

5. Preliminaries on S. We present several more or less technical lemmas 
that will be useful in the sequel. 

LEMMA 3. Let S be a finite poset and let M be the set of maximal elements 
ofS. If for each m G. M, (m] is a lattice and if for m, n e M, m A n exists, 
then S is an object of S. 
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Proof. Indeed, 

mi{x,y} = (x Ama) A{y Ana\ 

where m, n ^ M, x ^ m, y ^ n, a ^ m A n, Am (respectively, Au) 
denotes the meet in the lattice (m) (respectively, in the lattice (n] ) and 
A denotes Am (or An\ they are the same) in (m] Pi (n] = (a]. 

The proof of the next lemma is left to the reader. 

LEMMA 4. Let S be an object in S. If a pair x, y G S has an upper bound, 
then x V y exists. 

LEMMA 5. Let S be an object in S and let 0 be an equivalence relation on S 
satisfying the following two conditions: 

1) let x, y, z G S and x = y(6); then 

x A z = y A z(0); 

2) let x, y, z G S, let x V z, j V z exist, and let x = y{6)\ then 

x\J z =y\J z(6). 

Then 6 is a congruence relation on S. 

Proof. Condition 1) states that 0 preserves A. 
Now let x, y, u, v G S with x = y (6) and u = v(#); let x V w, y V v exist. 

Then 

x = x A y = y(6) 

and, by Lemma 4, (x A y) V u and (x A j / ) V v exist. Thus, by condi
tion 2), 

xVu = (xAy)Vu = (xAy)Vv=y\/ v(6\ 

and the lemma follows. 

LEMMA 6. Con is a contravariant functor S —» D. 

Proof. Since the objects S of S are meet-semilattices, congruence 
relations are determined by pairs JC, y with x ^ y. Since, by Lemma 4, (y] 
is a sublattice of S, we get, exactly as in the case of lattices, that for 
x = y, 

x = y(0o V 0t) 

if and only if there is a sequence 

x = zo = z\ = • • • = zn - y 

with zt == zi + l(0),j = 0 or 1, for each z, 0 ^ /' < n. 
Then we can establish that Con S is a distributive lattice and that Con / 

is a D-morphism for any S-morphism / exactly as for the category L of 
finite lattices. 
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LEMMA 7. Let S be an object in S and let M be the set of maximal 
elements of S. For each m e M, let Om be a congruence relation on the lattice 
(m]. If for m, n G M, 

( ) 0J(ro]n(«] = "n\(m]n(n] 

then there is a unique congruence relation 0 on S with 0\^ = 6m for each 
m e M. 

Proof. 6 is unique; this follows by observing that the congruence 
relations on S are determined by pairs x, y with x < y. 

As for existence, define the relation 6 on S by setting (x, y) e 6 if 
and only if there are m, n e M with x ^ m , y = n, x A y = x(0m), and 
x A y = >>(0W). By (*), 0 is well defined. 

Clearly, 0 is reflexive and symmetric. 0 is also transitive. Indeed, let 
(x0, i , ) G fi and (xj, x2) ^ 0, and let raz e M, / = 0, 1, 2, with x, = mr 

We then have 

*0 = x0 A ^ ( ^ 

x] = x0 A x,(0Wi), 

x, = xx A x2(0m)). 

We get 

x0 A i | = (x0 A mx) A X} 

= (x0 A mj) A X} A x2 

= x0 A x, A x2(0Wi) 

and, since x0 A x , e (m0] A (raj , it follows by (*) that 

x() A x, = x0 A X! A x2 (6mQ). 

Thus, 

x0 = x0 A xj A x2(0mQ). 

Similarly, 

x2 = x0 A xj A x2(0m2). 

Since x0 A x2 e (ra0] A (ra2], we join with x0 A x2 and conclude that 

x0 = x() A x2(0mo) and x2 = x0 A x2(0m}\ 

thus, (x0, x2) <E 0, proving that 6 is an equivalence relation. 
We prove similarly that 6 is a congruence relation, using 1) and 2) of 

Lemma 5, and noting that if x V z is defined, then x, z e (ra] for some 
m G M. 
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6. From Q to S. We describe a covariant functor S:Q —» S. Let Q be an 
object in Q and set 

SQ = {0} U {ÛJ, a2, a \ a e Q} U {&(a) \ a, b e Q with 6 p a} , 

where 0 is distinct from the other elements. Define a partial order ^ on 
S<2 by setting 

0 < ai9 i = 1, 2, 

#z- < a, i = 1,2, 

/?! < 6(<z) if b p a, 

a < b(a) iî b p a. 

The maximal elements of SQ are then of the form b(a) with b p a, 
b, a G <2, since for each a ^ Q there is a fr e g with Z> p a. Each (b(a) ] is 
isomorphic to the lattice M(b, a) depicted in Fig. 3. 

Figure 3 

Uf:Q—>Ris2i Q-morphism, then define Sf.SQ —> SR by setting 
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5/0 = 0, 

Sfa, = (fa)„ i = 1,2, 

Sfa = fa, 

Sfb(a) = (fb){ (fa) ); 

the last one makes sense, since b p a implies that//? p fa. 

LEMMA 8. S is a covariant functor Q —» S. 

Proof. We use Lemma 3 to show that if Q is an object of Q, then SQ is 
an object of S. Note that in SQ 

d(c) A b(a) = 0 if b p a, d p c and a, b, c, d are all distinct, 

c(b) A b(a) = bx if c p b p a, a, by c distinct, 

c(a) A b(a) = a if c p a, b p a, a, b, c distinct, 

c(a) A c(b) = cxii c p a, c p b, a,b, c distinct. 

The only other possibility to check would be a(b) A b(a), but this cannot 
occur since p is antisymmetric. (Indeed, this is why in the definition of Q 
we required that p be antisymmetric; otherwise, the set {a(b), b(a) } has 
two distinct maximal lower bounds, ax and bx, and therefore has no inf.) 

Clearly, Sf embeds SQ as an ideal in SR whenever f.Q^Risa 
Q-morphism, completing the proof of the lemma. 

Given an object Q of Q we define a map 

<&Q\3<?Q -> Con SQ 

by setting 

$>QH = 6(H) = V(0(O, a) \a G H\ 

where the element a in 0(0, a) is regarded in SQ. 
We present a series of lemmas culminating in the theorem that O is a 

natural equivalence. 
Given a, b G Q with b p a, the principal ideal M(b, a) generated by b(a) 

has exactly three congruence relations: 
iha, collapsing all of M{b, a), 
coha, the identity relation, 
aha, depicted in Fig. 3, with congruence classes {bu b(a) } and 

{0, tfl9 <22, a}. 
We first show that O^ is surjective. 

LEMMA 9. Let Q be an object ofQ and let 0 be a congruence relation on 
SQ. Then 

H = {a G Q\ a = 0(6) } 

is a hereditary subset of Q and 0 = 6(H). 
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Proof. Let b G H and let b p a. Then b = 0(0) and so bx = 0(6). 
Thus 

0\M{b,a) = Lb,a> 

and we conclude that a G H. Consequently, H is a hereditary subset 
of Q. 

Since Sg is sectionally complemented, 0 is determined by its congru
ence class containing 0. However, as is clear by referring to the 
congruence relations on M(b, a), ax =0\i and only if a2 = 0 if and only if 
a = 0, and b(a) = 0 if and only if b = 0 for any congruence relation. Thus 
0 is determined by 

H = {a G Q \a = 0(0) }, 

that is, 0 = 0(H), concluding the proof. 

We now characterize 0(H). 

LEMMA 10. Let Q be an object ofQ and let H be a hereditary subset of Q. 
Let a, b G Q with b p a. Then 

6(H) \M(h,a) = I <*b,a ifb£ Handa&H 
(uhaifa £ H. 

Proof. The set M of maximal elements of SQ consists of all elements of 
the form b(a) with b p a. For each b(a) e M define the congruence 
relation 6hia) on the ideal M(b, a) by setting 

°b(a) =\<*b,aifb « H and a G H 
\ichaifa £ H. 

Then, using the meet formulas in the proof of Lemma 8, it follows that 

*b(a)\M(b,a)nM(d,c) = ^ d(c)\M{b,a)C\M{d,c) 

for any b(a), d(c) G M. Thus, by Lemma 7 there is a unique congruence 
relation 0 on SQ with 

0IA/(M) = eb(a) f o r a l 1 b(<*) G M-

By Lemma 9, 

0 = 0(HX) with Hx = {a G Q \a = 0(0) }. 

For each a G Q there is a b G g with fr p a. Then a e i/j if and only if 
a == 0(0) if and only if a = 0 ( 0 ^ ) if and only if a G // , the last following 
by the definition of 0/,^)- Thus / / = i / b proving the lemma. 

We are now ready for the main result of this section. 
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THEOREM 1. $ is a natural equivalence 3F —» Con S. That is, for each 
object Q in Q, 

<&Q-<y?Q "> Con SQ 

is an isomorphism and, given a Q-morphism f.Q —> R, the diagram in D 
depicted in Fig. 4 commutes. 

Con SR 

Con SF 

Con SQ 

Figure 4 

Proof. We first show that, for each object Q of Q, 

QQ:JPQ -> Con SQ 

is an isomorphism. Clearly, Hx <Z H2 implies that 0(HX) Q 0(H2) and, by 
Lemma 9, &Q is surjective. We need thus only show that 4V, is an 
embedding, that is, that 0(HX) Q 0(H2) implies that Hx Q H2. Let 
0(HX) ç 0(H2) for Hl9 H2 e JÏTQ. To show that Hx Q H2, take a e # „ 
and let b e g with i p a . Then a = O(0(H2) ) and so 

so, by Lemma 10, a G i/2. Thus //j Q H2, concluding the proof that $Q is 
an isomorphism. 

Finally, we show that Fig. 4 is commutative. Let H e JFR. Then, by 
Lemma 9, 

(Con Sf) o <bRH = 0(HX) for some Hx e tfQ. 

But a e / / , if and only if a = 0( (Con 5/) o O^Tf) if and only if 
S/û = 0(<i>RH), that is, / A = 0(6(H) ) if and only if fa e / / . 
Thus Hx = JffH. But then 

(Con Sf) o Ojjtf = <$>Q o JffH, 

completing the proof of the theorem. 

7. From S to L. The covariant functor Id:S —» L associates with each 
object S in S the lattice Id S of all ideals of S. Iff:S —> Tis a S-morphism, 
then Id / : Id S —» Id T is the embedding as an ideal determined by setting 
I d / / = / ( / ) for each ideal / of S. 
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Given an object S of S and a congruence relation 6 on S, there is a 
congruence relation Q,s0 on the lattice Id S determined by setting, for 
x, y Œ S, 

(x] = (y] (tts6) if and only if x = y(6). 

The following result is essentially the main result of [2] (see also Lemma 
II.3.19, p. 84 of [1]). 

LEMMA 11. £2 is a natural equivalence Con —» Con Id. That is, for each 
object S of S, the map 

£25:Con S Con Id S 

is an isomorphism and, given a S-morphism f:S 
depicted in Fig. 5 commutes. 

T, the diagram in D 

Con T-
B U T 

-•Con Id T 

C o n / 

Con S-
fic 

Con I d / 

^Con Id S 

Figure 5 

8. The final result. By combining the natural equivalences of Lemma 1, 
Theorem 1, Lemma 11, and the commutative diagram of Lemma 2 we get 
our main result. 

THEOREM 2. Let D and E be finite distributive lattices and let q>\D —» E be 
a 0, {-preserving lattice homomorphism. Then there exist sectionally com
plemented finite lattices K, L and an embedding a of K as an ideal in L such 
that there are isomorphisms fi.D —> Con L, y.E —> Con K satisfying 

y o <p = (Con a) o /?. 

Proof. Consider the diagram in Fig. 6. 

D-
* 

£ ^JffTD- *Jfii(P<p). $A(P<p)t 

%: 

JtfPq 

+J?PE-

tfi P<P 

+JfB(PE) §B(PE) 
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-•Con SA (Pri-
Sl 'SA (P<p) X o n Id SA (Pri 

Con Si P<P 

_^Con SB(PE). 

Con Id 5/ 

Q SB(PE) 

P<p 

X o n Id SB(PE) 

Figure 6 

By Lemma l, tyD and \pE are isomorphisms and the left-most square 
commutes. By Lemma 2, u' and v' are isomorphisms and the next 
square commutes. By Theorem 1, ®A(P<P) anc^ ^B(PE) a r e isomorphisms and 
the associated square commutes. Finally, by Lemma 11, Û>SA(P<P)

 an<^ 
^SB(PE)

 a r e isomorphisms and the right-most square commutes. 
Set L = Id SA (Pri, K = Id SB(PE\ a = Id SiPfp. If we set 

P = QSA(PV)° ®A(PV)° V °^D 

and 

y = ^SB(PE) ° ®B(PE) ° U' ° ^E 

the theorem follows, except for the fact that K and L are sectionally 
complemented. This last statement can be verified using Lemma II 3.9 of 
[2]. (See also Exercise 33.) 
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