ON THE CLASS NUMBER OF REPRESENTATIONS OF AN ORDER

IRVING REINER

1. Introduction. We shall use the following notation throughout:

$$
\begin{aligned}
R & =\text { Dedekind ring (5). } \\
\mathfrak{u} & =\text { multiplicative group of units in } R . \\
h & =\text { class number of } R . \\
K & =\text { quotient field of } R . \\
p & =\text { prime ideal in } R . \\
R_{p} & =\text { ring of } p \text {-adic integers in } K .
\end{aligned}
$$

We assume that h is finite, and that for each prime ideal p, the index ($R: p$) is finite.

Let A be a finite-dimensional separable algebra over K, with an identity element e (4, p. 115). Let G be an R-order in A, that is, G is a subring of A satisfying
(i) $e \in G$,
(ii) G contains a K-basis of A,
(iii) G is a finitely-generated R-module.

By a G-module we shall mean a left G-module which is a finitely-generated torsion-free R-module, on which e acts as identity operator. An A-module is defined analogously, replacing R by K. We shall assume, unless otherwise stated, that K is a splitting field for A; thus, the only possible A-endomorphisms of an irreducible A-module X are the scalar multiplications $x \rightarrow \alpha x$, $x \in X$, where $\alpha \in K$.

As in (3), we may form the non-zero ideal $\mathfrak{g} \subset R$, defined as the intersection of the ideals which annihilate the one-dimensional cohomology groups $H(G, T)$, where T ranges over the set of two-sided G-modules. (In the special case where $G=R(\Pi)$ is the group ring of a finite group Π, the ideal \mathfrak{g} is the principal ideal generated by the group order (II:1).) Let $P=\left\{p_{1}, \ldots, p_{i}\right\}$ be the set of distinct prime divisors of \mathfrak{g}, and set

$$
\begin{equation*}
\mathfrak{g}=\prod_{p \in P} p^{\gamma(p)} \tag{1}
\end{equation*}
$$

For any G-module M, let $K M$ be the A-module which consists of the K-linear combinations of the elements of M. If we set $A_{p}=R_{p} G$, we may likewise define the A_{p}-module $M_{p}=R_{p} M$. Two G-modules M and N are said to be in the same genus (notation: $M \vee N$) if and only if for each p, the modules

[^0]M_{p} and N_{p} are A_{p}-isomorphic. As is shown in (7), $M \vee N$ if and only if $K M \cong K N$ and $M_{p} \cong N_{p}$ for each $p \in P$.

For any A-module L^{\prime}, let $S\left(L^{\prime}\right)$ be the collection of G-modules L for which $K L \cong L^{\prime}$. Suppose that $S\left(L^{\prime}\right)$ splits into r_{g} genera, and into r_{G} classes under G-isomorphism. As is shown in (6;7; and 9), both r_{g} and r_{G} are finite. The purpose of this paper is to consider the relation between r_{g} and r_{G}. For the special case where L^{\prime} is irreducible, Maranda (7) has shown that $r_{G}=h r_{g}$. We shall restrict ourselves to the case where the irreducible constituents of L^{\prime} are distinct from one another. If L^{\prime} has k distinct irreducible constituents, we shall prove

$$
\begin{equation*}
r_{G} \geqslant h^{k} r_{g} \tag{2}
\end{equation*}
$$

Further, we shall show that equality holds provided that
(3) For each $\alpha \in R$ such that $(\alpha)+\mathfrak{g}=R$, there exists $\beta \in \mathfrak{u}$ for which $\beta \equiv \alpha\left(\bmod \mathrm{g}^{\mathrm{k}-1}\right)$.

Finally, we shall obtain formulas for r_{g} and r_{G} in the special case where $k=2$. These formulas will show that if condition (3) fails, then r_{G} may exceed $h^{2} r_{\theta}$ for this case.
2. Binding homomorphisms. In this section, we shall drop the hypothesis that K is a splitting field for the algebra A. Let L be a G-module which contains a submodule M, and assume that M is an R-direct summand of L. Define $N=L / M$ to be the factor G-module. Every element of L is then uniquely representable as an ordered pair $(n, m), n \in N, m \in M$, where the structure of L as R-module is given by

$$
\begin{equation*}
(n, m)+\left(n^{\prime}, m^{\prime}\right)=\left(n+n^{\prime}, m+m^{\prime}\right), \quad \alpha(n, m)=(\alpha n, \alpha m) \tag{4}
\end{equation*}
$$

for $n, n^{\prime} \in N, m, m^{\prime} \in M, \alpha \in R$. Further, the action of G on L is given by

$$
\begin{equation*}
g(n, m)=\left(g n, \Lambda_{\theta}(n)+g m\right), \quad g \in G, \text { where } \Lambda_{g} \in \operatorname{Hom}_{R}(N, M) \tag{5}
\end{equation*}
$$

Let $\Lambda: G \rightarrow \operatorname{Hom}_{R}(N, M)$ be the R-homomorphism defined by $g \rightarrow \Lambda_{g}$. The condition $(g h)(n, m)=g(h(n, m))$ is equivalent to

$$
\begin{equation*}
\Lambda_{o h}(n)=g \Lambda_{h}(n)+\Lambda_{o}(h n), \quad g, h \in G, n \in N \tag{6}
\end{equation*}
$$

Call $\Lambda \in \operatorname{Hom}_{R}\left(G, \operatorname{Hom}_{R}(N, M)\right.$) a binding homomorphism if (6) holds, and let $B(N, M)$ be the R-module consisting of all binding homomorphisms relative to N, M. The $R-G$-module L is then completely determined by equations (4) and (5), once an element $\Lambda \in B(N, M)$ is fixed. Let us denote this module L by ($N, M ; \Lambda$).

It is convenient to turn $\operatorname{Hom}_{R}(N, M)$ into a two-sided G-module T by defining

$$
(g t)(n)=g(t(n)), \quad(t g) n=t(g n), \quad g \in G, n \in N, t \in \operatorname{Hom}_{R}(N, M)
$$

We may then characterize $B(N, M)$ as the set of all $\Lambda \in \operatorname{Hom}_{R}(G, T)$ for which

$$
\begin{equation*}
\Lambda_{o h}=g \Lambda_{h}+\Lambda_{g} h, \quad g, h \in G \tag{7}
\end{equation*}
$$

Now fix $t \in T$, and define $\Lambda \in \operatorname{Hom}_{R}(G, T)$ by

$$
\Lambda_{\imath}=g t-t g, \quad g \in G
$$

We find readily that $\Lambda \in B(N, M)$. Let $B^{\prime}(N, M)$ be the R-module consisting of all the binding homomorphisms so obtained by letting t range over all elements of T. Define the R-module

$$
C(N, M)=B(N, M) / B^{\prime}(N, M)
$$

From (9) we know that $C(N, M)$ contains only finitely many elements. Furthermore, from the definition of the ideal \mathfrak{g}, we have

$$
\text { g. } B(N, M) \subset B^{\prime}(N, M)
$$

for any N, M. Finally, if [Λ] denotes the class $\Lambda+B^{\prime}(N, M)$ of the element $\Lambda \in B(N, M)$, then we have:

$$
[\Lambda]=\left[\Lambda^{\prime}\right] \Rightarrow(N, M ; \Lambda) \cong\left(N, M ; \Lambda^{\prime}\right)
$$

In fact, if $t \in T$ is such that $\Lambda_{\theta}{ }^{\prime}-\Lambda_{g}=g t-t g, g \in G$, then the map (n, m) $\rightarrow(n, m-t n)$ gives the desired isomorphism.

In the above discussion, replace R by R_{p}. If L^{*} is an A_{p}-module which contains a submodule M^{*} as R_{p}-direct summand, then $L^{*}=\left(N^{*}, M^{*} ; \Lambda^{*}\right)$, where $N^{*}=L^{*} / M^{*}$, and where

$$
\Lambda^{*}: A_{\mathcal{D}} \rightarrow \operatorname{Hom}_{R_{p}}\left(N^{*}, M^{*}\right)
$$

is an R_{p}-homomorphism satisfying $\Lambda^{*}{ }_{x y}=x \Lambda^{*} y+\Lambda^{*}{ }_{x} y, x, y \in A_{p}$. Define $B\left(N^{*}, M^{*}\right), B^{\prime}\left(N^{*}, M^{*}\right)$ and $C\left(N^{*}, M^{*}\right)$ as above. For $\Lambda^{*} \in B\left(N^{*}, M^{*}\right)$, again let $\left[\Lambda^{*}\right]=\Lambda^{*}+B^{\prime}\left(N^{*}, M^{*}\right)$. If $\gamma(p)$ is defined as in (1), we have

$$
\begin{equation*}
\pi^{\gamma(p)} B\left(N^{*}, M^{*}\right) \subset B^{\prime}\left(N^{*}, M^{*}\right) \tag{8}
\end{equation*}
$$

where π is an element of p such that $\pi \notin p^{2}$.
Now let N, M be G-modules, and let N_{p}, M_{p} be the corresponding $A_{p^{-}}$ modules. There is a natural isomorphism of $B(N, M)$ into $B\left(N_{p}, M_{p}\right)$ which may be described as follows: for each $\Lambda \in B(N, M)$ and each $g \in G$, the $\operatorname{map} \Lambda_{0} \in \operatorname{Hom}_{R}(N, M)$ may be extended in a unique manner to an element of $\operatorname{Hom}_{\boldsymbol{R}_{p}}\left(N_{p}, M_{p}\right)$; we may then define Λ_{x} for each $x \in A_{p}$ by linearity. In this way, Λ is extended in a unique manner to an element $\Lambda^{p} \in B\left(N_{p}, M_{p}\right)$. The map $\Lambda \rightarrow \Lambda^{p}$ carries $B^{\prime}(N, M)$ into $B^{\prime}\left(N_{p}, M_{p}\right)$, and so induces an R-homomorphism of $C(N, M)$ into $C\left(N_{p}, M_{p}\right)$.

We may now define an R-homomorphism

$$
\phi: \quad C(N, M) \rightarrow \sum_{p \in P} C\left(N_{p}, M_{p}\right)
$$

by means of

$$
\phi[\Lambda]=\left(\left[\Lambda^{p_{1}}\right], \ldots,\left[\Lambda^{p_{l}}\right]\right) .
$$

From (8), we know that ϕ has kernel 0 . We shall in fact show that ϕ is an isomorphism "onto."

Theorem 1.

$$
C(N, M) \cong \sum_{p \in P} C\left(N_{p}, M_{p}\right)
$$

Remark. A slightly different version of this was first proved by deLeeuw (1). We shall not use the results of (8), but instead shall give a self-contained proof of the theorem.

Proof. We show firstly that the ϕ is an "onto" mapping. For each $p \in P$ suppose an element $\Omega^{p} \in B\left(N_{p}, M_{p}\right)$ chosen. We must prove the existence of an element $\Lambda \in B(N, M)$ such that $\left[\Lambda^{p}\right]=\left[\Omega^{p}\right], p \in P$. Let $T=\operatorname{Hom}_{R}(N, M)$, and let us set

$$
T_{p}=\operatorname{Hom}_{R_{p}}\left(N_{p}, M_{p}\right)=R_{p} \operatorname{Hom}_{R}(N, M)=R_{p} T
$$

for each prime ideal p.
For each $p \in P$, we may choose an element $\pi \in p$ such that $\pi \notin p^{2}$, and such that π does not lie in any other prime ideal in the set P. Set

$$
a=\prod_{p \in P} \pi^{\gamma(p)}
$$

then $a \in R$, and for each $p \in P$ we may write

$$
a=\pi^{\gamma(p)} d_{p}, \quad d_{p} \in R, \quad d_{p}=\text { unit in } R_{p}
$$

Define the integral ideal \mathfrak{b} by

$$
(a)=\mathfrak{b} \cdot \prod_{p \in P} p^{\gamma(p)}
$$

Then \mathfrak{b} is not a multiple of any of the prime ideals in P.
We now make use of equation (8) to deduce that for each $p \in P$, there exists an element $u^{p} \in T_{p}$ such that

$$
a \cdot \Omega_{o}^{p}=g u^{p}-u^{p} g, \quad g \in G .
$$

On the other hand, T is a finitely-generated R-module, so there exist elements $t_{1}, \ldots, t_{r} \in T$ such that

$$
T=R t_{1}+\ldots+R t_{r}
$$

whence

$$
T_{p}=R_{p} t_{1}+\ldots+R_{p} t_{r}
$$

We may therefore write (for $p \in P$)

$$
u^{p}=\sum_{i=1}^{r} \beta_{i}^{p} t_{i}, \quad \beta_{i}^{p} \in R_{p} .
$$

Let us now choose $\alpha_{1}, \ldots, \alpha_{r} \in R$ such that

$$
\alpha_{i} \equiv \beta_{i}^{p}\left(\bmod \pi^{2 \gamma(p)} R_{p}\right), \quad p \in P, \quad \alpha_{i} \equiv 0(\bmod \mathfrak{b})
$$

Set

$$
t=a^{-1} \sum_{i=1}^{r} \alpha_{i} t_{i} \in K T
$$

and define $\Lambda \in \operatorname{Hom}_{R}(G, K T)$ by

$$
\Lambda_{\sigma}=g t-t g, \quad g \in G
$$

We shall show that this is the desired Λ, that is, $\Lambda \in B(N, M)$, and $\left[\Lambda^{p}\right]=\left[\Omega^{p}\right]$ for $p \in P$. For $p \in P$ we have

$$
a\left(\Omega_{g}^{p}-\Lambda_{g}\right)=g v^{p}-v^{p} g, \quad g \in G
$$

where

$$
v^{p}=u^{p}-a t=\sum_{i=1}^{T}\left(\beta_{i}^{p}-\alpha_{i}\right) t_{i} .
$$

From the way in which the α_{i} were chosen, we may therefore write

$$
v^{p}=\pi^{2 \gamma(p)} d_{p} w^{p}
$$

where $w^{p} \in T_{p}$, and thus

$$
\Omega_{g}^{p}-\Lambda_{g}=\pi^{\gamma(p)}\left(g w^{p}-w^{p} g\right), g \in G .
$$

This proves that for each $p \in P$,

$$
\Omega^{p}-\Lambda^{p} \in \pi^{\gamma(p)} B\left(N_{p}, M_{p}\right) \subset B^{\prime}\left(N_{p}, M_{p}\right)
$$

and shows incidentally that

$$
\begin{equation*}
\Lambda_{\theta} \in T_{p}, \quad g \in G, \quad p \in P \tag{9}
\end{equation*}
$$

On the other hand, we note that for each prime ideal $q \notin P$, the elements $a^{-1} \alpha_{1}, \ldots, a^{-1} \alpha_{r}$ all lie in R_{q}, and hence

$$
\Lambda_{0} \in T_{q}, \quad g \in G
$$

Coupled with (9), this implies that

$$
\Lambda_{0} \in \bigcap_{q^{\prime}} T_{q^{\prime}}, \quad g \in G
$$

where q^{\prime} ranges over all prime ideals. The above intersection is precisely T, and so $\Lambda \in \operatorname{Hom}_{R}(G, T)$. That (7) holds follows at once from the definition of Λ; consequently, $\Lambda \in B(N, M)$. This completes the proof that ϕ is "onto."

In order to show that ϕ is an isomorphism, let $\Omega \in B(N, M)$ be such that $\Omega^{p} \in B^{\prime}\left(N_{p}, M_{p}\right)$ for all $p \in P$; we must show that $\Omega \in B^{\prime}(N, M)$. Since $\Omega^{p} \in B^{\prime}\left(N_{p}, M_{p}\right)$, there exists for each $p \in P$ an element $u^{p} \in T_{p}$ such that

$$
\Omega_{o}^{p}=g u^{p}-u^{p} g, \quad g \in G .
$$

By the preceding construction (with $a=1$), there exists $\Lambda \in B^{\prime}(N, M)$ (since now $t \in T$) such that

$$
\Lambda_{g}^{p} \equiv \Omega_{g}^{p}\left(\bmod \pi^{\gamma(p)} T_{p}\right), \quad g \in G
$$

Therefore

$$
\Lambda-\Omega \in \mathfrak{g} B(N, M) \subset B^{\prime}(N, M)
$$

which shows that $\Omega \in B^{\prime}(N, M)$.
Corollary. If N, N^{*}, M, M^{*} are G-modules such that $N \vee N^{*}$ and $M \vee M^{*}$, then $C(N, M) \cong C\left(N^{*}, M^{*}\right)$ as R-modules.

More generally, let

$$
L_{1} \supset L_{2} \supset \ldots \supset L_{k} \supset(0)
$$

be a set of G-modules such that each is an R-direct summand of its predecessor. Define $N_{i}=L_{i} / L_{i+1}$ to be the factor G-module. Then as above, every element of L_{1} is uniquely representable as an ordered k-tuple (n_{1}, \ldots, n_{k}) $n_{i} \in N_{i}$, where

$$
\begin{aligned}
\left(n_{1}, \ldots, n_{k}\right)+\left(n_{1}^{\prime}, \ldots, n_{k}^{\prime}\right)=\left(n_{1}+n_{1}^{\prime}, \ldots,\right. & \left.n_{k}+n_{k}^{\prime}\right) \\
& \alpha\left(n_{1}, \ldots, n_{k}\right)=\left(\alpha n_{1}, \ldots, \alpha n_{k}\right)
\end{aligned}
$$

for $n_{i}, n_{i}{ }^{\prime} \in N_{i}, \alpha \in R$. The action of G on L_{1} is given by

$$
g\left(n_{1}, \ldots, n_{k}\right)=\left(g n_{1}, g n_{2}+\Lambda_{0}^{12} n_{1}, \ldots, g n_{k}+\Lambda_{0}^{1 k} n_{1}+\ldots+\Lambda_{0}^{k-1, k} n_{k-1}\right)
$$

where each $\Lambda_{0}{ }^{i j} \in \operatorname{Hom}_{R}\left(N_{i}, N_{j}\right)$, and where the R-homomorphisms $\Lambda^{i j}$: $g \rightarrow \Lambda_{0}{ }^{i j}$ satisfy conditions analogous to (7). Let $B\left(N_{1}, \ldots, N_{k}\right)$ denote the set of systems $\left\{\Lambda^{i j}\right\}$ satisfying these conditions. We denote the module L_{1} by the symbol $\left(N_{1}, \ldots, N_{k} ;\left\{\Lambda^{i j}\right\}\right)$.
3. Isomorphisms of modules. Throughout this section, we fix an A module L^{\prime} with a composition series.

$$
L=L_{1}^{\prime} \supset L_{2}^{\prime} \supset \ldots \supset L_{k}^{\prime} \supset(0)
$$

and let $N_{i}{ }^{\prime}=L_{i}{ }^{\prime} / L_{i+1}{ }^{\prime}$. We assume here that $N_{i}{ }^{\prime}$ and $N_{j}{ }^{\prime}$ are not isomorphic for $i \neq j$, and further that K is a splitting field for A. For any $L \in S\left(L^{\prime}\right)$, the A-module $K L$ will have a composition series

$$
K L=L_{1}^{\prime \prime} \supset L_{2}^{\prime \prime} \supset \ldots \supset L_{k}^{\prime \prime} \supset(0)
$$

in which $L_{i}{ }^{\prime \prime} / L_{i+1}{ }^{\prime \prime} \cong N_{i}{ }^{\prime}$. Setting $L_{i}=L_{i}{ }^{\prime \prime} \cap L$, we see that L_{i} is a G submodule of L for which $K L_{i}=L_{i}{ }^{\prime \prime}$. Furthermore, L_{i+1} is a pure R-submodule of L_{i}, and therefore (by 5) is an R-direct summand of L_{i}. Put $N_{i}=$ L_{i} / L_{i+1}; then $K N_{i} \cong N_{i}{ }^{\prime}$, and

$$
L=\left(N_{1}, \ldots, N_{k} ;\left\{\Lambda^{i j}\right\}\right)
$$

for some $\left\{\Lambda^{i j}\right\} \in B\left(N_{1}, \ldots, N_{k}\right)$.
Lemma 1. Let $M_{i}, N_{i}, \in S\left(N_{i}^{\prime}\right), 1 \leqslant i \leqslant k$, and suppose that

$$
\left(M_{1}, \ldots, M_{k} ;\left\{\Lambda^{i j}\right\}\right) \cong\left(N_{1}, \ldots, N_{k} ;\left\{\Omega^{i j}\right\}\right)
$$

Then $M_{i} \cong N_{i}, 1 \leqslant i \leqslant k$.

Proof. (A modified version of this is given in (2).) It suffices to prove that if $(N, M ; \Lambda) \cong(\bar{N}, \bar{M} ; \bar{\Lambda})$, where $K N \cong K \bar{N}$ and $K M \cong K \bar{M}$, and where $K N$ and $K M$ have no common irreducible constituent, then $M \cong \bar{M}$ and $N \cong \bar{N}$. Once this is established, a simple induction argument completes the proof.

Suppose that $\theta:(N, M ; \Lambda) \cong(\bar{N}, \bar{M} ; \bar{\Lambda})$ is given by

$$
\theta(n, m)=\theta(n, 0)+\theta(0, m)=\left(\theta_{1}(n), \nu(n)\right)+\left(\mu(m), \theta_{2}(m)\right),
$$

where
$\theta_{1} \in \operatorname{Hom}_{R}(N, \bar{N}), \nu \in \operatorname{Hom}_{R}(N, \bar{M}), \mu \in \operatorname{Hom}_{R}(\mathrm{M}, \bar{N}), \theta_{2} \in \operatorname{Hom}_{R}(M, \bar{M})$.
From $\theta g(n, m)=g \theta(n, m)$ we obtain at once

$$
\begin{array}{ll}
\theta_{1} g+\mu \Lambda_{0}=g \theta_{1}, & \mu g=g \mu \\
\bar{\Lambda}_{g} \theta_{1}+g \nu=\nu g+\theta_{2} \Lambda_{0}, & \theta_{2} g=\bar{\Lambda}_{g} \mu+g \theta_{2} \tag{10.3,10.4}
\end{array}
$$

From (10.2) we have $\mu \in \operatorname{Hom}_{G}(M, \bar{N})$, and hence $\mu=0$, since by hypothesis $K M$ and $K \bar{N}$ have no common irreducible constituents. Equations (10.1) and (10.4) then imply that $\theta_{1} \in \operatorname{Hom}_{G}(N, \bar{N})$ and $\theta_{2} \in \operatorname{Hom}_{G}(M, \bar{M})$. Since θ is an isomorphism of ($N, M ; \Lambda$) onto ($\bar{N}, \bar{M} ; \bar{\Lambda}$), we find readily that $\theta_{1}: N \cong \bar{N}$ and $\theta_{2}: M \cong \bar{M}$.

Lemma 2. Let ($N_{1}, \ldots, N_{k} ;\left\{\Lambda^{i j}\right\}$) and ($N_{1}, \ldots, N_{k} ;\left\{\Omega^{i j}\right\}$) be G-isomorphic modules in $S\left(L^{\prime}\right)$, where $N_{i} \in S\left(N_{i}^{\prime}\right)$. Then there exist units $\beta_{1}, \ldots, \beta_{k} \in \mathfrak{u}$, and homomorphisms $t_{i j} \in \operatorname{Hom}_{R}\left(N_{i}, N_{j}\right)$, such that the isomorphism between these G-modules is given by

$$
\left(n_{1}, \ldots, n_{k}\right) \rightarrow\left(\beta_{1} n_{1}, \beta_{2} n_{2}+t_{12} n_{1}, \ldots, \beta_{k} n_{k}+t_{1 k} n_{1}+\ldots+t_{k-1},{ }_{k} n_{k-1}\right) .
$$

Proof. From the proof of the preceding lemma, we find that the isomorphism must be given by

$$
\left(n_{1}, \ldots, n_{k}\right) \rightarrow\left(\theta_{1} n_{1}, \theta_{2} n_{2}+t_{12} n_{1}, \ldots, \theta_{k} n_{k}+t_{1 k} n_{1}+\ldots+t_{k-1, k} n_{k-1}\right)
$$

with each $\theta_{i}: N_{i} \cong N_{i}$ and each $t_{i j} \in \operatorname{Hom}_{R}\left(N_{i}, N_{j}\right)$. Since $K N_{i}$ is an absolutely irreducible A-module, θ_{i} must be given by scalar multiplication by a unit of R. This completes the proof.

If U, V are R-modules, and $f_{1}, f_{2} \in \operatorname{Hom}_{R}(U, V)$, we shall often abbreviate the congruence $f_{1} \equiv f_{2}\left(\bmod \mathfrak{g}^{a} \operatorname{Hom}_{R}(U, V)\right)$ as $f_{1} \equiv f_{2}\left(\bmod \mathfrak{g}^{a}\right)$. A similar notation will be used for R_{p}-modules.

Lemma 3. Let M_{1}, \ldots, M_{k} be G-modules, not necessarily irreducible, and let

$$
L=\left(M_{1}, \ldots, M_{k} ;\left\{\Lambda^{i j}\right\}\right), \quad \bar{L}=\left(M_{1}, \ldots, M_{k} ;\left\{\Omega^{i j}\right\}\right)
$$

be G-modules for which

$$
\Lambda^{i j} \equiv \Omega^{i j}\left(\bmod g^{n}\right), \quad 1 \leqslant i<j \leqslant k,
$$

where n is a fixed integer $\geqslant k-1$. Then there exists a G-isomorphism $\theta: L \cong \bar{L}$ such that $\theta \equiv I\left(\bmod \mathfrak{g}^{n-k+1}\right)$, where $I: L \cong \bar{L}$ is the R-isomorphism given by $\left(m_{1}, \ldots, m_{k}\right) \rightarrow\left(m_{1}, \ldots, m_{k}\right)$.

Proof. The result is trivial for $k=1$; let $k>1$, and assume the result holds at $k-1$. Let us set

$$
\begin{aligned}
& \Delta=\left(M_{2}, \ldots, M_{k} ; \Lambda^{23}, \ldots, \Lambda^{k-1, k}\right), \\
& \bar{\Delta}=\left(M_{2}, \ldots, M_{k} ; \Omega^{23}, \ldots, \Omega^{k-1, k}\right)
\end{aligned}
$$

From the induction hypothesis we deduce the existence of a G-isomorphism $\theta_{1}: \Delta \cong \bar{\Delta}$ such that

$$
\theta_{1} \equiv I\left(\bmod \mathrm{~g}^{n-k+2}\right) .
$$

The map $\left(m_{1}, \delta\right) \rightarrow\left(m_{1}, \theta_{1} \delta\right)$, where $m_{1} \in M_{1}, \delta \in \Delta$, then gives a G-isomorphism

$$
\theta_{2}:\left(M_{1}, \Delta ; \Lambda^{12}, \ldots, \Lambda^{1 k}\right)^{\prime} \cong\left(M_{1}, \bar{\Delta} ; \bar{\Lambda}^{12}, \ldots, \bar{\Lambda}^{1 k}\right)
$$

for some $\left(\bar{\Lambda}^{12}, \ldots, \bar{\Lambda}^{1 k}\right) \in B\left(M_{1}, \bar{\Delta}\right)$, and we have

$$
\theta_{2} \equiv I\left(\bmod \mathrm{~g}^{n-k+2}\right)
$$

Now set

$$
\bar{\Lambda}=\left(\bar{\Lambda}^{12}, \ldots, \bar{\Lambda}^{1 k}\right), \quad \Omega=\left(\Omega^{12}, \ldots, \Omega^{1 k}\right)
$$

Then we see that both $\bar{\Lambda}$ and Ω are elements of $B\left(M_{1}, \bar{\Delta}\right)$, and that $\bar{\Lambda} \equiv \Omega$ $\left(\bmod \mathfrak{g}^{n-k+2}\right)$. By considering this congruence for the powers of the prime ideals dividing \mathfrak{g}, the method of proof of Theorem 1 shows the existence of an element $W \in \operatorname{Hom}_{R}\left(M_{1}, \bar{\Delta}\right)$ such that

$$
(\bar{\Lambda}-\Omega)_{g}=g W-W g, \quad g \in G
$$

and where, furthermore, $W \equiv 0\left(\bmod \mathfrak{g}^{n-k+1}\right)$. The map $\left(m_{1}, \bar{\delta}\right) \rightarrow\left(m_{1}, \bar{\delta}-W m_{1}\right)$ then yields a G-isomorphism $\theta_{3}:\left(M_{1}, \bar{\Delta} ; \Omega\right) \cong\left(M_{1}, \bar{\Delta} ; \Lambda\right)$, where

$$
\theta_{3} \equiv I\left(\bmod { }^{n-k+1}\right)
$$

Therefore

$$
\theta_{3}^{-1} \theta_{2}:\left(M_{1}, \Delta ; \Lambda^{12}, \ldots, \Lambda^{1 k}\right) \rightarrow\left(M_{1}, \bar{\Delta} ; \Omega^{12}, \ldots, \Omega^{1 k}\right)
$$

is a G-isomorphism of L onto \bar{L} such that

$$
\theta_{3}^{-1} \theta_{2} \equiv I\left(\bmod \mathfrak{g}^{n-k+1}\right)
$$

4. Integral classes and genera for modules with two distinct constituents. Throughout this section, we suppose that L^{\prime} is an A-module with two distinct irreducible constituents N^{\prime} and M^{\prime}; we assume again that K is a splitting field for A. Let $S\left(L^{\prime}\right)$ be partitioned into r_{G} classes under G-isomorphism, and into r_{g} genera. We shall obtain formulas for r_{G} and r_{g}.

Lemma 4. Let $N \in S\left(N^{\prime}\right), M \in S\left(M^{\prime}\right)$. Then $(N, M ; \Lambda) \cong(N, M ; \bar{\Lambda})$ if and only if there exists $\beta \in \mathfrak{u}$ such that $[\bar{\Lambda}]=\beta[\Lambda]$.

Proof. From Lemma 2 we deduce the existence of units $\beta_{1}, \beta_{2} \in \mathfrak{u}$, and of $t \in \operatorname{Hom}_{R}(N, M)$, such that the isomorphism $(N, M ; \Lambda) \cong(N, M ; \bar{\Lambda})$ is given by $(n, m) \rightarrow\left(\beta_{1} n, \beta_{2} m+t n\right)$. This implies

$$
\bar{\Lambda}_{\theta}=\beta_{1}^{-1} \beta_{2} \Lambda_{0}+g\left(\beta_{1}^{-1} t\right)-\left(\beta_{1}^{-1} t\right) g, \quad g \in G
$$

Setting $\beta=\beta_{1}{ }^{-1} \beta_{2}$, we have $[\bar{\Lambda}]=\beta[\Lambda]$. Conversely, starting from such a relation, we may reverse the steps to obtain an isomorphism of the modules.

Lemma 5. Let $N \in S\left(N^{\prime}\right), M \in S\left(M^{\prime}\right)$. Then $(N, M ; \Lambda) \vee(N, M ; \bar{\Lambda})$ if and only if there exists an element $\alpha \in R$ such that $(\alpha)+\mathfrak{g}=R$ and $[\bar{\Lambda}]=\alpha[\Lambda]$.

Proof. Let $(N, M ; \Lambda) \vee(N, M ; \bar{\Lambda})$. As in the preceding proof, we deduce that for each $p \in P$, there exists an element α_{p} which is a unit in R_{p} such that the classes $\left[\Lambda^{p}\right]$ and $\left[\bar{\Lambda}^{p}\right]$ in $C\left(N_{p}, M_{p}\right)$ are related by

$$
\left[\bar{\Lambda}^{p}\right]=\alpha_{p}\left[\Lambda^{p}\right]
$$

Choose $\alpha \in R$ such that $\alpha \equiv \alpha_{p}\left(\bmod p^{\gamma(p)}\right)$ for each $p \in P$; then $(\alpha)+\mathfrak{g}=R$. Furthermore, $\left(\alpha-\alpha_{p}\right) B\left(N_{p}, M_{p}\right) \subset B^{\prime}\left(N_{p}, M_{p}\right)$, so that

$$
\alpha\left[\Lambda^{p}\right]=\alpha_{p}\left[\Lambda^{p}\right], \quad p \in P
$$

Therefore $\left[\bar{\Lambda}^{p}\right]=\left[\alpha \Lambda^{p}\right]$ for all $p \in P$, and so by Theorem 1 we have $[\bar{\Lambda}]=$ $[\alpha \Lambda]=\alpha[\Lambda]$.

Suppose now that $S\left(N^{\prime}\right)$ splits into ν genera; according to (7), each genus splits into h classes under G-isomorphism. Let us choose representatives of the $h \nu$ classes, say $\left\{N_{j}{ }^{i}: 1 \leqslant i \leqslant \nu, 1 \leqslant j \leqslant h\right\}$, so that all the modules with the same subscript lie in the same genus. Likewise choose representatives $\left\{M_{j}{ }^{i}: 1 \leqslant i \leqslant \mu, 1 \leqslant j \leqslant h\right\}$ of the $h \mu$ classes into which $\mathrm{S}\left(M^{\prime}\right)$ splits. Let $(N, M ; \Gamma) \in S\left(L^{\prime}\right)$, and suppose $N \vee N_{1}{ }^{i}, M \vee M_{1}{ }^{j}$. Then for each $p \in P$, there exists an element

$$
\Omega^{p} \in B\left(\left(N_{1}^{i}\right)_{p},\left(M_{1}^{j}\right)_{p}\right)
$$

such that

$$
\left(N_{p}, M_{p} ; \Gamma^{p}\right) \cong\left(\left(N_{1}^{i}\right)_{p},\left(M_{1}^{j}\right)_{p} ; \Omega^{p}\right)
$$

as A_{p}-modules. By Theorem 1 , there exists $\Lambda \in B\left(N_{1}{ }^{i}, M_{1}{ }^{j}\right)$ such that $\left[\Lambda^{p}\right]=\left[\Omega^{p}\right]$ for all $p \in P$. Therefore

$$
(N, M ; \Gamma) p \cong\left(N_{1}^{i}, M_{1}^{j} ; \Lambda\right)_{p}, \quad p \in P
$$

and so

$$
(N, M ; \Gamma) \vee\left(N_{1}^{i}, M_{1}^{j} ; \Lambda\right)
$$

Hence, every module in $S\left(L^{\prime}\right)$ is in the same genus as ($N_{1}{ }^{i}, M_{1}{ }^{j} ; \Lambda$) for some choice of i and j and some $\Lambda \in B\left(N_{1}{ }^{i}, M_{1}{ }^{j}\right)$. Further,

$$
\left(N_{1}^{i}, M_{1}^{j} ; \Lambda\right) \vee\left(N_{1}^{i^{\prime}}, M_{1}^{j^{\prime}} ; \Lambda^{\prime}\right)
$$

implies, by the method of proof of Lemma 1 , that $i=i^{\prime}$ and $j=j^{\prime}$. Let us set

$$
\begin{equation*}
H_{i j}=\left\{\left(N_{1}^{i}, M_{1}^{j} ; \Lambda\right): \Lambda \in B\left(N_{1}^{i}, M_{1}^{j}\right)\right\}, 1 \leqslant i \leqslant \nu, 1 \leqslant j \leqslant \mu \tag{11}
\end{equation*}
$$

and suppose that $H_{i j}$ splits into $r_{i j}$ genera. Then we have at once

$$
\begin{equation*}
r_{g}=\sum_{i, j} r_{i j} . \tag{12}
\end{equation*}
$$

On the other hand, any module in $S\left(L^{\prime}\right)$ is G-isomorphic to ($N_{\rho}{ }^{i}, M_{\sigma}{ }^{j} ; \Lambda$) for some i, j, ρ, σ and Λ. Further, by Lemma 1, two such modules cannot be isomorphic unless they have the same set of indices i, j, ρ, σ. Let us set

$$
S(i, \rho ; j, \sigma)=\left\{\left(N_{\rho}^{i}, M_{\sigma}^{j} ; \Lambda\right): \Lambda \in B\left(N_{\rho}^{i}, M_{\sigma}^{j}\right)\right\}
$$

and suppose that $S(i, \rho ; j, \sigma)$ splits into $s(i, \rho ; j, \sigma)$ classes. Then

$$
r_{G}=\sum_{i, j, \rho, \sigma} s(i, \rho ; j, \sigma) .
$$

However, Lemma 4 states that $\left(N_{\rho}{ }^{i}, M_{\sigma}{ }^{j} ; \Lambda\right) \cong\left(N_{\rho}{ }^{i}, M_{\sigma}{ }^{j} ; \bar{\Lambda}\right)$ if and only if there exists $\beta \in \mathfrak{u}$ such that $[\bar{\Lambda}]=\beta[\Lambda]$. Furthermore, the Corollary to Theorem 1 shows that $C\left(N_{\rho}{ }^{i}, M_{\sigma}{ }^{j}\right)$ is (as R-module) independent of ρ and σ. Therefore $s(i, \rho ; j, \sigma)=s(i, 1 ; j, 1)$ for all ρ and σ, and we have

$$
\begin{equation*}
r_{G}=h^{2} \sum_{i, j} s_{i j}, \tag{13}
\end{equation*}
$$

where $s_{i j}=s(i, 1 ; j, 1)$ is the number of classes into which $H_{i j}$ splits.
Before proceeding with the calculation of $r_{i j}$ and $s_{i j}$, it will be convenient to introduce some notations. For a non-zero ideal \mathfrak{a} in R, let $\phi(\mathfrak{a})$ denote the number of residue classes in R / \mathfrak{a} which are relatively prime to \mathfrak{a}. If $\mathfrak{a}+\mathfrak{b}=R$, then $\phi(\mathfrak{a b})=\phi(\mathfrak{a}) \phi(\mathfrak{b})$. Next, let $u(\mathfrak{a})$ denote the number of distinct residue classes in $(\mathfrak{u}+\mathfrak{a}) / \mathfrak{a}$; of course, $u(\mathfrak{a})$ is a divisor of $\phi(\mathfrak{a})$. However, $u(\mathfrak{a})$ is not a multiplicative function of \mathfrak{a}, as is seen from the example where K is the rational field.

Lemma 6. Let $N \in S\left(N^{\prime}\right), M \in S\left(M^{\prime}\right)$, and $H=\{(N, M ; \Lambda): \Lambda \in B(N, M)\}$. Suppose H splits into r genera and sclasses. Let $d(\mathfrak{a})$ be the number of elements in $C(N, M)$ with order ideal a. Then

$$
r=\sum_{\mathfrak{a}} d(\mathfrak{a}) / \phi(\mathfrak{a}), \quad s=\sum_{\mathfrak{a}} d(\mathfrak{a}) / u(\mathfrak{a})
$$

both sums extending over all divisors of g .
(The order ideal of an element $c \in C(N, M)$ is $\{\alpha \in R: \alpha c=0\}$.)

Proof. Let us use the symbol ($N, M ; c$) to denote the collection of mutually isomorphic modules $\{(N, M ; \Lambda): \Lambda \in c\}$, where $c \in C(N, M)$. By Lemma 4, ($N, M ; c$) and ($N, M ; c^{\prime}$) cannot lie in the same genus unless c and c^{\prime} have the same order ideal. Consider the set of $d(\mathfrak{a})$ elements of $C(N, M)$ with given order ideal \mathfrak{a}. For a fixed c in this set, all those c^{\prime} of the form αc, where $\alpha \in R$ is such that $(\alpha)+\mathfrak{g}=R$, will yield modules in the same genus as those obtained from c. But as α ranges over all elements of R for which $(\alpha)+\mathfrak{g}=R, \alpha c$ gives exactly $\phi(\mathfrak{a})$ distinct elements of $C(N, M)$. Therefore

$$
r=\sum_{\mathfrak{a}} d(\mathfrak{a}) / \phi(\mathfrak{a})
$$

A similar argument gives the formula for s.
Let $d_{p}\left(p^{n}\right)$ denote the number of elements in $C\left(N_{p}, M_{p}\right)$ having order ideal p^{n}. Then

$$
d_{p}\left(p^{n}\right)=\tau\left(p^{n}\right)-\tau\left(p^{n-1}\right)
$$

where $\tau\left(p^{n}\right)$ denotes the number of elements of $C\left(N_{p}, M_{p}\right)$ which are annihilated by p^{n}. From Theorem 1,

$$
d(\mathfrak{a})=\prod_{p \in P} d_{p}\left(p^{a(p)}\right), \text { where } \mathfrak{a}=\prod_{p \in P} p^{a(p)}
$$

We may therefore write

$$
r=\prod_{p \in P}\left\{\sum_{a=0}^{\gamma(p)} d_{p}\left(p^{a}\right) / \phi\left(p^{a}\right)\right\}
$$

which confirms the result in (7) that the number of genera is the product over all $p \in P$ of the number of classes into which $S\left(L^{\prime}\right)$ splits under $A_{p}{ }^{-}$ isomorphism. The corresponding multiplicative formula for s fails to hold, because $u(\mathfrak{a})$ is not multiplicative.

Applying Lemma 6 to our original problem, we may summarize our result as follows.

Theorem 2. Let N^{1}, \ldots, N^{ν} be representatives of the genera into which $S\left(N^{\prime}\right)$ splits, and M^{1}, \ldots, M^{μ} representatives of the genera of $S\left(M^{\prime}\right)$. For each divisor \mathfrak{a} of \mathfrak{g}, let $d_{i j}(\mathfrak{a})$ denote the number of elements in $C\left(N^{i}, M^{j}\right)$ having order ideal \mathfrak{a}. Then $S\left(L^{\prime}\right)$ splits into r_{g} genera and r_{G} classes, where

$$
r_{g}=\sum_{\mathfrak{a}} \sum_{i, j} d_{i j}(\mathfrak{a}) / \phi(\mathfrak{a}), \quad r_{G}=h^{2} \sum_{\mathfrak{a}} \sum_{i, j} d_{i j}(\mathfrak{a}) / u(\mathfrak{a})
$$

Here, $\phi(\mathfrak{a})$ is the number of residue classes in R / \mathfrak{a} which are relatively prime to \mathfrak{a}, and $u(\mathfrak{a})$ is the number of distinct elements of $(\mathfrak{u}+\mathfrak{a}) / \mathfrak{a}$.

Corollary. We have $r_{G} \geqslant h^{2} r_{g}$, with equality provided that $\phi(\mathfrak{g})=u(\mathfrak{g})$. Furthermore, if any $C\left(N^{i}, M^{j}\right)$ contains an element of order ideal \mathfrak{a}, where $u(\mathfrak{a})<\phi(\mathfrak{a})$, then $r_{G}>h^{2} r_{g}$.
5. Integral classes and genera in the general case. Now let L^{\prime} be an A-module with k distinct irreducible constituents, and let K be a splitting field for A. We preserve the notation introduced at the beginning of §3. In this section we shall generalize the results given in the Corollary to Theorem 2.

For each $\kappa(1 \leqslant \kappa \leqslant k)$, let $\left\{N_{\kappa}{ }^{i j}: 1 \leqslant i \leqslant \nu(\kappa), 1 \leqslant j \leqslant h\right\}$ be a full set of representatives of the $h \nu(\kappa)$ classes into which the set $\mathrm{S}\left(N_{\kappa}{ }^{\prime}\right)$ splits; suppose these representative modules are so chosen that modules with the same indices i and κ lie in the same genus. Then every module in $S\left(L^{\prime}\right)$ is of the form

$$
\left(N_{1}^{i_{1} j_{1}}, \ldots, N_{k}^{i_{k} j_{k}} ;\left\{\Lambda^{i j}\right\}\right)
$$

Let $S\left(i_{1}, j_{1} ; \ldots ; i_{k}, j_{k}\right)$ be the set of all such modules obtained by letting $\left\{\Lambda^{i j}\right\}$ range over all systems in

$$
B\left(N_{1}^{i_{1} j 1}, \ldots, N_{k}^{i_{k} k k}\right),
$$

and let this set split into $r\left(i_{1}, j_{1} ; \ldots ; i_{k}, j_{k}\right)$ genera and $s\left(i_{1}, j_{1} ; \ldots ; i_{k}, j_{k}\right)$ classes. From the Corollary to Theorem 1, we see that $r\left(i_{1}, j_{1} ; \ldots ; i_{k}, j_{k}\right)$ is independent of $\left(j_{1}, \ldots, j_{k}\right)$, and therefore

$$
r_{\theta}=h^{-k} \sum r\left(i_{1}, j_{1}, ; \ldots ; i_{k}, j_{k}\right), \quad r_{G}=\sum s\left(i_{1}, j_{1}, ; \ldots ; i_{k}, j_{k}\right)
$$

both summations extending over all possible values of the i 's and j 's. This implies the result that

$$
r_{G} \geqslant h^{k} r_{g}
$$

Finally, we prove:
Theorem 3. If $u\left(\mathrm{~g}^{k-1}\right)=\phi\left(\mathrm{g}^{k-1}\right)$, then $r_{G}=h^{k} r_{g}$.
Proof. We remark that the hypothesis of the Theorem is simply a restatement of condition (3) given in the introduction. To prove the theorem, we need only show that $r\left(i_{1}, j_{1} ; \ldots ; i_{k}, j_{k}\right)=s\left(i_{1}, j_{1} ; \ldots ; i_{k}, j_{k}\right)$. We simplify the notation by letting $M_{\kappa} \in \mathrm{S}\left(N_{\kappa}{ }^{\prime}\right), 1 \leqslant \kappa \leqslant k$. We shall prove that if

$$
L=\left(M_{1}, \ldots, M_{k} ;\left\{\Lambda^{i j}\right\}\right), \quad \bar{L}=\left(M_{1}, \ldots, M_{k} ;\left\{\bar{\Lambda}^{i j}\right\}\right)
$$

are such that $L \vee \bar{L}$, then also $L \cong \bar{L}$.
Since $L_{p} \cong \bar{L}_{p}$ for each $p \in P$, Lemma 2 shows the existence of units $\beta_{1}{ }^{p}, \ldots, \beta_{k}{ }^{p}$ in R_{p}, and homomorphisms

$$
t_{i j}^{p} \in \operatorname{Hom}_{p}\left(\left(M_{i}\right)_{p},\left(M_{j}\right)_{p}\right)
$$

such that the isomorphism $L_{p} \cong \bar{L}_{p}$ is given by

$$
\left(m_{1}, \ldots, m_{k}\right) \rightarrow\left(\beta_{1}^{p} m_{1}, \beta_{2}^{p} m_{2}+t_{12}^{p} m_{1}, \ldots, \beta_{k}^{p} m_{k}+t_{1 k}^{p} m_{1}+\ldots+t_{k-1, k}^{p} m_{k-1}\right)
$$

By the hypothesis of the theorem, we may choose units $\beta_{1}, \ldots, \beta_{k} \in \mathfrak{u}$ such that

$$
\beta_{\kappa} \equiv \beta_{\kappa}^{p} \quad\left(\bmod p^{(k-1) \gamma(p)}\right), \quad p \in P, \quad 1 \leqslant \kappa \leqslant k
$$

As in the proof of Theorem 1, we may choose homomorphisms $w_{i j} \in$ $\operatorname{Hom}_{R}\left(M_{i}, M_{j}\right)$ such that

$$
w_{i j}^{p} \equiv t_{i j}^{p} \quad \bmod p^{(k-1) \gamma(p)}, \quad 1 \leqslant i<j \leqslant k, \quad p \in P .
$$

Then the map

$$
\left(m_{1}, \ldots, m_{k}\right) \rightarrow\left(\beta_{1} m_{1}, \beta_{2} m_{2}+w_{12} m_{1}, \ldots, \beta_{k} m_{k}+w_{1 k} m_{1}+\ldots+w_{k-1, k} m_{k-1}\right)
$$

gives a G-isomorphism of L onto a module L^{*} where $L^{*}=\left(M_{1}, \ldots, M_{k} ;\left\{\Omega^{i j}\right\}\right)$ and $\Omega^{i j} \equiv \bar{\Lambda}^{i j}\left(\bmod \mathrm{~g}^{k-1}\right)$ for $1 \leqslant i<j \leqslant k$. By Lemma 3 we then have $L^{*} \cong \bar{L}$, which completes the proof of the theorem.

It would be of interest to obtain formulas for r_{G} and r_{g} which generalize those given in Theorem 2.

References

1. K. deLeeuw, Some applications of cohomology to algebraic number theory and group representations, unpublished.
2. F. E. Diederichsen, Ueber die Ausreduktion ganzzahliger Gruppendarstellungen bei arithmetischer Äquivalenz, Hamb. Abh., 14 (1938), 357-412.
3. D. G. Higman, On orders in separable algebras, Can. J. Math., 7 (1955), 509-515.
4. N. Jacobson, The theory of rings (New York, 1943).
5. I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc., 7 (1952), 327-40.
6. J.-M. Maranda, On p-adic integrab representations of finite groups, Can. J. Math., 5 (1953), 344-355.
7. - On the equivalence of representations of finite groups by groups of automorphisms of modules over Dedekind rings, Can. J. Math., 7 (1955), 516-526.
8. I. Reiner, Maschke modules over Dedekind rings, Can. J. Math., 8 (1956), 329-334.:
9. H. Zassenhaus, Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Aquivalenz endlicher ganzzahliger Substitutionsgruppen, Hamb. Abh., 12 (1938), 276-288.

University of Illinois

[^0]: Received June 12, 1958. This research was supported in part by the Office of Naval Research.

