GROUPS WITH AN AUTOMORPHISM CUBING MANY ELEMENTS

DESMOND MacHALE
(Received 11 February 1974; revised 1 July 1974)
Communicated by G. E. Wall

1. Introduction

Let G be a group and α_{n} the mapping which takes every element of G to its nth power, where n is an integer. It is well known that if α_{n} is an automorphism then G is Abelian in the cases $n=-1,2$, and 3 . For any other integer $n(\neq 0)$ there exists a non-Abelian group which admits α_{n} as the identity automorphism. Indeed Miller (1929) has shown that if $n \neq 0, \pm 1,2,3$ then there exist nonAbelian groups which admit α_{n} as a non-trivial automorphism.

Confining our attention to finite groups, we consider the problem of how large a proportion of the elements of a non-Abelian group can be mapped to their nth powers by some automorphism when $n=-1,2$ or 3 . Let \mathscr{G}_{p} denote the set of all finite groups with order divisible by the prime p but by no smaller prime. In the case $n=-1$ it is known that if G is a non-Abelian group in \mathscr{G}_{p} then not more than $\frac{3}{4}|G|$ or $|G| / p$ of its elements can be inverted by an automorphism according as $p=2$ or p is odd. Manning (1906) classified all groups G with an automorphism inverting $\frac{3}{4}|G|$ elements, while Liebeck and the present author (1973) classified all non-Abelian groups in \mathscr{G}_{p} (p odd) with an automorphism inverting $|G| / p$ elements.

Liebeck (1973) has recently settled the case $n=2$ by proving that if G is a non-Abelian group in \mathscr{G}_{p} then no automorphism can send more than $|G| / p$ elements of G to their squares. This result includes the case $p=2$. A complete classification of all non-Abelian groups G in \mathscr{G}_{p} with an automorphism squaring exactly $|G| / p$ elements also appears in Liebeck (1973).

In this paper we investigate the case $n=3$. We prove the following results:
(a) If G is a finite non-Abelian group then not more than $\frac{3}{4}|G|$ elements can be cubed by an automorphism.
(b) G is a finite group with an automorphism cubing exactly $\frac{3}{4}|G|$ elements if and only if G has central quotient group of order 4 and the centre of G has no elements of order 3.
(c) If G is a non-Abelian group in \mathscr{G}_{p} and p is odd then no automorphism of G can send more than $|G| / p$ elements to their cubes.

2. Notation

$G \quad$ Denotes a finite group.
$\alpha \quad$ An automorphism of G.
$T \quad\left\{g \in G \mid(g) \alpha=g^{3}\right\}$.
$\mathscr{G}_{p} \quad$ The set of all groups with order divisible by the prime p but by no smaller prime.
$C_{G}(t) \quad$ The centralizer of the element t in the group G.
$Z(G)=Z$ The centre of G.
$G^{\prime} \quad$ The commutator subgroup of G.

3. Preliminary results.

Lemma 3.1. If $\alpha \in$ Aut G then $g^{-1}(g \alpha) \in C_{G}\left(T \cap g^{-1} T g\right)$.
Proof. For $g \in G, t \in T, g^{-1} t g \in T \Leftrightarrow\left(g^{-1} t g\right)^{3}=\left(g^{-1} t g\right) \alpha \Leftrightarrow\left[g^{-1}(g \alpha), t\right]=1$.
Lemma 3.2. If $|G|$ is odd and $g \alpha=g(g \neq 1)$ then $T \cap T g$ is empty.
Proof. Suppose that $t \in T \cap T g$. Then $t=t_{1} g$ and applying α we get $t^{3}=t_{1}{ }^{3} g$. Thus $t^{2}=t_{1}{ }^{2}$ and the oddness of $|G|$ gives $t=t_{1}$, and $g=1$.

Lemma 3.3. (Joseph (1969)). If G is a non-Abelian group in \mathscr{G}_{p} (p odd) then G has at least $|G| / p$ conjugacy classes if and only if G is nilpotent of class 2 with $\left|G^{\prime}\right|=p$.

Proof. G has $\left(G: G^{\prime}\right)$ irreducible representations of degree 1 and hence at least $|G| / p-\left(G: G^{\prime}\right)$ other irreducible representations, each of degree at least p. Hence

$$
|G| \geqq|G| /\left|G^{\prime}\right|+p^{2}\left(\frac{1}{p}-\frac{1}{\left|G^{\prime}\right|}\right)|G|
$$

from which it follows that $\left|G^{\prime}\right| \leqq p+1$. Since p is odd, $\left|G^{\prime}\right|=p$, and so $G^{\prime} \subseteq Z(G)$, since G belongs to \mathscr{G}_{p}. The converse is obvious.

Lemma 3.4. If G belongs to \mathscr{G}_{p} and $Z(G)$ is not contained in T then $|T| \leqq|G| / p$.

Proof. If $Z \notin T$ then $T \cap Z$ is a proper subgroup of Z. Clearly, $|Z x \cap T| \leqq(1 / p)|Z|$ for any x in G and the result follows.

4. Main Results

Theorem 4.1. If $|T|>\frac{3}{4}|G|$ then $T=G$ and G is Abelian.
Proof. Suppose that $|T|>\frac{3}{4}|G|$ and let t be any element of T. Then

$$
\left|t^{-1} T t \cap T\right|=\left|t^{-1} T t\right|+|T|-\left|t^{-1} T t \cup T\right|>\frac{3}{4}|G|+\frac{3}{4}|G|-|G|=\frac{1}{2}|G| .
$$

By Lemma 3.1, t^{2} commutes with more than half the elements of G and hence $t^{2} \in Z(G)$, for all $t \in T$.

Similarly, $|t T \cap T|>\frac{1}{2}|G|$. However, if t, s and $t s$ belong to T then $t^{3} s^{3}=(t s)^{3}$ and so $t s=s t$, since t^{2} is central.

Hence, $\left|C_{G}(t)\right|>\frac{1}{2}|G|$ for every $t \in T$ and so every element of T is central. Finally, $|Z(G)|>\frac{3}{4}|G|$ and so $T=Z(G)=G$.

Theorem 4.2. G has an automorphism for which $|T|=\frac{3}{4}|G|$ if and only if $(G: Z(G))=4$ and $Z(G)$ has no elements of order 3 .

Proof. If $(G: Z(G))=4$ then $G=\boldsymbol{Z} \cup \boldsymbol{Z} a \cup \boldsymbol{Z} b \cup \boldsymbol{Z} a b$ where a^{2}, b^{2} and $[a, b]$ all belong to \boldsymbol{Z}. A routine calculation shows that if \boldsymbol{Z} has no elements of order 3 then the map defined by $z a^{i} b^{j} \rightarrow z^{3} a^{3 i} b^{3 j}, 0 \leqq i, j \leqq 1$ for all $z \in Z$, defines an automorphism sending exactly $\frac{3}{4}|G|$ elements to their cubes.

Conversely, let G be a group for which $|T|=\frac{3}{4}|G|$. Clearly G is non-Abelian. Let t be any non-central element of T. We show that $C_{G}(t)$ is an Abelian subgroup of index 2 in G.

As in the proof of Theorem $4.1\left|C_{G}\left(t^{2}\right)\right| \geqq \frac{1}{2}|G|$. If $\left|C_{G}\left(t^{2}\right)\right|>\frac{1}{2}|G|$ then t^{2} is central and thus $|t T \cap T| \geqq \frac{1}{2}|G|$. Thus $\left|C_{G}(t)\right| \geqq \frac{1}{2}|G|$ and since t central, $\left|C_{G}(t)\right|=\frac{1}{2}|G|$. Moreover, $C_{G}(t) \subset T$ and so $C_{G}(t)$ is Abelian.

We can now assume that $\left|C_{G}\left(t^{2}\right)\right|=\frac{1}{2}|G|$ and $C_{G}\left(t^{2}\right)$ is Abelian, since $C_{G}\left(t^{2}\right) \subset T$. Accordingly, if $g t^{2}=t^{2} g$ then $g t=t g$ since $t t^{2}=t^{2} t$. So $C_{G}(t)=$ $C_{G}\left(t^{2}\right)$ and $C_{G}(t)$ is an Abelian subgroup of index 2 in G.

Finally, let a and b be a pair of non-commuting elements of T. Such a pair exists since otherwise G is Abelian. Let $A=C_{G}(a)$ and $B=C_{G}(b)$ and so A and B are distinct Abelian subgroups of index 2 in G.

Now $G=A B$ and $(G: A \cap B)=4$. Clearly $A \cap B=Z(G)$. Since $Z(G) \subset T$, $Z(G)$ has no elements of order 3 and the proof is complete.

Theorem 4.3. Let $G \in \mathscr{G}_{p}$ and let G be non-Abelian, where p is odd. Then $|T| \leqq|G| / p$, for any automorphism α of G.

Proof. Suppose that $G \in \mathscr{G}_{p}$ and $|T|>(1 / p)|G|$, where G is non-Abelian. We first consider the case where α fixes a non-trivial element g of G. Now g has order at least p and by Lemma 3.2 the p sets $T, T g, \cdots, T g^{p-1}$ are pairwise disjoint. Then, $|G| \geqq\left|T \cup T g \cup \cdots \cup T g^{p-1}\right|=p|T|>|G|$, a contradiction.

We may thus assume that α is fixed-point-free. By Lemma 3.1, for $g \in G$, $t \in T, g^{-1} t g \in T$ if and only if $\left[g^{-1}(g \alpha), t\right]=1$. Since α is fixed-point-free the correspondence $g^{-1} g(\alpha) \leftrightarrow g$ is one-to-one and so $g^{-1} t g \in T \Leftrightarrow[g, t]=1$. Hence any conjugacy class contains at most one element of T. Thus G has at least $(1 / p)|G|$ conjugacy classes and so by Lemma $3.3, G$ is nilpotent of class 2 with $\left|G^{\prime}\right|=p$. Moreover, by Lemma $3.4, Z(G) \subset T$ and so $G^{\prime} \subseteq Z(G) \subset T$.

Finally, let r and s be a pair of noncommuting elements of T. Then, $[r, s] \alpha=\left[r^{3}, s^{3}\right]=[r, s]^{3}=[r, s]^{9}$, since $r, s \in T$ and G is nilpotent of class 2. Thus $[r, s]^{6}=1$ and so $[r, s]^{3}=1$, by the oddness of $|G|$. Since T has no elements of order 3 , this is a contradiction and the theorem is established.

References

K. S. Joseph (1969), Commutativity in non-Abelian groups (Ph. D. thesis, University of California, Los Angeles, 1969).
H. Liebeck (1973), 'Groups with an automorphism squaring many elements', J. Austral. Math. Soc. 16, 33-42.
H. Liebeck and D. MacHale (1973), 'Groups of odd order with automorphisms inverting many elements', J. London Math. Soc. (2) 6, 215-223.
W. A. Manning (1906), 'Groups in which a large number of operators may correspond to their inverses', Trans. Amer. Math. Soc. 7, 233-240.
G. A. Miller (1929), 'Possible α-automorphisms of non-Abelian groups', Proc. Nat. Acad. Sci. 15, 89-91.

Department of Mathematics

University College
Cork
Ireland.

