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Part VII: Some General Gas-Dynamical 
Problems 

Examples of Gas Motion and Certain Hypotheses 
on the Mechanism of Stellar Outbursts 

L. I. SEDOV 

Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R. 

IN connection with the problem of the explanation of 
stellar outbursts exact solutions for gas flows with 

spherical symmetry can be given in the following three 
cases. 

1. Propagation of detonation waves from the interior 

to the surface of a star, accompanied by an output of 

nuclear energy on the wave front. Effects of the increase 

of detonation velocity depending upon the law of 

density decrease from the center to the outer layer 

(failure of Chapman-Jourguet's rule) are investigated. 

As a result of a sufficiently rapid density decrease one 

obtains a complete dispersion of the detonation products 

with the formation of a vacuum near the center. 

Similar solutions are obtained for the spherical problem 

of the propagation of a rarefaction jump, accompanied 

by an energy output (a jump of flame front type) 

through a gas at rest. 

2. Perturbed gas motion due to an explosion caused 

by a sudden large output of energy inside a star. The 

energy is transferred to the surface together with the 

shock wave. Exact automodel solutions of the equations 

for adiabatic time-dependent gas motion, accompanied 

by the formation of a vacuum when y=Cp/Cv = £/3 

and without it, are given, gravitation being taken into 

account. Some solutions for larger values of y are 

studied. 

3. Examples of dynamically unstable equilibrium 

states disturbed by an explosion followed by the 

development of a shock wave, propagating through a 

gas at rest with density gradient. A motion without 

energy output develops. The energy of the disturbed 

motion at any time is equal to the initial energy in the 

equilibrium state. 

The application of these results to the interpretation 

of observational data requires an investigation of time-

dependent effects in stellar photospheres. In addition 

an investigation of the role of electromagnetic effects in 

stellar outbursts is needed. 

The solutions of the 1st and 2nd types of problems 

were reported at the International Congress for Applied 

Mechanics at Brussels, September, 1956. These solutions 
are given in detail in the author's monograph. 1 

Let us examine now the solutions of the 3rd type and 
consider the equilibrium state and the time-dependent 
motion of a perfect gas, taking self-gravitation into 
account. 

We shall give an example of an exact solution of the 
nonlinear equations of motion, of such a form that the 
equilibrium distribution of density and pressure in the 
gas represents the initial state, while the time-dependent 
motion is of explosive type, arising and developing 
without energy output. This solution may be considered 
as describing a phenomenon of mechanical instability, 
which could be used for the explanation of certain 
effects observed in variable stars. 

We take the equations of one-dimensional time-
dependent gas motion with spherical symmetry in the 
form, 

SM dp dpv 2pv 
—= brr2p; - + — + — = 0 , 
dr dt dr r 

dv dv 1 dp fM 
- + V - + + = 0 , 
dt dr ρ dr r2 

d(p/py) d(p/py) 
+v = 0 . 

dt dr 
(1) 

The symbols have their usual meaning ; / is the constant 
of gravitation. We treat 7 as a constant. 

When the gas is at rest, the thermodynamic 
parameters may have the values given by 

20 A 
7 j = 0 ; Mi = —wAr 0 6 \ pi=— 

V5 r 2 A 

50TT fA2 

Pi= , (2) 
21 r2-8 

which represent a solution of Eqs. (1) for any positive 
value of the constant A. They could also hold for a case 
where transfer of radiation is present, if we may assume 
some special values for the coefficients of absorption 
and/or energy output. 

X L . I. Sedov, Methods of Similarity and Dimensions in 
Mechanics (Moscow, 1957), 3rd edition 1954, 4th edition 1957. 
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The solution will be assumed to hold for a region 
r<r*, while for r > r * other conditions may be found. 

It is easy to verify that another particular, time-
dependent exact solution of equations (1) is given by 
the expressions 

ν=ΙτΓ\ ρ = ( 6 π / / 2 ) " 1 , p=Kf~^\ 

M=2/9r*f-1tr2, (3) 

where Κ is an arbitrary positive constant. 
We can now assume that the motion described by 

(3) is found inside a sphere with a time-dependent 
radius r 2, while the state of equilibrium (2) exists 
outside this sphere. At the shock front, which has the 
velocity c=dr2/dt, the following conditions must be 
fulfilled: 

M2=MU 

(4) 

where a^=yp\/p\. After substitution of the expressions 
(3) on the left-hand side and of expressions (2) on the 
right-hand side of (4), we find that these conditions 
can be satisfied if 

7 4 
Γ 2 = ( 3 0 Τ Γ / ^ / 2 ) 5 / 1 2 , 7 = - , K= (30ττ/,4)5>6. (5) 

6 189ττ 

The first expression (5) determines the shock speed. 
Since Eqs. (1) are exactly satisfied both for r < r 2 and 
for r > r 2 , at all t, while the interior solution (3) has no 
singularity at r = 0 , the solution does not imply an 
additional source of mechanical or thermal energy to 
keep the motion going. 

The solution (3) is a particular form of a more general 
solution,2 which leads to nonlinear pulsating motions of a 
gas sphere. Thus the motion we have obtained here, 
with its monotonie decrease of the radial velocity, can be 
considered as a particular case of pulsating motions, 
typical for Cepheids. The simple solution, however, 
holds only for 7 = 7/6. Nevertheless, the case allows us 
to suppose that similar types of motion caused by 
small perturbations may be possible with other initial 
density distributions and correspondingly different 
values of y . 

I shall also mention exact solutions of the nonlinear 
equations of adiabatic motions of gas columns, in which 

2 S. Rosseland, The Pulsation Theory of Variable Stars (Oxford, 
1949). 

both magnetic and gravitational forces are taken into 
account and an infinite gas conductivity is supposed. 
These solutions were investigated in detail by my 
pupils, A. Kulikovsky 3 and I. Javorskaya. 4 

The equations of gas motion with cylindrical sym-
metry in Lagrange's form are as follows : 

d2r 

dP 

d[ 1 Ί 1 H2

2 2fMp 
= \P+—(H1

2+H2*)\ , 
drl 8π J 4ττ r r 

r 0 dr 0 

P = P o , 
r dr 

ro dr0 

H\ = H\o , 
r dr 

P=Po H2=H 
dro 

Poy dr 
(6) 

where Hi and H2 are, respectively, the axial and circum-
ferential components of the vector of the magnetic 
field strength ; p 0 , Po, Ηχο, H20 are certain functions of 
the Lagrange coordinate ro, all other designations being 
the ordinary ones. 

The solution of the system (6) is determined by the 
following formulas: 

r = r 0 M ( 0 , P=poM~2W, Η^Η^μ-^ΐ), 

μ'(0 
v—r- Ρ=Ρομ-*Ηί), W = ^ 2 o V 2 ( < ) , ( 7 ) 

FIG. 1. Flow of an ionized gas around a magnetized conical body. 

3 A. G. Kulikovsky, Doklady Akad. Nauk S.S.S.R. 114, 984 
(1957). 

4 1 . M . Javorskaya, Doklady Akad. Nauk S.S.S.R., 114, 988 
(1957). 
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where the function μ(ή satisfies the simple equation 

/άμ\2 A 

I — ) = μ^-2(Β+2π/Ρ0) \nß-Dß-*+C. (8) 

\dt/ 7 - 1 
The quantities Po, Ηχο, and H2o are given by 

H10

2 = 8tdC porodro+L, 
Jo 

SwB rr» M 

H2o
2= I poro*dro+— (9) 

ro2 ro2 

A, N, D, L, Β, M, and C being arbitrary constants at 
our disposal. 

If the gravitational forces are not taken into account 
and the gravitational constant / in Eqs. (6) and (8) is 
supposed to be zero, the function po(fo) can be arbitrary 
in Eqs. (7) and (9). If f^O, Eqs. (7), (8), and (9) will 
determine an exact solution of the system (6) if 
po=constant. 

Various forms can be obtained for the function μ(ή 
determined by Eq. (8), depending upon the magnitude 

of the constants A,B,D,C (and po if fj^O). In particular 
nonlinear periodic oscillatory motions are possible 
(cf. Kulikovsky and Javorskaya 3 4). 

The astrophysical application of analogous motions 
has been studied by S. Chandrasekhar and E. Fermi 5 

for the case of linearized equations. 
I would also mention a paper by A. Kulikovsky, 6 in 

which a formulation is given of the problem of the flow 
of a conducting gas around a magnetized body, together 
with the main qualitative conclusions that can be 
drawn. It is of interest to note that there can appear a 
region in which the flow does not penetrate, while a 
strong magnetic field gives a pressure deflecting the 
fluid away from this region. The particular case of a 
conical field has been indicated in Fig. 1. There is a 
magnetic field inside the conical body and in the conical 
"stagnant" region around it; beyond that region there 
is flow, separated by a conical shock wave from the 
original undisturbed flow field. Outside the surface 
bounding the "stagnant" region the magnetic field is 
zero: the lines of magnetic force have all been driven 
together into the "stagnant" region. 

5 S. Chandrasekhar and E. Fermi, Astrophys. J. 118, 1 (1953). 
e A . G. Kulikovsky, Doklady Akad. Nauk S.S.S.R. 117, 199 

(1957). 

DISCUSSION 

(Since part of the discussion was formed by requests for explana-
tions which have been given in the present text of the paper, much 
of the discussion has been left out. Some further questions referred 
to the case of conical flow represented in the diagram.—Editors.) 

H . W . LlEPMANN, California Institute of Technol-
ogy, Pasadena, California: What happens if you break 
off the cone somewhere? 

L. I · SEDOV, Academy of Sciences of the U.S.S.R., 
Moscow, U.S.S.R.: Near the cone point, the motion 
remains conical. 

J . M . BURGERS, University of Maryland, College 
Park, Maryland: M y own work on the penetration of a 
shock wave into a magnetic field had brought me to the 
question whether in the case of an infinitely conducting 
medium, containing a concentrated magnetic field, say 
a dipole field, a stationary solution might be possible 
in which a certain region would be impenetrable to the 
flow. I think that the case mentioned by Sedov is an 
example of such a flow field. There is a body of conical 
form, around which there appears a region in which 
there is no flow. This region is bounded on the outside 
by a concentrated current sheet, and beyond that sheet 
there is no magnetic field: all the lines of force have 
been blown away. Inside the current sheet there is a 
magnetic field, determined both by the set of currents 
assumed within the body and by the effect of the 

concentrated current sheet. Further outside there is, of 
course, a conical shock wave, as is necessary in any case 
of supersonic flow. 

I believe that when you have a magnetic dipole, in a 
supersonic field of flow which at large distance from 
the dipole has a constant velocity in a given direction, 
there will appear a more or less parabolic surface of 
separation, again carrying a concentrated electric 
current. Outside of this surface, the whole magnetic 
field would be blown away (again, a shock wave is 
needed somewhere outside this surface of separation); 
while inside the surface of separation, the magnetic 
dipole field would be supplemented by a field due to the 
current sheet. This inside field presumably will be 
irrotational, that is, there will be no currents in the 
region inside the surface of separation. The magnetic 
pressure at the surface of separation must balance the 
gas pressure on the outside. In the case of the conical 
field this is the condition determining the angle at the 
vertex of the conical sheet of separation; in the case 
of the flow around a dipole, there would arise a much 
more complicated equation from which the form of the 
surface of separation should be obtained. 

[ L . I . SEDOV, in his concluding remarks, remarked 
that other solutions (apparently of similar stationary 
fields) have been obtained, and he particularly men-
tioned the case of a dipole.] 
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