J. Austral. Math. Soc. 20 (Series A) (1975), 253-256.

GROUPS WITH AN AUTOMORPHISM CUBING MANY ELEMENTS

DESMOND MacHALE

(Received 11 February 1974; revised 1 July 1974)

Communicated by G. E. Wall

1. Introduction

Let G be a group and α_n the mapping which takes every element of G to its nth power, where n is an integer. It is well known that if α_n is an automorphism then G is Abelian in the cases n = -1, 2, and 3. For any other integer $n \neq 0$ there exists a non-Abelian group which admits α_n as the identity automorphism. Indeed Miller (1929) has shown that if $n \neq 0, \pm 1, 2, 3$ then there exist non-Abelian groups which admit α_n as a non-trivial automorphism.

Confining our attention to finite groups, we consider the problem of how large a proportion of the elements of a non-Abelian group can be mapped to their *n*th powers by some automorphism when n = -1, 2 or 3. Let \mathscr{G}_p denote the set of all finite groups with order divisible by the prime p but by no smaller prime. In the case n = -1 it is known that if G is a non-Abelian group in \mathscr{G}_p then not more than $\frac{3}{4}|G|$ or |G|/p of its elements can be inverted by an automorphism according as p = 2 or p is odd. Manning (1906) classified all groups G with an automorphism inverting $\frac{3}{4}|G|$ elements, while Liebeck and the present author (1973) classified all non-Abelian groups in \mathscr{G}_p (p odd) with an automorphism inverting |G|/p elements.

Liebeck (1973) has recently settled the case n = 2 by proving that if G is a non-Abelian group in \mathscr{G}_p then no automorphism can send more than |G|/pelements of G to their squares. This result includes the case p = 2. A complete classification of all non-Abelian groups G in \mathscr{G}_p with an automorphism squaring exactly |G|/p elements also appears in Liebeck (1973).

In this paper we investigate the case n = 3. We prove the following results:

(a) If G is a finite non-Abelian group then not more than $\frac{3}{4}|G|$ elements can be cubed by an automorphism.

(b) G is a finite group with an automorphism cubing exactly $\frac{3}{4}|G|$ elements if and only if G has central quotient group of order 4 and the centre of G has no elements of order 3.

253

(c) If G is a non-Abelian group in \mathscr{G}_p and p is odd then no automorphism of G can send more than |G|/p elements to their cubes.

2. Notation

 $\begin{array}{lll} G & \text{Denotes a finite group.} \\ \alpha & \text{An automorphism of } G \\ T & \{g \in G \, \big| \, (g)\alpha = g^3\}. \\ \\ \mathscr{G}_p & \text{The set of all groups with order divisible by the prime } p \text{ but by no smaller prime.} \\ C_G(t) & \text{The centralizer of the element } t \text{ in the group } G \\ \mathbf{Z}(G) = \mathbf{Z} & \text{The centre of } G. \\ G' & \text{The commutator subgroup of } G. \end{array}$

3. Preliminary results.

LEMMA 3.1. If $\alpha \in \operatorname{Aut} G$ then $g^{-1}(g\alpha) \in C_G(T \cap g^{-1}Tg)$.

PROOF. For $g \in G$, $t \in T$, $g^{-1}tg \in T \Leftrightarrow (g^{-1}tg)^3 = (g^{-1}tg)\alpha \Leftrightarrow [g^{-1}(g\alpha), t] = 1$.

LEMMA 3.2. If |G| is odd and $g\alpha = g(g \neq 1)$ then $T \cap Tg$ is empty.

PROOF. Suppose that $t \in T \cap Tg$. Then $t = t_1g$ and applying α we get $t^3 = t_1^3 g$. Thus $t^2 = t_1^2$ and the oddness of |G| gives $t = t_1$, and g = 1.

LEMMA 3.3. (Joseph (1969)). If G is a non-Abelian group in \mathscr{G}_p (p odd) then G has at least |G|/p conjugacy classes if and only if G is nilpotent of class 2 with |G'| = p.

PROOF. G has (G:G') irreducible representations of degree 1 and hence at least |G|/p - (G:G') other irreducible representations, each of degree at least p. Hence

$$\left| G \right| \geq \left| G \right| / \left| G' \right| + p^2 \left(\frac{1}{p} - \frac{1}{\left| G' \right|} \right) \left| G \right|$$

from which it follows that $|G'| \leq p+1$. Since p is odd, |G'| = p, and so $G' \subseteq \mathbb{Z}(G)$, since G belongs to \mathscr{G}_p . The converse is obvious.

LEMMA 3.4. If G belongs to \mathscr{G}_p and $\mathbb{Z}(G)$ is not contained in T then $|T| \leq |G|/p$.

PROOF. If $Z \notin T$ then $T \cap Z$ is a proper subgroup of Z. Clearly, $|Zx \cap T| \leq (1/p)|Z|$ for any x in G and the result follows.

4. Main Results

THEOREM 4.1. If $|T| > \frac{3}{4} |G|$ then T = G and G is Abelian.

PROOF. Suppose that $|T| > \frac{3}{4} |G|$ and let t be any element of T. Then

$$\left|t^{-1}Tt \cap T\right| = \left|t^{-1}Tt\right| + \left|T\right| - \left|t^{-1}Tt \cup T\right| > \frac{3}{4}\left|G\right| + \frac{3}{4}\left|G\right| - \left|G\right| = \frac{1}{2}\left|G\right|.$$

By Lemma 3.1, t^2 commutes with more than half the elements of G and hence $t^2 \in \mathbb{Z}(G)$, for all $t \in T$.

Similarly, $|tT \cap T| > \frac{1}{2}|G|$. However, if t, s and ts belong to T then $t^3s^3 = (ts)^3$ and so ts = st, since t^2 is central.

Hence, $|C_G(t)| > \frac{1}{2} |G|$ for every $t \in T$ and so every element of T is central. Finally, $|Z(G)| > \frac{3}{4} |G|$ and so T = Z(G) = G.

THEOREM 4.2. G has an automorphism for which $|T| = \frac{3}{4}|G|$ if and only if $(G: \mathbb{Z}(G)) = 4$ and $\mathbb{Z}(G)$ has no elements of order 3.

PROOF. If (G: Z(G)) = 4 then $G = Z \cup Za \cup Zb \cup Zab$ where a^2 , b^2 and [a, b] all belong to Z. A routine calculation shows that if Z has no elements of order 3 then the map defined by $za^ib^j \rightarrow z^3a^{3i}b^{3j}$, $0 \leq i, j \leq 1$ for all $z \in Z$, defines an automorphism sending exactly $\frac{3}{4}|G|$ elements to their cubes.

Conversely, let G be a group for which $|T| = \frac{3}{4}|G|$. Clearly G is non-Abelian. Let t be any non-central element of T. We show that $C_G(t)$ is an Abelian subgroup of index 2 in G.

As in the proof of Theorem 4.1 $|C_G(t^2)| \ge \frac{1}{2} |G|$. If $|C_G(t^2)| > \frac{1}{2} |G|$ then t^2 is central and thus $|tT \cap T| \ge \frac{1}{2} |G|$. Thus $|C_G(t)| \ge \frac{1}{2} |G|$ and since t central, $|C_G(t)| = \frac{1}{2} |G|$. Moreover, $C_G(t) \subset T$ and so $C_G(t)$ is Abelian.

We can now assume that $|C_G(t^2)| = \frac{1}{2}|G|$ and $C_G(t^2)$ is Abelian, since $C_G(t^2) \subset T$. Accordingly, if $gt^2 = t^2g$ then gt = tg since $tt^2 = t^2t$. So $C_G(t) = C_G(t^2)$ and $C_G(t)$ is an Abelian subgroup of index 2 in G.

Finally, let a and b be a pair of non-commuting elements of T. Such a pair exists since otherwise G is Abelian. Let $A = C_G(a)$ and $B = C_G(b)$ and so A and B are distinct Abelian subgroups of index 2 in G.

Now G = AB and $(G: A \cap B) = 4$. Clearly $A \cap B = Z(G)$. Since $Z(G) \subset T$, Z(G) has no elements of order 3 and the proof is complete.

THEOREM 4.3. Let $G \in \mathscr{G}_p$ and let G be non-Abelian, where p is odd. Then $|T| \leq |G|/p$, for any automorphism α of G.

PROOF. Suppose that $G \in \mathscr{G}_p$ and |T| > (1/p) |G|, where G is non-Abelian. We first consider the case where α fixes a non-trivial element g of G. Now g has order at least p and by Lemma 3.2 the p sets T, Tg, \dots, Tg^{p-1} are pairwise disjoint. Then, $|G| \ge |T \cup Tg \cup \dots \cup Tg^{p-1}| = p|T| > |G|$, a contradiction. Desmond MacHale

We may thus assume that α is fixed-point-free. By Lemma 3.1, for $g \in G$, $t \in T$, $g^{-1}tg \in T$ if and only if $[g^{-1}(g\alpha), t] = 1$. Since α is fixed-point-free the correspondence $g^{-1}g(\alpha) \leftrightarrow g$ is one-to-one and so $g^{-1}tg \in T \Leftrightarrow [g, t] = 1$. Hence any conjugacy class contains at most one element of T. Thus G has at least (1/p) |G| conjugacy classes and so by Lemma 3.3, G is nilpotent of class 2 with |G'| = p. Moreover, by Lemma 3.4, $Z(G) \subset T$ and so $G' \subseteq Z(G) \subset T$.

Finally, let r and s be a pair of noncommuting elements of T. Then, $[r, s]\alpha = [r^3, s^3] = [r, s]^3 = [r, s]^9$, since r, $s \in T$ and G is nilpotent of class 2. Thus $[r, s]^6 = 1$ and so $[r, s]^3 = 1$, by the oddness of |G|. Since T has no elements of order 3, this is a contradiction and the theorem is established.

References

- K. S. Joseph (1969), Commutativity in non-Abelian groups (Ph. D. thesis, University of California, Los Angeles, 1969).
- H. Liebeck (1973), 'Groups with an automorphism squaring many elements', J. Austral. Math. Soc. 16, 33-42.
- H. Liebeck and D. MacHale (1973), 'Groups of odd order with automorphisms inverting many elements', J. London Math. Soc. (2) 6, 215-223.
- W. A. Manning (1906), 'Groups in which a large number of operators may correspond to their inverses', Trans. Amer. Math. Soc. 7, 233-240.
- G. A. Miller (1929), 'Possible α-automorphisms of non-Abelian groups', Proc. Nat. Acad. Sci. 15, 89-91.

Department of Mathematics University College Cork Ireland.