
2 Basic Tools

Before reading and studying results on random graphs included in the text, one should
become familiar with the basic rules of asymptotic computation, find leading terms
in combinatorial expressions, choose suitable bounds for the binomials, and get ac-
quainted with probabilistic tools needed to study tail bounds, i.e., the probability that
a random variable exceeds (or is smaller than) some real value. This chapter offers the
reader a short description of these important technical tools used throughout the text.
For more information about the topic of this chapter, we refer the reader to an excellent
expository book, titled Asymptotia, written by Joel Spencer with Laura Florescu (see
[108]).

2.1 Asymptotics

The study of random graphs and networks is mainly of an asymptotic nature. This
means that we explore the behavior of discrete structures of very large “size,” say 𝑛. It
is quite common to analyze complicated expressions of their numerical characteristics,
say 𝑓 (𝑛), in terms of their rate of growth or decline as 𝑛 → ∞. The usual way is to
“approximate” 𝑓 (𝑛) with a much simpler function 𝑔(𝑛).

We say that 𝑓 (𝑛) is asymptotically equal to 𝑔(𝑛) and write 𝑓 (𝑛) ∼ 𝑔(𝑛) if 𝑓 (𝑛)/𝑔(𝑛) →
1 as 𝑛→∞.

Example 2.1 The following functions 𝑓 (𝑛) and 𝑔(𝑛) are asymptotically equal:

(a) Let 𝑓 (𝑛) =
(𝑛
2

)
, 𝑔(𝑛) = 𝑛2/2. Then

(𝑛
2

)
= 𝑛(𝑛 − 1)/2 ∼ 𝑛2/2.

(b) Let 𝑓 (𝑛) = 3
(𝑛
3

)
𝑝2, where 𝑝 = 𝑚/

(𝑛
2

)
. Find 𝑚 such that 𝑓 (𝑛) ∼ 𝑔(𝑛) = 2𝜔2. Now,

𝑓 (𝑛) = 3
𝑛(𝑛 − 1) (𝑛 − 2)

6
· 4𝑚2

(𝑛(𝑛 − 1))2
∼ 2𝑚2

𝑛
,

so 𝑚 should be chosen as 𝜔
√
𝑛.

We write 𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) when there is a positive constant 𝐶 such that for all
sufficiently large 𝑛, | 𝑓 (𝑛) | ≤ 𝐶 |𝑔(𝑛) |, or, equivalently, lim sup𝑛→∞ | 𝑓 (𝑛) |/|𝑔(𝑛) | < ∞.
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2.1 Asymptotics 9

Similarly, we write 𝑓 (𝑛) = Ω(𝑔(𝑛)) when there is a positive constant 𝑐 such that for
all sufficiently large 𝑛, | 𝑓 (𝑛) | ≥ 𝑐 |𝑔(𝑛) | or, equivalently, lim inf𝑛→∞ | 𝑓 (𝑛) |/|𝑔(𝑛) | > 0.

Finally, we write 𝑓 (𝑛) = Θ(𝑔(𝑛)) when there exist positive constants 𝑐 and 𝐶
such that for all sufficiently large 𝑛, 𝑐 |𝑔(𝑛) | ≤ | 𝑓 (𝑛) | ≤ 𝐶 |𝑔(𝑛) | or, equivalently,
𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) and 𝑓 (𝑛) = Ω(𝑔(𝑛)).

Note that 𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) simply means that the growth rate of 𝑓 (𝑛) as 𝑛 → ∞
does not exceed the growth rate of 𝑔(𝑛), 𝑓 (𝑛) = Ω(𝑔(𝑛)) such that 𝑓 (𝑛) is growing
at least as quickly as 𝑔(𝑛), while 𝑓 (𝑛) = Θ(𝑔(𝑛)) states that their order of growth is
identical.

Note also that if 𝑓 (𝑛) = 𝑓1 (𝑛) 𝑓2 (𝑛) + · · · + 𝑓𝑘 (𝑛), where 𝑘 is fixed and for 𝑖 =
1, 2, . . . , 𝑘, 𝑓𝑖 (𝑛) = 𝑂 (𝑔(𝑛)), then 𝑓 (𝑛) = 𝑂 (𝑔(𝑛)) as well. In fact, the above property
also holds if we replace 𝑂 by Ω or Θ.

Example 2.2 Let

(a) 𝑓 (𝑛) = 5𝑛3 − 7 log 𝑛 + 2𝑛−1/2; then

𝑓 (𝑛) = 𝑂 (𝑛3),
𝑓 (𝑛) = 5𝑛3 +𝑂 (log 𝑛),
𝑓 (𝑛) = 5𝑛3 − 7 log 𝑛 +𝑂 (𝑛−1/2).

(b) 𝑓 (𝑥) = 𝑒𝑥 ; then 𝑓 (𝑥) = 1 + 𝑥 + 𝑥2/2 +𝑂 (𝑥3) for 𝑥 → 0.

We now introduce the frequently used “little o” notation.

We write 𝑓 (𝑛) = 𝑜(𝑔(𝑛)) or 𝑓 (𝑛) � 𝑔(𝑛) if 𝑓 (𝑛)/𝑔(𝑛) → 0 as 𝑛→∞. Similarly, we
write 𝑓 (𝑛) = 𝜔(𝑔(𝑛)) or 𝑓 (𝑛) � 𝑔(𝑛) if 𝑓 (𝑛)/𝑔(𝑛) → ∞ as 𝑛 → ∞. Obviously, if
𝑓 (𝑛) � 𝑔(𝑛), then we can also write 𝑔(𝑛) � 𝑓 (𝑛).

Note that 𝑓 (𝑛) = 𝑜(𝑔(𝑛)) simply means that 𝑔(𝑛) grows faster with 𝑛 than 𝑓 (𝑛),
and the other way around if 𝑓 (𝑛) = 𝜔(𝑔(𝑛)).

Let us also make a few important observations. Obviously, 𝑓 (𝑛) = 𝑜(1) means that
𝑓 (𝑛) itself tends to 0 as 𝑛 → ∞. Also the notation 𝑓 (𝑛) ∼ 𝑔(𝑛) is equivalent to the
statement that 𝑓 (𝑛) = (1 + 𝑜(1))𝑔(𝑛). One should also note the difference between
the (1 + 𝑜(1)) factor in the expression 𝑓 (𝑛) = (1 + 𝑜(1))𝑔(𝑛) and when it is placed in
the exponent, i.e., when 𝑓 (𝑛) = 𝑔(𝑛)1+𝑜 (1) . In the latter case, this notation means that
for every fixed 𝜀 > 0 and sufficiently large 𝑛, 𝑔(𝑛)1−𝜀 < 𝑓 (𝑛) < 𝑔(𝑛)1+𝜀 . Hence here
the (1 + 𝑜(1)) factor is more accurate in 𝑓 (𝑛) = (1 + 𝑜(1))𝑔(𝑛) than the much coarser
factor (1 + 𝑜(1)) in 𝑓 (𝑛) = 𝑔(𝑛) (1+𝑜 (1)) .

It is also worth mentioning that, regardless of how small a constant 𝑐 > 0 is and
however large a positive constant 𝐶 is, the following hierarchy of growths holds:

ln𝐶 𝑛 � 𝑛𝑐 , 𝑛𝐶 � (1 + 𝑐)𝑛, 𝐶𝑛 � 𝑛𝑐𝑛. (2.1)
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Example 2.3 Let

(a) 𝑓 (𝑛) =
(𝑛
2

)
𝑝, where 𝑝 = 𝑝(𝑛). Then 𝑓 (𝑛) = 𝑜(1) if 𝑝 = 1/𝑛2+𝜀 , where 𝜀 > 0,

since 𝑓 (𝑛) ∼ 𝑛2

2 𝑛
−2−𝜀 = 𝑛−𝜀/2→ 0.

(b) 𝑓 (𝑛) = 3
(𝑛
3

)
𝑝2, where 𝑝 = 𝑚/

(𝑛
2

)
and 𝑚 = 𝑛1/2/𝜔, where 𝜔 = 𝜔(𝑛) → ∞ as

𝑛→∞. Then 𝑓 (𝑛) = 𝑜(1) since 𝑓 (𝑛) ≤ 𝑛4/
(
2
(𝑛
2

)2
𝜔2

)
→ 0.

Exercises

2.1.1 Let 𝑓 (𝑛) =
(𝑛
3

)
𝑝2 (1 − 𝑝)2(𝑛−3) , where log 𝑛 − log log 𝑛 ≤ 𝑛𝑝 ≤ 2 log 𝑛. Then

show that 𝑓 (𝑛) = 𝑂 (𝑛3𝑝2𝑒−2𝑛𝑝) = 𝑜(1).
2.1.2 Let 𝑓 (𝑛) =

(
1 − 𝑐

𝑛

)𝑛(log 𝑛)2 , where 𝑐 is a constant. Then show that 𝑓 (𝑛) = 𝑜(𝑛−2).
2.1.3 Let 𝑝 =

log 𝑛
𝑛

and 𝑓 (𝑛) = ∑𝑛/2
𝑘=2 𝑛

𝑘 𝑝𝑘−1 (1 − 𝑝)𝑘 (𝑛−𝑘) . Then show that 𝑓 (𝑛) =
𝑜(1).

2.1.4 Suppose that 𝑘 = 𝑘 (𝑛) =
⌈
2 log1/(1−𝑝) 𝑛

⌉
and 0 < 𝑝 < 1 is a constant. Then

show that
(𝑛
𝑘

)
(1 − 𝑝)𝑘 (𝑘−1)/2 → 0.

2.2 Binomials

We start with the famous asymptotic estimate for 𝑛!, known as Stirling’s formula.

Lemma 2.4
𝑛! = (1 + 𝑜(1))𝑛𝑛𝑒−𝑛

√
2𝜋𝑛.

Moreover,
𝑛𝑛𝑒−𝑛

√
2𝜋𝑛 ≤ 𝑛! ≤ 𝑛𝑛𝑒−𝑛

√
2𝜋𝑛 𝑒1/12𝑛.

Example 2.5 Consider the coin-tossing experiment where we toss a fair coin 2𝑛
times. What is the probability that this experiment results in exactly 𝑛 heads and 𝑛
tails? Let 𝐴 denote such an event. Then P(𝐴) =

(2𝑛
𝑛

)
2−2𝑛.

By Stirling’s approximation,(
2𝑛
𝑛

)
=
(2𝑛)!
(𝑛!)2

∼
(2𝑛)2𝑛𝑒−2𝑛

√︁
2𝜋(2𝑛)

(𝑛𝑛𝑒−𝑛)2 (2𝜋𝑛)
=

22𝑛
√
𝜋𝑛
.

Hence P(𝐴) ∼ 1/
√
𝜋𝑛.

Example 2.6 What is the number of digits in 100!? To answer this question we shall
use sharp bounds on 𝑛! given in Lemma 2.4. Notice that

1 <
𝑛!

𝑛𝑛𝑒−𝑛
√

2𝜋𝑛
< 𝑒1/12𝑛.

Hence, taking logarithms,
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0 < ln 𝑛! −
(
𝑛 + 1

2

)
ln 𝑛 − 𝑛 + 1

2
ln 2𝜋 <

1
12𝑛

.

Now, since the number of digits in a positive integer 𝑛 is
⌊
log10 𝑛 + 1

⌋
, we divide both

sides by ln 10, to get

0 < log10 𝑛! −

(
𝑛 + 1

2

)
ln 𝑛 − 𝑛 + 1

2 ln 2𝜋

ln 10
<

1
12𝑛 ln 10

.

Substituting 𝑛 = 100, we obtain

0 < log10 100! − 157.96 < 0.00036.

Thus 100! has exactly 158 digits.

Before we move to the analysis of the asymptotic behavior of the binomial coefficient(𝑛
𝑘

)
, let us prove some simple, often-used upper and lower bounds, valid for all fixed 𝑛

and 𝑘 .

Lemma 2.7 For every integer 𝑛 and 𝑘 , 𝑘 ≤ 𝑛,(
𝑛

𝑘

)
≤

(𝑛𝑒
𝑘

) 𝑘
, (2.2)

𝑛𝑘

𝑘!

(
1 − 𝑘 (𝑘 − 1)

2𝑛

)
≤

(
𝑛

𝑘

)
≤ 𝑛

𝑘

𝑘!

(
1 − 𝑘

2𝑛

) 𝑘−1

, (2.3)(
𝑛

𝑘

)
≤ 𝑛

𝑘

𝑘!
𝑒−𝑘 (𝑘−1)/(2𝑛) . (2.4)

Proof To prove (2.2), note that(
𝑛

𝑘

)
=

𝑛!
𝑘!(𝑛 − 𝑘)! =

(𝑛)𝑘
𝑘!

,

where
(𝑛)𝑘 = 𝑛(𝑛 − 1) (𝑛 − 2) · · · (𝑛 − 𝑘 + 1) ≤ 𝑛𝑘 .

By Lemma 2.4, 𝑘! > (𝑘/𝑒)𝑘 and the first bound holds.
To see that remaining bounds on

(𝑛
𝑘

)
are true we have to estimate (𝑛)𝑘 more carefully.

Note first that (
𝑛

𝑘

)
=
𝑛𝑘

𝑘!
(𝑛)𝑘
𝑛𝑘

=
𝑛𝑘

𝑘!

𝑘−1∏
𝑖=0

(
1 − 𝑖

𝑛

)
. (2.5)

The upper bound in (2.3) follows from the observation that for 𝑖 = 1, 2, . . . , b𝑘/2c,(
1 − 𝑖

𝑛

) (
1 − 𝑘 − 𝑖

𝑛

)
≤

(
1 − 𝑘

2𝑛

)2

.
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The lower bound in (2.3) is implied by the Weierstrass product inequality, which
states that

𝑠∏
𝑟=1

(1 − 𝑎𝑟 ) +
𝑠∑︁
𝑟=1

𝑎𝑟 ≥ 1 (2.6)

for 0 ≤ 𝑎1, 𝑎2, . . . , 𝑎𝑠 ≤ 1, and can be easily proved by induction. Hence

𝑖−1∏
𝑖=0

(
1 − 𝑖

𝑛

)
≥ 1 −

𝑘−1∑︁
𝑖=0

𝑖

𝑛
= 1 − 𝑘 (𝑘 − 1)

2𝑛
.

The last bound given in (2.4) immediately follows from the upper bound in (2.3)
and the simple observation that for every real 𝑥,

1 + 𝑥 ≤ 𝑒𝑥 . (2.7)

�

Example 2.8 To illustrate an application of (2.2), let us consider the function

𝑓 (𝑛, 𝑘) =
(
𝑛

𝑘

)
(1 − 2−𝑘 )𝑛,

where 𝑛, 𝑘 are positive integers, and denote by 𝑛𝑘 the smallest 𝑛 (as a function of 𝑘)
such that 𝑓 (𝑛, 𝑘) < 1. We aim for an upper estimate of 𝑛𝑘 as a function of 𝑘 , when
𝑘 ≥ 2. In fact, we claim that

𝑛𝑘 ≤
(
1 +

3 log2 𝑘

𝑘

)
𝑘22𝑘 ln 2. (2.8)

Now, by (2.2) and (2.7),

𝑓 (𝑛, 𝑘) =
(
𝑛

𝑘

)
(1 − 2−𝑘 )𝑛 ≤

(𝑛𝑒
𝑘

) 𝑘
𝑒−𝑛/2

𝑘

.

If 𝑚 = (1 + 𝜀)𝑘22𝑘 ln 2, then(𝑚𝑒
𝑘

) 𝑘
𝑒−𝑚/2

𝑘

= ((1 + 𝜀)2𝑘 𝑘2−(1+𝜀)𝑘𝑒 ln 2)𝑘 . (2.9)

If 𝜀 = 3 log2 𝑘/𝑘 , then the right-hand side (RHS) of (2.9) equals ((1 + 𝜀)𝑘−2𝑒 ln 2)𝑘 ,
which is less than 1. This implies that 𝑛𝑘 satisfies (2.8).

In the following chapters, we shall also need the bounds given in the next lemma.

Lemma 2.9 If 𝑎 ≥ 𝑏, then(
𝑘 − 𝑏
𝑛 − 𝑏

)𝑏 (
𝑛 − 𝑘 − 𝑎 + 𝑏

𝑛 − 𝑎

)𝑎−𝑏
≤

(𝑛−𝑎
𝑘−𝑏

)(𝑛
𝑘

) ≤ (
𝑘

𝑛

)𝑏 (
𝑛 − 𝑘
𝑛 − 𝑏

)𝑎−𝑏
.
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Proof To see this note that(𝑛−𝑎
𝑘−𝑏

)(𝑛
𝑘

) =
(𝑛 − 𝑎)!𝑘!(𝑛 − 𝑘)!

(𝑘 − 𝑏)!(𝑛 − 𝑘 − 𝑎 + 𝑏)!𝑛!

=
𝑘 (𝑘 − 1) · · · (𝑘 − 𝑏 + 1)
𝑛(𝑛 − 1) · · · (𝑛 − 𝑏 + 1) ×

(𝑛 − 𝑘) (𝑛 − 𝑘 − 1) · · · (𝑛 − 𝑘 − 𝑎 + 𝑏 + 1)
(𝑛 − 𝑏) (𝑛 − 𝑏 − 1) · · · (𝑛 − 𝑎 + 1)

≤
(
𝑘

𝑛

)𝑏 (
𝑛 − 𝑘
𝑛 − 𝑏

)𝑎−𝑏
.

The lower bound follows similarly. �

Example 2.10 Let us show that((𝑛2)−2𝑙+𝑟
𝑚−2𝑙+𝑟

)((𝑛2)
𝑚

) = 𝑂

(
(2𝑚)2𝑙−𝑟
𝑛4𝑙−2𝑟

)
assuming that 2𝑙 − 𝑟 � 𝑚, 𝑛.

Applying Lemma 2.9 with 𝑛 replaced by
(𝑛
2

)
and with 𝑘 = 𝑚, 𝑎 = 𝑏 = 2𝑙 − 𝑟 , we

see that ((𝑛2)−2𝑙+𝑟
𝑚−2𝑙+𝑟

)((𝑛2)
𝑚

) ≤
(
𝑚(𝑛
2

) )2𝑙−𝑟

.

We will also need precise estimates for the binomial coefficient
(𝑛
𝑘

)
when 𝑘 = 𝑘 (𝑛).

They are based on the Stirling approximation of factorials and estimates given in
Lemma 2.7.

Lemma 2.11 Let 𝑘 be fixed or grow with 𝑛 as 𝑛→∞. Then(
𝑛

𝑘

)
∼ 𝑛

𝑘

𝑘!
𝑖𝑓 𝑘 = 𝑜(𝑛1/2), (2.10)(

𝑛

𝑘

)
∼ 𝑛

𝑘

𝑘!
exp

{
− 𝑘

2

2𝑛

}
𝑖𝑓 𝑘 = 𝑜(𝑛2/3), (2.11)(

𝑛

𝑘

)
∼ 𝑛

𝑘

𝑘!
exp

{
− 𝑘

2

2𝑛
− 𝑘3

6𝑛2

}
𝑖𝑓 𝑘 = 𝑜(𝑛3/4). (2.12)

Proof The asymptotic formula (2.10) follows directly from (2.3) and (2.4). We only
prove (2.12) since the proof of (2.11) is analogous. In fact, in the proofs of these bounds
we use the Taylor expansion of ln(1 − 𝑥), 0 < 𝑥 < 1. In the case of (2.12), we take

ln(1 − 𝑥) = −𝑥 − 𝑥
2

2
+𝑂 (𝑥3). (2.13)
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Now, (
𝑛

𝑘

)
=
𝑛𝑘

𝑘!

𝑘−1∏
𝑖=0

(
1 − 𝑖

𝑛

)
=
𝑛𝑘

𝑘!
exp

{
ln

[
𝑘−1∏
𝑖=0

(
1 − 𝑖

𝑛

)]}
=
𝑛𝑘

𝑘!
exp

{
𝑘−1∑︁
𝑖=0

ln
(
1 − 𝑖

𝑛

)}
=
𝑛𝑘

𝑘!
exp

{
−
𝑘−1∑︁
𝑖=0

(
𝑖

𝑛
+ 𝑖2

2𝑛2

)
+𝑂

(
𝑘4

𝑛3

)}
.

Hence (
𝑛

𝑘

)
=
𝑛𝑘

𝑘!
exp

{
− 𝑘

2

2𝑛
− 𝑘3

6𝑛2 +𝑂
(
𝑘4

𝑛3

)}
, (2.14)

and equation (2.12) follows. �

Example 2.12 Let 𝑛 be a positive integer, 𝑘 = 𝑜(𝑛1/2) and 𝑚 = 𝑜(𝑛). Applying
(2.10) and the bounds from Lemma 2.9 we show that

1
2

(
𝑛

𝑘

)
(𝑘 − 1)!

((𝑛2)−𝑘
𝑚−𝑘

)((𝑛2)
𝑚

) ∼ 1
2
𝑛𝑘

𝑘!
(𝑘 − 1)!

(
2𝑚
𝑛2

) 𝑘
∼

(
2𝑚
𝑛

) 𝑘
2𝑘

.

Example 2.13 As an illustration of the application of (2.11) we show that if 𝑘 =

𝑘 (𝑛) � 𝑛2/5, then

𝑓 (𝑛, 𝑘) =
(
𝑛

𝑘

)
𝑘 𝑘−2

(
1
𝑛

) 𝑘−1 (
1 − 1

𝑛

) (𝑘2)−𝑘+1+𝑘 (𝑛−𝑘)
= 𝑜(1).

By (2.11) and Stirling’s approximation of 𝑘! (Lemma 2.4), we get(
𝑛

𝑘

)
∼ 𝑛

𝑘

𝑘!
𝑒−𝑘

2/2𝑛 ∼ 𝑒−𝑘2/2𝑛
(𝑛𝑒
𝑘

) 𝑘
(2𝜋𝑘)−1/2.

Moreover, since (
𝑘

2

)
− 𝑘 + 1 + 𝑘 (𝑛 − 𝑘) = 𝑘𝑛 − 𝑘

2

2
+𝑂 (𝑘)

and

ln
(
1 − 1

𝑛

)
= −1

𝑛
+𝑂 (𝑛−2),

we have (
1 − 1

𝑛

) (𝑘2)−𝑘+1+𝑘 (𝑛−𝑘)
= exp

{
−𝑘 + 𝑘

2

2𝑛
+ 𝑜(1)

}
.
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2.2 Binomials 15

Hence

𝑓 (𝑛, 𝑘) ∼ 𝑒−𝑘2/2𝑛
(𝑛𝑒
𝑘

) 𝑘
𝑘 𝑘−2 (2𝜋𝑘)−1/2𝑛−𝑘+1𝑒−𝑘+𝑘

2/2𝑛

∼ 𝑛𝑘−5/2 (2𝜋)−1/2 = 𝑜(1).

Example 2.14 Let

𝑓 (𝑛, 𝑘, 𝑙) =
(
𝑛

𝑘

)
𝐶 (𝑘, 𝑘 + 𝑙)𝑝𝑘+𝑙 (1 − 𝑝) (

𝑘
2)−(𝑘+𝑙)+𝑘 (𝑛−𝑘) , (2.15)

where 𝑘 ≤ 𝑛, 𝑙 = 𝑜(𝑘) and 𝑛𝑝 = 1 + 𝜀, 0 < 𝜀 < 1.
Assuming that 𝑓 (𝑛, 𝑘, 𝑙) ≤ 𝑛/𝑘 and applying (2.14) and (2.13), we look for an

asymptotic upper bound on 𝐶 (𝑘, 𝑘 + 𝑙) as follows:

𝑓 (𝑛, 𝑘, 𝑙) = 𝐶 (𝑘, 𝑘 + 𝑙)𝑝𝑘+𝑙 𝑛
𝑘

𝑘!
exp

{
− 𝑘

2

2𝑛
− 𝑘3

6𝑛2 +𝑂
(
𝑘4

𝑛3

)}
× exp

{(
−𝑝 − 𝑝

2

2
+𝑂 (𝑝3)

) ((
𝑘

2

)
− (𝑘 + 𝑙) + 𝑘 (𝑛 − 𝑘)

)}
= 𝐶 (𝑘, 𝑘 + 𝑙) (𝑛𝑝)

𝑘+𝑙

𝑛𝑙𝑘!
exp

{
− 𝑘

2

2𝑛
− 𝑘3

6𝑛2 − 𝑝𝑘𝑛 +
𝑝𝑘2

2

}
× exp

{
𝑂

(
𝑘4

𝑛3 + 𝑝𝑘 + 𝑝
2𝑘𝑛

)}
.

Recalling that 𝑓 (𝑛, 𝑘, 𝑙) ≤ 𝑛/𝑘, 𝑝 = (1 + 𝜀)/𝑛 and using the Stirling approximation
for 𝑘!, we get

𝐶 (𝑘, 𝑘 + 𝑙) ≤ 𝑛𝑙+1 (𝑘 − 1)! exp
{
−𝜀𝑘 + 𝜀

2𝑘

2
+ 𝑘3

6𝑛2 + 𝑘 + 𝜀𝑘 −
𝜀𝑘2

2𝑛

}
× exp

{
𝑂

(
𝑘4

𝑛3 + 𝜀𝑙
)}

≤ 3𝑛𝑙+1𝑘 𝑘−
1
2 exp

{
𝜀2𝑘

2
+ 𝑘3

6𝑛2 −
𝜀𝑘2

2𝑛
+𝑂

(
𝑘4

𝑛3 + 𝜀𝑙
)}
.

Exercises

2.2.1 Let 𝑓 (𝑛, 𝑘) = 2 (
𝑘
2) (𝑛−𝑘𝑘−2)
(𝑛𝑘)

, where 𝑘 = 𝑘 (𝑛) → ∞ as 𝑛→∞, 𝑘 = 𝑜(𝑛1/2).
Show that 𝑓 (𝑛, 𝑘) ∼ 𝑘4/𝑛2.

2.2.2 Let 𝑓 (𝑛, 𝑘) =
(
(𝑛−2
𝑘 )
(𝑛−1
𝑘 )

)𝑛−1

, where 𝑘 = 𝑘 (𝑛). Show that 𝑓 (𝑛, 𝑘) ∼ 𝑒−𝑘 .

2.2.3 Let 𝑓 (𝑛, 𝑘) = ∑𝑛
𝑘=2

∑𝑛−𝑘
𝑗=0 𝑘

2 (𝑛
𝑘

) (𝑛
𝑗

)
(𝑘 − 1)! 𝑗!

(
𝑐
𝑛

) 𝑘+ 𝑗+1, where 𝑐 < 1.
Show that 𝑓 (𝑛, 𝑘) = 𝑂 (1/𝑛).
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2.2.4 Apply (2.2) to show that

𝑓 (𝑛, 𝑘) =
𝑛/1000∑︁
𝑘=1

(
𝑛

𝑘

) (
𝑛

2𝑘

) ( (3𝑘
2

)(𝑛−1
2

) )2𝑘

= 𝑜(1).

2.2.5 Prove that 𝑛𝑘 in Example 2.8 satisfies 𝑛𝑘 ≥ 𝑘22𝑘 ln 𝑘 for sufficiently large 𝑘 .
Use equation (2.3) and ln(1 − 𝑥) ≥ − 𝑥

1−𝑥 if 0 < 𝑥 < 1 to get a lower bound for(
1 − 2−𝑘

)𝑛. The latter inequality following from ln(1 − 𝑥) = −∑∞
𝑛=1

𝑥𝑛

𝑛
.

2.3 Tail Bounds

One of the most basic and useful tools in the study of random graphs is tail bounds,
i.e., upper bounds on the probability that a random variable exceeds a certain real
value. We first explore the potential of the simple but indeed very powerful Markov
inequality.

Lemma 2.15 (Markov Inequality) Let 𝑋 be a non-negative random variable. Then,
for all 𝑡 > 0,

P(𝑋 ≥ 𝑡) ≤ E𝑋
𝑡
.

Proof Let

𝐼𝐴 =

{
1 if event 𝐴 occurs,
0 otherwise.

Notice that

𝑋 = 𝑋𝐼{𝑋 ≥𝑡 } + 𝑋𝐼{𝑋<𝑡 } ≥ 𝑋𝐼{𝑋 ≥𝑡 } ≥ 𝑡 𝐼{𝑋 ≥𝑡 } .

Hence,

E𝑋 ≥ 𝑡E𝐼{𝑋 ≥𝑡 } = 𝑡 P(𝑋 ≥ 𝑡).

�

Example 2.16 Let 𝑋 be a random variable with the expectation
E 𝑋 = 𝑛((𝑛 − 2)/𝑛))𝑚, where 𝑚 = 𝑚(𝑛). Find 𝑚 such that

P(𝑋 ≥
√
𝑛) ≤ 𝑒−𝑐 ,

where 𝑐 > 0 is a constant. By the Markov inequality

P(𝑋 ≥
√
𝑛) ≤

𝑛

(
𝑛−2
𝑛

)𝑚
√
𝑛

≤
√
𝑛𝑒−2𝑚/𝑛.

So 𝑚 should be chosen as 𝑚 = 1
2𝑛(log 𝑛1/2 + 𝑐).
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2.3 Tail Bounds 17

Example 2.17 Let 𝑋 be a random variable with the expectation

E 𝑋𝑘 =

(
𝑛

𝑘

)
𝑘 𝑘−2𝑝𝑘−1,

where 𝑘 ≥ 3 is fixed. Find 𝑝 = 𝑝(𝑛) such that P(𝑋 ≥ 1) = 𝑂 (𝜔1−𝑘 ),
where 𝜔 = 𝜔(𝑛). Note that by the Markov inequality P(𝑋 ≥ 1) ≤ E 𝑋; hence

P(𝑋 ≥ 1) ≤
(
𝑛

𝑘

)
𝑘 𝑘−2𝑝𝑘−1 ≤

(𝑛𝑒
𝑘

) 𝑘
𝑘 𝑘−2𝑝𝑘−1.

Now put 𝑝 = 1/(𝜔𝑛𝑘/(𝑘−1) ) to get

P(𝑋 ≥ 1) ≤
(𝑛𝑒
𝑘

) 𝑘
𝑘 𝑘−2

(
1

𝜔𝑛𝑘/(𝑘−1)

) 𝑘−1

=
𝑒𝑘

𝑘2𝜔𝑘−1 = 𝑂 (𝜔1−𝑘 ).

We are very often concerned with bounds on the upper and lower tail of the
distribution of 𝑆, i.e., on P(𝑋 ≥ E 𝑋 + 𝑡) and P(𝑋 ≤ E 𝑋 − 𝑡), respectively. The
following joint tail bound on the deviation of a random variable from its expectation
is a simple consequence of Lemma 2.15.

Lemma 2.18 (Chebyshev Inequality) If 𝑋 is a random variable with a finite mean
and variance, then, for 𝑡 > 0,

P( |𝑋 − E 𝑋 | ≥ 𝑡) ≤ Var 𝑋
𝑡2

.

Proof

P( |𝑋 − E 𝑋 | ≥ 𝑡) = P((𝑋 − E 𝑋)2 ≥ 𝑡2) ≤ E(𝑋 − E 𝑋)
2

𝑡2
=

Var 𝑋
𝑡2

.

�

Example 2.19 Consider a standard coin-tossing experiment where we toss a fair
coin 𝑛 times and count, say, the number 𝑋 of heads. Note that 𝜇 = E 𝑋 = 𝑛/2, while
Var 𝑋 = 𝑛/4. So, by the Chebyshev inequality,

P
(���𝑋 − 𝑛

2

��� ≥ 𝜀𝑛) ≤ 𝑛/4
(𝜀𝑛)2

=
1

4𝑛𝜀2 .

Hence,

P

(����𝑋𝑛 − 1
2

���� ≥ 𝜀) ≤ 1
4𝑛𝜀2 ,

so if we choose, for example, 𝜀 = 1/4, we get the following bound:

P

(����𝑋𝑛 − 1
2

���� ≥ 1
4

)
≤ 4
𝑛
.
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18 Basic Tools

Suppose again that 𝑋 is a random variable and 𝑡 > 0 is a real number. We focus our
attention on the observation due to Bernstein [17], which can lead to the derivation
of stronger bounds on the lower and upper tails of the distribution of the random
variable 𝑋 .

Let 𝜆 ≥ 0 and 𝜇 = E 𝑋; then

P(𝑋 ≥ 𝜇 + 𝑡) = P(𝑒𝜆𝑋 ≥ 𝑒𝜆(𝜇+𝑡) ) ≤ 𝑒−𝜆(𝜇+𝑡) E(𝑒𝜆𝑋 ) (2.16)

by the Markov inequality (see Lemma 2.15).
Similarly for 𝜆 ≤ 0,

P(𝑋 ≤ 𝜇 − 𝑡) = P(𝑒𝜆𝑋 ≥ 𝑒𝜆(𝜇−𝑡) ) ≤ 𝑒−𝜆(𝜇−𝑡) E(𝑒𝜆𝑋 ). (2.17)

Combining (2.16) and (2.17) one can obtain a bound for P( |𝑋 − 𝜇 | ≥ 𝑡). A bound of
such type was considered above, that is, the Chebyshev inequality.

We will next discuss in detail tail bounds for the case where a random variable is the
sum of independent random variables. This is a common case in the theory of random
graphs. Let

𝑆𝑛 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛,

where 𝑋𝑖 , 𝑖 = 1, . . . , 𝑛 are independent random variables.
Assume that 0 ≤ 𝑋𝑖 ≤ 1 and E 𝑋𝑖 = 𝜇𝑖 for 𝑖 = 1, 2, . . . , 𝑛. Let E 𝑆𝑛 = 𝜇1 +

𝜇2 + · · · + 𝜇𝑛 = 𝜇. Then, by (2.16), for 𝜆 ≥ 0,

P(𝑆𝑛 ≥ 𝜇 + 𝑡) ≤ 𝑒−𝜆(𝜇+𝑡)
𝑛∏
𝑖=1

E(𝑒𝜆𝑋𝑖 ), (2.18)

and, by (2.16), for 𝜆 ≤ 0,

P(𝑆𝑛 ≤ 𝜇 − 𝑡) ≤ 𝑒−𝜆(𝜇−𝑡)
𝑛∏
𝑖=1

E(𝑒𝜆𝑋𝑖 ). (2.19)

In the above bounds we applied the observation that the expected value of the product
of independent random variables is equal to the product of their expectations. Note
also that E(𝑒𝜆𝑋𝑖 ) in (2.18) and (2.19), likewise E(𝑒𝜆𝑋 ) in (2.16) and (2.17), are the
moment-generating functions of the 𝑋𝑖 and 𝑋 , respectively. So finding bounds boils
down to the estimation of these functions. Now the convexity of 𝑒𝑥 and 0 ≤ 𝑋𝑖 ≤ 1
implies that

𝑒𝜆𝑋𝑖 ≤ 1 − 𝑋𝑖 + 𝑋𝑖𝑒𝜆.

Taking expectations, we get

E(𝑒𝜆𝑋𝑖 ) ≤ 1 − 𝜇𝑖 + 𝜇𝑖𝑒𝜆.

Equation (2.18) becomes, for 𝜆 ≥ 0,

P(𝑆𝑛 ≥ 𝜇 + 𝑡) ≤ 𝑒−𝜆(𝜇+𝑡)
𝑛∏
𝑖=1

(1 − 𝜇𝑖 + 𝜇𝑖𝑒𝜆)

≤ 𝑒−𝜆(𝜇+𝑡)
(
𝑛 − 𝜇 + 𝜇𝑒𝜆

𝑛

)𝑛
. (2.20)
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The second inequality follows from the fact that the geometric mean is at most the arith-
metic mean, i.e., (𝑥1𝑥2 · · · 𝑥𝑛)1/𝑛 ≤ (𝑥1+𝑥2+· · ·+𝑥𝑛)/𝑛 for non-negative 𝑥1, 𝑥2, . . . , 𝑥𝑛.
This in turn follows from Jensen’s inequality and the concavity of log 𝑥. The RHS of
(2.20) attains its minimum, as a function of 𝜆, at

𝑒𝜆 =
(𝜇 + 𝑡) (𝑛 − 𝜇)
(𝑛 − 𝜇 − 𝑡)𝜇 . (2.21)

Hence, by (2.20) and (2.21), assuming that 𝜇 + 𝑡 < 𝑛,

P(𝑆𝑛 ≥ 𝜇 + 𝑡) ≤
( 𝜇

𝜇 + 𝑡

)𝜇+𝑡 ( 𝑛 − 𝜇
𝑛 − 𝜇 − 𝑡

)𝑛−𝜇−𝑡
, (2.22)

while for 𝑡 > 𝑛 − 𝜇 this probability is zero.
Now let

𝜑(𝑥) = (1 + 𝑥) log(1 + 𝑥) − 𝑥, 𝑥 ≥ −1,

=

∞∑︁
𝑘=2

(−1)𝑘𝑥𝑘
𝑘 (𝑘 − 1) for |𝑥 | ≤ 1,

and let 𝜑(𝑥) = ∞ for 𝑥 < −1. Now, for 0 ≤ 𝑡 < 𝑛 − 𝜇, we can rewrite the bound (2.22)
as

P(𝑆𝑛 ≥ 𝜇 + 𝑡) ≤ exp
{
−𝜇𝜑

(
𝑡

𝜇

)
− (𝑛 − 𝜇)𝜑

( −𝑡
𝑛 − 𝜇

)}
.

Since 𝜑(𝑥) ≥ 0 for every 𝑥, we get

P(𝑆𝑛 ≥ 𝜇 + 𝑡) ≤ 𝑒−𝜇𝜑 (𝑡/𝜇) . (2.23)

Similarly, putting 𝑛− 𝑆𝑛 for 𝑆𝑛, or by an analogous argument, using (2.19), we get, for
0 ≤ 𝑡 ≤ 𝜇,

P(𝑆𝑛 ≤ 𝜇 − 𝑡) ≤ exp
{
−𝜇𝜑

(−𝑡
𝜇

)
− (𝑛 − 𝜇)𝜑

( 𝑡

𝑛 − 𝜇

)}
.

Hence,

P(𝑆𝑛 ≤ 𝜇 − 𝑡) ≤ 𝑒−𝜇𝜑 (−𝑡/𝜇) . (2.24)

We can simplify expressions (2.23) and (2.24) by observing that

𝜑(𝑥) ≥ 𝑥2

2(1 + 𝑥/3) . (2.25)

To see this observe that for |𝑥 | ≤ 1, we have

𝜑(𝑥) − 𝑥2

2(1 + 𝑥/3) =
∞∑︁
𝑘=2

(−1)𝑘
(

1
𝑘 (𝑘 − 1) −

1
2 · 3𝑘−2

)
𝑥𝑘 .

Equation (2.25) for |𝑥 | ≤ 1 follows from 1
𝑘 (𝑘−1) −

1
2·3𝑘−2 ≥ 0 for 𝑘 ≥ 2. We leave it as

Exercise 2.3.3 to check that (2.25) remains true for 𝑥 > 1.
Taking this into account we arrive at the following theorem, see Hoeffding [59].
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Theorem 2.20 (Chernoff–Hoeffding inequality) Suppose that
𝑆𝑛 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛 while, for 𝑖 = 1, 2, . . . , 𝑛,

(i) 0 ≤ 𝑋𝑖 ≤ 1,
(ii) 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent.

Let E 𝑋𝑖 = 𝜇𝑖 and 𝜇 = 𝜇1 + 𝜇2 + · · · + 𝜇𝑛. Then for 𝑡 ≥ 0,

P(𝑆𝑛 ≥ 𝜇 + 𝑡) ≤ exp
{
− 𝑡2

2(𝜇 + 𝑡/3)

}
(2.26)

and for 𝑡 ≤ 𝜇,

P(𝑆𝑛 ≤ 𝜇 − 𝑡) ≤ exp
{
− 𝑡2

2(𝜇 − 𝑡/3)

}
. (2.27)

Putting 𝑡 = 𝜀𝜇, for 0 < 𝜀 < 1, in (2.23), (2.26) and (2.27), one can immediately
obtain the following bounds.

Corollary 2.21 Let 0 < 𝜀 < 1; then

P(𝑆𝑛 ≥ (1 + 𝜀)𝜇) ≤
( 𝑒𝜀

(1 + 𝜀)1+𝜀
)𝜇
≤ exp

{
− 𝜇𝜀

2

3

}
, (2.28)

while

P(𝑆𝑛 ≤ (1 − 𝜀)𝜇) ≤ exp
{
− 𝜇𝜀

2

2

}
. (2.29)

�

Note also that the bounds (2.28) and (2.29) imply that, for 0 < 𝜀 < 1,

P( |𝑆𝑛 − 𝜇 | ≥ 𝜀𝜇) ≤ 2 exp
{
− 𝜇𝜀

2

3

}
. (2.30)

Example 2.22 Let us return to the coin-tossing experiment from Example 2.19.
Notice that the number of heads 𝑋 is in fact the sum of binary random variables 𝑋𝑖 , for
𝑖 = 1, 2, . . . , 𝑛, each representing the result of a single experiment, that is, 𝑋𝑖 = 1, with
probability 1/2, when head occurs in the 𝑖th experiment, and 𝑋𝑖 = 0, with probability
1/2, otherwise. Denote this sum by 𝑆𝑛 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛 and notice that random
variables 𝑋𝑖 are independent. Applying the Chernoff bound (2.30), we get

P
(���𝑆𝑛 − 𝑛2 ��� ≥ 𝜀 𝑛

2

)
≤ 2 exp

{
−𝑛𝜀

2

6

}
.
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Choosing 𝜀 = 1/2, we get

P

(����𝑆𝑛𝑛 − 1
2

���� ≥ 1
4

)
≤ 2𝑒−𝑛/24,

a huge improvement over the Chebyshev bound.

Example 2.23 Let 𝑆𝑛 now denote the number of heads minus the number of tails
after 𝑛 flips of a fair coin. Find P(𝑆𝑛 ≥ 𝜔

√
𝑛), where𝜔 = 𝜔(𝑛) → ∞ arbitrarily slowly,

as 𝑛→∞.
Notice that 𝑆𝑛 is again the sum of independent random variables 𝑋𝑖 , but now 𝑋𝑖 = 1,

with probability 1/2, when head occurs in the 𝑖th experiment, while 𝑋𝑖 = −1, with
probability 1/2, when tail occurs. Hence, for each 𝑖 = 1, 2, . . . , 𝑛, expectation E 𝑋𝑖 = 0
and variance Var 𝑋𝑖 = 1. Therefore, 𝜇 = E 𝑆𝑛 = 0 and 𝜎2 = Var 𝑆𝑛 = 𝑛. So, by (2.26)

P(𝑆𝑛 ≥ 𝜔
√
𝑛) ≤ 𝑒−3𝜔/2.

To compare, notice that Chebyshev’s inequality yields the much weaker bound since
it implies that

P(𝑆𝑛 ≥ 𝜔
√
𝑛) ≤ 1

2𝜔2 .

One can “tailor” the Chernoff bounds with respect to specific needs. For example,
for small ratios 𝑡/𝜇, the exponent in (2.26) is close to 𝑡2/2𝜇, and the following bound
holds.

Corollary 2.24

P(𝑆𝑛 ≥ 𝜇 + 𝑡) ≤ exp
{
− 𝑡

2

2𝜇
+ 𝑡3

6𝜇2

}
(2.31)

≤ exp
{
− 𝑡

2

3𝜇

}
for 𝑡 ≤ 𝜇. (2.32)

Proof Use (2.26) and note that

(𝜇 + 𝑡/3)−1 ≥ (𝜇 − 𝑡/3)/𝜇2.

�

Example 2.25 Suppose that 𝑝 = 𝑐/𝑛 for some constant 𝑐 and that we create an 𝑛 × 𝑛
matrix 𝐴 with values 0 or 1, where for all 𝑖, 𝑗 , Pr(𝐴(𝑖, 𝑗) = 1) = 𝑝 independently of
other matrix entries. Let 𝑍 denote the number of columns that are all zero. We will
show that, for small 𝜀 > 0,

Pr(𝑍 ≥ (1 + 𝜀)𝑒−𝑐𝑛) ≤ 𝑒−𝜀2𝑒−𝑐𝑛/3.
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Each column of 𝐴 is zero with probability 𝑞 = (1 − 𝑝)𝑛 = (1 + 𝑂 (1/𝑛))𝑒−𝑐 . Further-
more, 𝑍 is the sum of indicator random variables and is distributed as the binomial
𝐵𝑖𝑛(𝑛, 𝑞). Applying (2.31) with 𝜇 = 𝑛𝑞, 𝑡 = 𝜀𝜇, we get

Pr(𝑍 ≥ (1 + 𝜀)𝑒−𝑐𝑛) ≤ exp
{
−𝜀

2𝜇

2
+ 𝜀

3𝜇

6

}
≤ exp

{
−𝜀

2𝑒−𝑐𝑛

3

}
.

For large deviations we have the following result.

Corollary 2.26 If 𝑐 > 1, then

P(𝑆𝑛 ≥ 𝑐𝜇) ≤
(

𝑒

𝑐𝑒1/𝑐

)𝑐𝜇
. (2.33)

Proof Put 𝑡 = (𝑐 − 1)𝜇 into (2.23). �

Example 2.27 Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent binary random variables, that is,
𝑋𝑖 ∈ {0, 1} with the Bernoulli distribution: P(𝑋𝑖 = 1) = 𝑝, P(𝑋𝑖 = 0) = 1 − 𝑝, for
every 1 ≤ 𝑖 ≤ 𝑛, where 0 < 𝑝 < 1. Then 𝑆𝑛 =

∑𝑛
𝑖=1 𝑋𝑖 has the binomial distribution

with the expectation E 𝑆𝑛 = 𝜇 = 𝑛𝑝. Applying Corollary 2.26 one can easily show that
for 𝑡 = 2𝑒𝜇,

P(𝑆𝑛 ≥ 𝑡) ≤ 2−𝑡 .

Indeed, for 𝑐 = 2𝑒,

P(𝑆𝑛 ≥ 𝑡) = P(𝑆𝑛 ≥ 𝑐𝜇) ≤
(

𝑒

𝑐𝑒1/𝑐

)𝑐𝜇
≤

(
1

2𝑒1/(2𝑒)

)2𝑒𝜇

≤ 2−𝑡 .

We also have the following:

Corollary 2.28 Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent random variables and
that 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖 for 𝑖 = 1, 2, . . . , 𝑛. Let 𝑆𝑛 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛 and 𝜇𝑖 = E(𝑋𝑖),
𝑖 = 1, 2, . . . , 𝑛 and 𝜇 = E(𝑆𝑛). Then for 𝑡 > 0 and 𝑐𝑖 = 𝑏𝑖 − 𝑎𝑖 , 𝑖 = 1, 2, . . . , 𝑛, we have

P(𝑆𝑛 ≥ 𝜇 + 𝑡) ≤ exp

{
− 2𝑡2

𝑐2
1 + 𝑐

2
2 + · · · + 𝑐

2
𝑛

}
, (2.34)

P(𝑆𝑛 ≤ 𝜇 − 𝑡) ≤ exp

{
− 2𝑡2

𝑐2
1 + 𝑐

2
2 + · · · + 𝑐

2
𝑛

}
. (2.35)

Proof We can assume without loss of generality that 𝑎𝑖 = 0, 𝑖 = 1, 2, . . . , 𝑛. We just
subtract 𝐴 =

∑𝑛
𝑖=1 𝑎𝑖 from 𝑆𝑛. We proceed as before.

P(𝑆𝑛 ≥ 𝜇 + 𝑡) = P
(
𝑒𝜆𝑆𝑛 ≥ 𝑒𝜆(𝜇+𝑡)

)
≤ 𝑒−𝜆(𝜇+𝑡) E

(
𝑒𝜆𝑆𝑛

)
= 𝑒−𝜆𝑡

𝑛∏
𝑖=1

E
(
𝑒𝜆(𝑋𝑖−𝜇𝑖)

)
.
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Note that 𝑒𝜆𝑥 is a convex function of 𝑥, and since 0 ≤ 𝑋𝑖 ≤ 𝑐𝑖 , we have

𝑒𝜆(𝑋𝑖−𝜇𝑖) ≤ 𝑒−𝜆𝜇𝑖
(
1 − 𝑋𝑖

𝑐𝑖
+ 𝑋𝑖
𝑐𝑖
𝑒𝜆𝑐𝑖

)
and so

E(𝑒𝜆(𝑋𝑖−𝜇𝑖) ) ≤ 𝑒−𝜆𝜇𝑖
(
1 − 𝜇𝑖

𝑐𝑖
+ 𝜇𝑖
𝑐𝑖
𝑒𝜆𝑐𝑖

)
= 𝑒−𝜃𝑖 𝑝𝑖

(
1 − 𝑝𝑖 + 𝑝𝑖𝑒𝜃𝑖

)
, (2.36)

where 𝜃𝑖 = 𝜆𝑐𝑖 and 𝑝𝑖 = 𝜇𝑖/𝑐𝑖 .
Then, taking the logarithm of the RHS of (2.36), we have

𝑓 (𝜃𝑖) = −𝜃𝑖 𝑝𝑖 + log
(
1 − 𝑝𝑖 + 𝑝𝑖𝑒𝜃𝑖

)
,

𝑓 ′(𝜃𝑖) = −𝑝𝑖 +
𝑝𝑖𝑒

𝜃𝑖

1 − 𝑝𝑖 + 𝑝𝑖𝑒𝜃𝑖
,

𝑓 ′′(𝜃𝑖) =
𝑝𝑖 (1 − 𝑝𝑖)𝑒−𝜃𝑖

((1 − 𝑝𝑖)𝑒−𝜃𝑖 + 𝑝𝑖)2
.

Now 𝛼𝛽

(𝛼+𝛽)2 ≤ 1/4 and so 𝑓 ′′(𝜃𝑖) ≤ 1/4, and therefore

𝑓 (𝜃𝑖) ≤ 𝑓 (0) + 𝑓 ′(0)𝜃𝑖 +
1
8
𝜃2
𝑖 =

𝜆2𝑐2
𝑖

8
.

It follows then that

P(𝑆𝑛 ≥ 𝜇 + 𝑡) ≤ 𝑒−𝜆𝑡 exp

{
𝑛∑︁
𝑖=1

𝜆2𝑐2
𝑖

8

}
.

We obtain (2.34) by putting 𝜆 = 4∑𝑛
𝑖=1 𝑐

2
𝑖

, and (2.35) is proved in a similar manner. �

There are many cases when we want to use our inequalities to bound the upper tail
of some random variable 𝑌 and (i) 𝑌 does not satisfy the necessary conditions to apply
the relevant inequality, but (ii) 𝑌 is dominated by some random variable 𝑋 that does.

We say that a random variable 𝑋 stochastically dominates a random variable 𝑌 and
write 𝑋 � 𝑌 if

P(𝑋 ≥ 𝑡) ≥ P(𝑌 ≥ 𝑡) for all real 𝑡. (2.37)

Clearly, we can use 𝑋 as a surrogate for 𝑌 if (2.37) holds.
The following case arises quite often. Suppose that 𝑌 = 𝑌1 + 𝑌2 + · · · + 𝑌𝑛, where

𝑌1, 𝑌2, . . . , 𝑌𝑛 are not independent, but instead we have that for all 𝑡 in the range [𝐴𝑖 , 𝐵𝑖]
of 𝑌𝑖 ,

P(𝑌𝑖 ≥ 𝑡 | 𝑌1, 𝑌2, . . . , 𝑌𝑖−1) ≤ 𝜑(𝑡),

where 𝜑(𝑡) decreases monotonically from 1 to 0 in [𝐴𝑖 , 𝐵𝑖].
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Let 𝑋𝑖 be a random variable taking values in the same range as 𝑌𝑖 and such that
P(𝑋𝑖 ≥ 𝑡) = 𝜑(𝑡). Let 𝑋 = 𝑋1 + · · · + 𝑋𝑛, where 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent of
each other and 𝑌1, 𝑌2, . . . , 𝑌𝑛. Then we have

Lemma 2.29 𝑋 stochastically dominates 𝑌 .

Proof Let 𝑋 (𝑖) = 𝑋1 + · · · + 𝑋𝑖 and 𝑌 (𝑖) = 𝑌1 + · · · + 𝑌𝑖 for 𝑖 = 1, 2, . . . , 𝑛. We will
show by induction that 𝑋 (𝑖) dominates 𝑌 (𝑖) for 𝑖 = 1, 2, . . . , 𝑛. This is trivially true for
𝑖 = 1, and for 𝑖 > 1 we have

P(𝑌 (𝑖) ≥ 𝑡 | 𝑌1, . . . , 𝑌𝑖−1) = P(𝑌𝑖 ≥ 𝑡 − (𝑌1 + · · · + 𝑌𝑖−1) | 𝑌1, . . . , 𝑌𝑖−1)
≤ P(𝑋𝑖 ≥ 𝑡 − (𝑌1 + · · · + 𝑌𝑖−1) | 𝑌1, . . . , 𝑌𝑖−1).

Removing the conditioning, we have

P(𝑌 (𝑖) ≥ 𝑡) ≤ P(𝑌 (𝑖−1) ≥ 𝑡 − 𝑋𝑖) ≤ P(𝑋 (𝑖−1) ≥ 𝑡 − 𝑋𝑖) = P(𝑋 (𝑖) ≥ 𝑡),

where the second inequality follows by induction. �

Exercises

2.3.1. Suppose we roll a fair die 𝑛 times. Show that w.h.p. the number of odd outcomes
is within 𝑂 (𝑛1/2 log 𝑛) of the number of even outcomes.

2.3.2. Consider the outcome of tossing a fair coin 𝑛 times. Represent this by a (random)
string of H’s and T’s. Show that w.h.p. there are ∼ 𝑛/8 occurrences of HTH as
a contiguous substring.

2.3.3. Check that (2.25) remains true for 𝑥 > 1.
(Hint: differentiate both sides, twice.)

Problems for Chapter 2

2.1 Show that if 𝑘 = 𝑜(𝑛), then(
𝑛

𝑘

)
∼

(𝑛𝑒
𝑘

) 𝑘
(2𝜋𝑘)−1/2 exp

{
− 𝑘

2

2𝑛
(1 + 𝑜(1))

}
.

2.2 Let 𝑐 be a constant, 0 < 𝑐 < 1, and let 𝑘 ∼ 𝑐𝑛. Show that for such 𝑘 ,(
𝑛

𝑘

)
= 2𝑛(𝐻 (𝑐)+𝑜 (1)) ,

where 𝐻 is an entropy function: 𝐻 (𝑐) = −𝑐 ln 𝑐 − (1 − 𝑐) ln(1 − 𝑐).
2.3 Prove the following strengthening of (2.2),

𝑘∑︁
ℓ=0

(
𝑛

ℓ

)
≤

(𝑛𝑒
𝑘

) 𝑘
.
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2.4 Let 𝑓 (𝑛) = ∑𝑛
𝑘=1

1
𝑘

∏𝑘−1
𝑗=0

(
1 − 𝑗

𝑛

)
. Prove that 𝑓 (𝑛) ∼ 1

2 log 𝑛.
2.5 Suppose that 𝑚 = 𝑐𝑛 distinguishable balls are thrown randomly into 𝑛 boxes.

(i) Write down an expression for the expected number of boxes that contain 𝑘 or
more balls. (ii) Show that your expression tends to zero if 𝑘 = dlog 𝑛e.

2.6 Suppose that 𝑚 = 𝑐𝑛 distinguishable balls are thrown randomly into 𝑛 boxes.
Suppose that box 𝑖 contains 𝑏𝑖 balls. (i) Write down an expression for the expected
number of 𝑘-sequences such that 𝑏𝑖 = 𝑏𝑖+1 = · · · = 𝑏𝑖+𝑘−1 = 0. (ii) Show that
your expression tends to zero if 𝑘 = dlog 𝑛e.

2.7 Suppose that we toss a fair coin. Estimate the probability that we have to make
(2 + 𝜀)𝑛 tosses before we see 𝑛 heads.

2.8 Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be independent binary random variables, 𝑋𝑖 ∈ {0, 1}, and let
P(𝑋𝑖 = 1) = 𝑝 for every 1 ≤ 𝑖 ≤ 𝑛, where 0 < 𝑝 < 1. Let 𝑆𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝑋𝑖 .

Apply the Chernoff–Hoeffding bounds to show that if 𝑛 ≥ (3/𝑡2) ln(2/𝛿), then
P( |𝑆𝑛 − 𝑝) | ≤ 𝑡) ≥ 1 − 𝛿.

2.9 Let 𝑌1, 𝑌2, . . . , 𝑌𝑚 be independent non-negative integer random variables. Sup-
pose that for 𝑟 ≥ 1 we have Pr(𝑌𝑟 ≥ 𝑘) ≤ 𝐶𝜌𝑘 , where 𝜌 < 1. Let 𝜇 = 𝐶/(1− 𝜌).
Show that if 𝑌 = 𝑌1 + 𝑌2 + · · · + 𝑌𝑚, then

Pr(𝑌 ≥ (1 + 𝜀)𝜇𝑚) ≤ 𝑒−𝐵𝜀2𝑚

for 0 ≤ 𝜀 ≤ 1 and some 𝐵 = 𝐵(𝐶, 𝜌).
2.10 We say that a sequence of random variables 𝐴0, 𝐴1, . . . is (𝜂, 𝑁)-bounded if

𝐴𝑖 − 𝜂 ≤ 𝐴𝑖+1 ≤ 𝐴𝑖 + 𝑁 for all 𝑖 ≥ 0.
(i) Suppose that 𝜂 ≤ 𝑁/2 and 𝑎 < 𝜂𝑚. Prove that if 0 = 𝐴0, 𝐴1, . . . is an
(𝜂, 𝑁)-bounded sequence, then Pr(𝐴𝑚 ≤ −𝑎) ≤ exp

{
− 𝑎2

3𝜂𝑚𝑁

}
.

(ii) Suppose that 𝜂 ≤ 𝑁/10 and 𝑎 < 𝜂𝑚. Prove that if 0 = 𝐴0, 𝐴1, . . . is an
(𝜂, 𝑁)-bounded sequence, then Pr(𝐴𝑚 ≥ 𝑎) ≤ exp

{
− 𝑎2

3𝜂𝑚𝑁

}
.

2.11 Let 𝐴 be an 𝑛 ×𝑚 matrix, with each 𝑎𝑖 𝑗 ∈ {0, 1}, and let ®𝑏 be an 𝑚-dimensional
vector, with each 𝑏𝑘 ∈ {−1, 1}, where each possibility is chosen with probability
1/2 . Let ®𝑐 be the 𝑛-dimensional vector that denotes the product of 𝐴 and
®𝑏. Applying the Chernoff–Hoeffding bound show that the following inequality
holds for 𝑖 ∈ {1, 2, . . . , 𝑛}:

P(max{|𝑐𝑖 |} ≥
√

4𝑚 ln 𝑛) ≤ 𝑂 (𝑛−1).

https://doi.org/10.1017/9781009260268.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009260268.004


https://doi.org/10.1017/9781009260268.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781009260268.004

