ON THE DIFFERENTIABILITY OF CONFORMAL MAPS AT THE BOUNDARY ${ }^{1)}$

B.G. EKE

1. Introduction. Let S be a simply connected domain in the $w=u+i v$ plane and let ∂S denote its boundary which we assume passes through $w=\infty$. Suppose that the segment $L=\left\{u \geqq u_{0} ; v=0\right\}$ of the real axis lies in S and that w_{∞} is the point of ∂S accessible along L. Let $z=z(w)=x(w)$ $+i y(w)$ map S in a $(1-1)$ conformal way onto $\Sigma=\{z=x+i y:-\infty<x$ $\left.<+\infty ;|y|<\frac{\pi}{2}\right\}$ so that $\lim _{u \rightarrow+\infty} x(u)=+\infty$. The inverse map is $w=w(z)=$ $u(z)+i v(z) . S$ is said to possess a finite angular derivative at w_{∞} if $z(w)-w$ approaches a finite limit (called the angular derivative) as $w \rightarrow w_{\infty}$ in certain substrips of $S .{ }^{2}$

The problem of determining necessary and sufficient conditions for S to have a finite angular derivative at w_{∞} has long been studied. (see [4], pp. 140, 216-7, for historical background). For the special cases when
(a) $S \subset\left\{|\mathscr{\mathscr { I }} w|<\frac{\pi}{2}\right\}$,
(b) $\quad \partial S \subset\left\{\frac{\pi}{2} \leqq|\mathscr{I} w| \leqq \pi\right\}$,

Lelong-Ferrand ([4], pp. 215-6) has given a necessary and sufficient condition and we state the result for case (a).

Theorem A. For a domain $S \subset\left\{|\mathscr{I} w|<\frac{\pi}{2}\right\}$ to have a finite angular derivative at w_{∞} it is necessary and sufficient that for each increasing unbounded sequence $\left\{\sigma_{n}\right\}_{1}^{\infty}$ such that

[^0]$$
\sum_{n=1}^{\infty}\left(\sigma_{n+1}-\sigma_{n}\right)^{2}<+\infty
$$
we have the convergence of
$$
\sum_{n=1}^{\infty}\left(\frac{\pi-\Psi_{n}}{\Psi_{n}}\right)\left(\sigma_{n+1}-\sigma_{n}\right),
$$
where
$$
\Psi_{n}=\inf _{\substack{u \in\left[\sigma_{n}, \sigma_{n+1}+1\right] \\ u+i v \in S S S, v>0}} v-\sup _{\substack{\left.u \in \sigma_{n}, \sigma_{n+1}+1\right] \\ u+i v \in S S, v<0}}^{v \in 0}
$$
and σ_{1} is large enough for Ψ_{n} to be positive for all n.
Definition 1. \mathscr{D}_{1} denotes the class of simply connected domains S lying in $\left\{|\mathscr{I} w|<\frac{\pi}{2}\right\}$ with $w_{\infty} \in \partial S$.

Defintion 2. \mathscr{D}_{2} denotes the class of simply connected domains S with $w_{\infty} \in \partial S$ and for which we can find a $u_{0}=u_{0}(S)$ such that S assumes finite area in $\left\{\Omega w>u_{0} ;\left|\mathscr{I}_{w}\right|>\frac{\pi}{2}\right\}$.

Definition 3.

$$
\mathscr{D}=\mathscr{D}_{1} \cup \mathscr{D}_{2} .
$$

For $u>u_{0}$, we denote by θ_{u} the segment of $\{\Omega w=u\} \cap S$ which contains $w=u$. The length of Θ_{u} will be $\Theta(u)$. If $S \in \mathscr{D}$, then

$$
\begin{equation*}
\int_{u_{0}}^{\infty} \max (\theta(u)-\pi, 0) d u<+\infty . \tag{1}
\end{equation*}
$$

Remark. We may extend \mathscr{D}_{2} by defining new crosscuts Φ_{u} in the following way (c.f. [4], p. 191). If $u+\frac{i \pi}{2} \notin \theta_{u}$, take Φ_{u} to agree with θ_{u} in $\mathscr{\mathcal { F }} w \geqq 0$.

If $u+\frac{i \pi}{2} \in \Theta_{u}$, then in the upper half plane Φ_{u} coincides with Θ_{u} in $0 \leqq \mathscr{F}_{w} \leqq \frac{\pi}{2}$ and is completed by a circular arc γ_{u} centred on $\mathscr{F}_{w}=\frac{\pi}{2}$, pssing through $u+\frac{i \pi}{2}$, lying initially in $\mathscr{I}_{w}>\frac{\pi}{2}$ and of length $\gamma(u)$.

We define Φ_{u} analogously in $\mathscr{I} w \leqq 0$ where the circular arcs, if necessary, are denoted by γ_{u}^{\prime} with length $\gamma^{\prime}(u)$.

Suppose such circular arcs γ_{u} can be found which are mutually disjoint and such that the values of u for which γ_{u} is defined can be partitioned into disjoint intervals on which the γ_{u} are concentric. Similarly for γ_{u}^{\prime}.

If $\int \gamma(u) d u+\int \gamma^{\prime}(u) d u$ is finite, the integrals being taken over values of u in $\left[u_{0}, \infty\right)$ for which the integrand is defined, then we have broadened the class \mathscr{D}_{2}. Taking this larger class as \mathscr{D}_{2} does not affect the validity of Theorems 1 and 2 (below) and this observation may be useful if, say, $\Theta(u)=+\infty$ on an unbounded sequence of intervals that are quite short. We present the proofs however for the simpler case.

We shall prove
Theorem 1. A necessary and sufficient condition for $S \in \mathscr{D}$ to have a finite angular derivative at w_{∞} is that given $\varepsilon>0$ we can find a non-negative function $\beta(u)$ (defined for $u \geqq u_{0}^{\prime}$, u_{0}^{\prime} independent of ε) such that

$$
\begin{equation*}
\left\{w: u=\Re w \geqq u_{0}^{\prime} ;|\mathscr{I} w|<\frac{\pi}{2}-\beta(u)\right\} \subset S \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\int_{u_{0}^{\prime}}^{\infty} \beta(u) d u<+\infty, \tag{ii}
\end{equation*}
$$

(iii) $\quad\left|\beta\left(u_{2}\right)-\beta\left(u_{1}\right)\right| \leqq \varepsilon\left|u_{2}-u_{1}\right|$ for all u_{1}, u_{2} greater than u_{0}^{\prime}.

Theorem 1 shows that if $S \subset\left\{\left|\mathscr{I}_{w}\right|<\frac{\pi}{2}\right\}$ then a necessary and sufficient condition for S to have a finite angular derivative at w_{∞} is that a large subdomain of $\left\{|\mathscr{I} w|<\frac{\pi}{2}\right\}$ having a smooth boundary is contained in S. This necessary and sufficient condition is of a different nature to that given in Theorem A.

Definition 4. \mathscr{D}^{\prime} is the class of simply connected domains S with $w_{\infty} \in \partial S$ and such that

$$
\int_{u_{0}}^{\infty} \max (\Theta(u)-\pi, 0) d u<+\infty
$$

Theorem B. (Warschawski [5] pp. 96-7, 100). If $S \in \mathscr{D}^{\prime}$, then a sufficient condition for S to have a finite angular derivative at w_{∞} is that there is a nonnegative continuous function $\beta(u)\left(u \geqq u_{0}\right)$ such that

$$
\begin{equation*}
\left\{w: u=\Omega w \geqq u_{0} ;|\mathscr{I} w|<\frac{\pi}{2}-\beta(u)\right\} \subset S \tag{i}
\end{equation*}
$$

(ii) $\int_{u_{0}}^{\infty} \beta(u) d u<+\infty$,
(iii) $\int_{u-\beta(u)}^{u+\beta(u)} \beta(\tau) d \tau \geqq c \beta^{2}(u)$ for some fixed $c>0$, and all large u.

Theorem 1 indicates that Warschawski's condition is necessary when $S \in \mathscr{D}$ since (iii) of Theorem 1 implies (iii) of Theorem B. The condition is not necessary however if $S \in \mathscr{D}^{\prime}$. Consider the domain R which consists of a union of rectangles

$$
\begin{gathered}
R_{n}=\left\{w=u+i v: \hat{u}_{n}<u<\hat{u}_{n+1} ;-\frac{\pi}{2}+h_{n}<v<\frac{\pi}{2}+h_{n}\right\} \\
\left(n=1,2, \cdots ; 0<\left|h_{n}\right|<\frac{\pi}{2}\right)
\end{gathered}
$$

together with segments of $\Omega w=\hat{u}_{n}(n=1,2, \cdots)$, where $\left\{\hat{u}_{n}\right\}_{1}^{\infty}$ is an unbounded increasing sequence. Then $R \in \mathscr{D}^{\prime}$ but $R \notin \mathscr{D}$. If $\sum_{n=1}^{\infty} \nu_{n}^{3 / 2}<+\infty$, where $\nu_{n}=\left|h_{n+1}-h_{n}\right|$, then R has a finite angular derivative at $w_{\infty}{ }^{3)}$ By taking e.g. $\hat{u}_{n+1}-\hat{u}_{n}=1, \sum_{n=1}^{\infty} \nu_{n}=+\infty$, we see that R omits an infinite amount of area in $\{|\mathscr{J} w|\{<\pi / 2\}$ and so Theorem B (ii) can never be satisfied for R.

Since $\mathscr{D} \subset \mathscr{D}^{\prime}$, Theorem 1 (sufficiency) follows from Theorem B.
For the necessity (§4), we first establish (Theorem 2, §2) another necessary condition. Theorem 2 shows, in particular, that for domains consisting of the strip $\left|\mathscr{J}_{w}\right|<\frac{\pi}{2}$ slit along the segments $\left\{\mathscr{\Re} w=u_{n} ;|\mathscr{I} w| \geqq\right.$ $\left.\geqq \frac{\pi}{2}-\lambda_{n}\right\}, u_{n} \uparrow \infty(n \rightarrow \infty)$, and $u_{n+1}-u_{n}>c \lambda_{n}^{\alpha} \quad($ all $n, c>0, \alpha \geqq 0)$, a necessary condition for a finite angular derivative at w_{∞} is the convergence of $\sum_{n=1}^{\infty} \lambda_{n}^{r}$ where

$$
\left.\gamma=\max (2,1+\alpha) .^{4}\right)
$$

Ahlfors ([1] p. 40) notes that $\Sigma \lambda_{n}^{2}<+\infty$ is necessary if $\alpha=0$, and Wolff [6] proves, independently of the spacing restriction on the slits, that this condition is also sufficient.
2. The condition C and Theorem 2. We assume $S \in \mathscr{D}$ and has a finite angular derivative at w_{∞}. Then given $\Psi\left(0<\Psi<\frac{\pi}{2}\right)$ we can find

[^1]$u(\Psi)$ such that $\left\{w: \mathscr{\Re} w \geqq u_{0} ;|\mathscr{I} w|<\Psi\right\} \subset S$. Let Γ_{1}, Γ_{2} denote the part of ∂S in $\left\{w: \Re w \geqq u\left(\frac{\pi}{4}\right) ; \mathscr{F} w>0\right\},\left\{w: \Omega w \leqq u\left(\frac{\pi}{4}\right) ; \mathscr{I} w<0\right\}$ respectively. Γ_{1}, Γ_{2} are not necessarily connected.

Let $\left\{w_{n}=u_{n}+i v_{n}\right\}_{1}^{\infty}$ be any sequence of points on Γ_{1} for which $u_{n} \uparrow \infty$ $\left(n \rightarrow \infty ; u_{1} \geqq u\left(\frac{\pi}{4}\right)\right)$ and which satisfies the following conditions to be denoted by C :
$C \quad$ (i) $\quad v_{n}=\frac{\pi}{2}-\lambda_{n}<\frac{\pi}{2}$, all n,
$C \quad$ (ii) $\quad u_{n+1}-u_{n} \geqq c \lambda_{n}^{\alpha_{n}}, \quad\left(\alpha_{n} \geqq 1\right.$ all n; some fixed $\left.c>0\right)$,
C (iii) $\min _{\substack{u+i v \Gamma_{1} \\ u \in I_{n}}} v=\frac{\pi}{2}-\lambda_{n}$, where I_{n} is a closed interval of length $c \lambda_{n}^{\alpha_{n}}$,
containing u_{n} (possibly as an endpoint) and the intervals $\left\{I_{n}\right\}_{1}^{\infty}$ have disjoint interiors.

Such sequences $\left\{w_{n}\right\}_{1}^{\infty},\left\{I_{n}\right\}_{1}^{\infty}$ can always be found except when all points of Γ_{1} with sufficiently large real part lie in $v \geqq \frac{\pi}{2}$. As Theorem 2 (below) does not concern such S we suppose this not to be the case. To produce examples of $\left\{w_{n}\right\}_{1}^{\infty},\left\{I_{n}\right\}_{1}^{\infty}$ we may take u_{n} to be the largest value of u for which $u+i\left(\frac{\pi}{2}-\lambda_{n}\right) \in \Gamma_{1}$ and $I_{n}=\left[u_{n}, u_{n}+c \lambda_{n}^{\alpha_{n}}\right], \lambda_{n}$ being given small enough. The largest value of u exists since S has a finite angular derivative at w_{∞}. The $\left\{\alpha_{n}\right\}_{1}^{\infty}$ are introduced in C (ii) to allow us to take the w_{n} close together and we note that 1 is the smallest value of α_{n} which it is necessary to permit.

Theorem 2. Suppose that $S \in \mathscr{D}$ has a finite angular derivative at w_{∞} and $\left\{w_{n}\right\}_{1}^{\infty}$ is a sequence of points on ∂S satisfying condition C, then $\sum_{n=1}^{\infty} \lambda_{n}^{1+\alpha_{n}}<+\infty$.
3. Proof of Theorem 2. If condition C is satisfied for some $c>0$ it is satisfied for any smaller c, and we assume that $0<c<\frac{2}{3 \pi}$. We work with the crosscuts θ_{u} defined as follows. If $u \notin \bigcup_{n=1}^{\infty} I_{n}$, we take $\theta_{u} \equiv \Theta_{u}$.

If $u \in I_{n}, \theta_{u}$ consists of a straight line segment from $u+i v_{n}$ to $u-i t(u)$ where $t(u)$ is the smallest positive number such that $u-i t(u) \in \partial S$, together with the arc of a circle centred on $u_{n}+i v_{n}$, of radius $\left|u-u_{n}\right|$, which
begins at $u_{n}+i v_{n}$, lies initially in $\mathscr{J} w \geqq v_{n}$ and terminates at the first point of intersection with ∂S.

Then $\theta_{u_{1}}, \theta_{u_{2}}$ are disjoint in S if $u_{1} \neq u_{2}$ (the simple proof being analogous to [3], §2).

Suppose $x_{1}(u), x_{2}(u)$ are respectively the infimum, supremum of Ωz for $z \in z\left\{\theta_{u}\right\}$. By Ahlfors' well known application of the length-area principle ([1], pp. 8-10), we obtain, for $u\left(\frac{\pi}{4}\right)<u_{1}<u_{2}$,

$$
\begin{gathered}
x_{2}\left(u_{2}\right)-x_{1}\left(u_{1}\right) \geqq \pi \int_{u_{1}}^{u_{2}} \frac{d u}{\theta(u)}, \\
x_{1}\left(u_{2}\right)-u_{2} \geqq x_{1}\left(u_{1}\right)-\left(x_{2}\left(u_{2}\right)-x_{1}\left(u_{2}\right)\right)+\int_{u_{1}}^{u_{2}} \frac{\pi-\theta(u)}{\theta(u)} d u-u_{1} .
\end{gathered}
$$

Since S has a finite angular derivative at w_{∞}, it follows, in particular, that:

$$
x\left(u_{2}\right)-u_{2} \text { tends to a finite limit as } u_{2} \rightarrow+\infty ;
$$

S is semi-conformal at w_{∞} and therefore $x_{2}\left(u_{2}\right)-x_{1}\left(u_{2}\right) \rightarrow 0$ as $u_{2} \rightarrow \infty$, (for a proof, see e.g. [3] §5 or [5], p. 92).

Then we have

$$
\begin{equation*}
\left.\varlimsup_{u_{2} \rightarrow+\infty} \int_{u_{1}}^{u_{2}} \frac{\pi-\theta(u)}{\theta(u)} d u<+\infty .5\right) \tag{2}
\end{equation*}
$$

Let

$$
E_{-}\left(u_{1}, u_{2}\right)=\left[u_{1}, u_{2}\right] \backslash\left(\bigcup_{n=1}^{\infty} I_{n} \cap\left[u_{1}, u_{2}\right]\right),
$$

so that

$$
\int_{E_{-}\left(u_{1}, u_{2}\right)} \frac{\pi-\theta(u) d u}{\theta(u)}>\frac{-2}{\pi} \int_{E_{-}\left(u_{1}, u_{2}\right)}(\theta(u)-\pi) d u \geqq-\frac{2}{\pi} \int_{E_{-}\left(u_{1}, u_{2}\right)} \max (\theta(u)-\pi, 0) d u,
$$

and this remains bounded below as $u_{2} \rightarrow+\infty$. Thus (2) implies

$$
\overline{\lim _{N \rightarrow \infty}} \sum_{n=1}^{N} \int_{I_{n}}(\pi-\theta(u)) d u<+\infty .
$$

Next, $\sum_{n=1}^{\infty} \int_{I_{n}} \max \left(t(u)-\frac{\pi}{2}, 0\right) d u$ is finite if $S \in \mathscr{D}$ and, using the estimate,

[^2]$$
\pi-\theta(u) \geqq \lambda_{n}-\frac{3 \pi}{2}\left|u-u_{n}\right|+\left(\frac{\pi}{2}-t(u)\right), \quad u \in I_{n}
$$
we find
$$
\sum_{n=1}^{\infty} \int_{I_{n}}\left(\lambda_{n}-\frac{3 \pi}{2}\left|u-u_{n}\right|\right) d u<+\infty
$$
whence Theorem 2 since
\[

$$
\begin{aligned}
\int_{I_{n}}\left(\lambda_{n}\right. & \left.-\frac{3 \pi}{2}\left|u-u_{n}\right|\right) d u \geqq \lambda_{n}\left|I_{n}\right|-\frac{3 \pi}{4}\left|I_{n}\right|^{2} \geqq \\
& \geqq \frac{1}{4}(4-3 \pi c) c \lambda_{n}^{1+\alpha_{n}}>0
\end{aligned}
$$
\]

Remark. Taking $\alpha_{n}=\max (1, \alpha), w_{n}=u_{n}+i\left(\frac{\pi}{2}-\lambda_{n}\right)$ for the domain $|v|<\frac{\pi}{2}$ slit along $\left\{w: \mathscr{\Re} w=u_{n} ;|\mathscr{I} w| \geqq \frac{\pi}{2}-\lambda_{n} ; n=1,2, \cdots\right\}$, we find that Theorem 2 gives the observation at the end of $\S 1$.
4. Proof of Theorem 1 (necessity). The idea of the construction of $\beta(u)$ is to apply Theorem $2\left(\alpha_{n}=1\right.$, all $\left.n\right)$ to a sequence of boundary points satisfying condition C. Each point of ∂S in $\left\{w: \Omega w>u\left(\frac{\pi}{4}\right) ; 0<\mathscr{I} w<\frac{\pi}{2}\right\}$ will be "close to" a boundary point which belongs to the sequence. Theorem 2 will show that the subdomain of S, lying in $\left\{w: \Omega w>u\left(\frac{\pi}{4}\right)\right.$; $\left.0<\mathscr{I} w<\frac{\pi}{2}\right\}$, whose boundary has sides parallel to the coordinate axes and which is naturally associated with condition C, omits only a finite amount of area in $\left\{w: \Omega w>u\left(\frac{\pi}{4}\right) ; 0<\mathscr{I} w<\frac{\pi}{2}\right\}$. After applying similar considerations to produce a subdomain of S in $0>\mathscr{F} w>-\frac{\pi}{2}$ we obtain a boundary of the required smoothness by omitting a further finite amount of area.

All points $w \in \partial S$ with $\Omega w \geqq u_{0}^{\prime} \geqq u\left(\frac{\pi}{4}\right)$ have $|\mathscr{J} w| \geqq \frac{\pi}{2}-1$. We consider first those points of ∂S in $\left\{w: \Omega w \geqq u_{0}^{\prime} ; \mathscr{F} w \geqq \frac{\pi}{2}-1\right\}$. Let $E_{1}=\{u$: there is a point $w \in \partial S$ with $\mathscr{\Re} w=u \geqq u_{0}^{\prime}$ and $\left.2^{-1}<\frac{\pi}{2}-\mathscr{J} w \leqq 2^{0}\right\}$, and set, if $E_{1} \neq \phi$,

$$
\begin{aligned}
& u_{11}=\inf _{u \in E_{1}} u, \\
& i_{11}=\left[u_{11}, u_{11}+1\right],
\end{aligned}
$$

$$
\lambda_{11}=\sup _{\substack{w=u+i v \in \partial S \\ u \in i_{11}, v>0}}\left(\frac{\pi}{2}-v\right) .
$$

Then $2^{-1}<\lambda_{11} \leqq 1$. Since the distance from $w=\hat{u}$ to the nearest point $\hat{u}+i v \in \Gamma_{1}$ is a lower semi-continuous function of \hat{u}, there is a smallest number \dot{u}_{11}, say, in the closed interval i_{11} such that $\dot{u}_{11}+i\left(\frac{\pi}{2}-\lambda_{11}\right) \in \Gamma_{1}$. Now define

$$
\begin{aligned}
& u_{12}=\inf u \text { for } u \in E_{1} \cap\left[u_{11}+2, \infty\right), \\
& i_{12}=\left[u_{12}, u_{12}+1\right], \\
& \lambda_{12}=\sup _{\substack{w=u+i v \in \in S \\
u \in i_{12}, v>0}}\left(\frac{\pi}{2}-v\right),
\end{aligned}
$$

λ_{12} being attained at $u=\stackrel{\circ}{12}^{1} \in i_{12}, \stackrel{\circ}{u}_{12}$ minimal. Proceeding in this way, we construct a finite number (zero, if E_{1} is empty) of intervals $i_{1 j}\left(1 \leqq j \leqq n_{1}\right)$ such that
(i) $E_{1} \cap\left[u_{n_{1}}+2, \infty\right)=\phi$,
(ii) the intervals $i_{1 j}^{*} \equiv\left[u_{1 j}, u_{1 j}+2\right]\left(1 \leqq j \leqq n_{1}\right)$ have disjoint interiors and cover E_{1},
(iii) $\quad \check{u}_{1 j}+i\left(\frac{\pi}{2}-\lambda_{1 j}\right) \in \partial S\left(1 \leqq j \leqq n_{1}\right)$,
(iv) we can find a closed subinterval $I_{1 j}$ of $i_{1 j}$ of length $\lambda_{1 j}$ such that $u=\stackrel{\circ}{u}_{1 j} \in I_{1 j}\left(1 \leqq j \leqq n_{1}\right)$. Then $\left\{I_{1 j}\right\}_{j=1}^{n_{1}}$ satisfy C (iii) with $c=1, \alpha_{j}=1$ $\left(1 \leqq j \leqq n_{1}\right)$,
(v) $\quad \stackrel{\circ}{u}, j+1-\stackrel{\circ}{u}, j \geqq 1 \geqq \lambda_{1 j}\left(1 \leqq j \leqq n_{1}-1\right)$.

Next we introduce
$E_{2}=\left\{u\right.$: there is a $w \in \partial S$ with $\Re w=u \geqq u_{0}^{\prime}$ and $2^{-2}<\frac{\pi}{2}-\mathscr{I} w \leqq 2^{-1} ;$

$$
\left.|u-\mu| \geqq 2^{\circ} \text { if } \mu \in \bigcup_{j=1}^{n_{1}} i_{1 j}^{*}\right\} .
$$

As above, we find intervals $i_{2 j}\left(1 \leqq j \leqq n_{2}<+\infty\right)$ of length 2^{-1}; points $\stackrel{\circ}{u}_{2 j} \in i_{2 j}$ for which $\stackrel{\circ}{u}_{2 j}+i\left(\frac{\pi}{2}-\lambda_{2 j}\right) \in \partial S$, and such that $u \in i_{2 j}, u+i v \in \partial S$ imply $v \geqq \frac{\pi}{2}-\lambda_{2 j}$. The subinterval $I_{2 j}$ of $i_{2 j}$ of length $\lambda_{2 j}$ is determined as in (iv) above. The closed intervals $i_{2 j}^{*}\left(1 \leqq j \leqq n_{2}\right)$ formed by extending
$i_{2 j}$ to the right a distance 2^{-1} do not necessarily cover the set of u outside $\bigcup_{j=1}^{n_{1}} i_{1 j}^{*}$ for which a v can be found with $u+i v \in \partial S$ and $2^{-2}<\frac{\pi}{2}-v \leqq 2^{-1}$. The intervals $i_{1 j_{j}}^{*}\left(1 \leqq j \leqq n_{1}\right)$ are now extended to both right and left by the largest amount possible not in excess of 2^{0} so that the new closed intervals $J_{1 j}\left(1 \leqq j \leqq n_{1}\right)$ have disjoint interiors, and $2 \leqq\left|J_{1 j}\right| \leqq 4\left(1 \leqq j \leqq n_{1}\right)$. Then, for $u \geqq u_{0}^{\prime}$ and outside the set $\bigcup_{j=1}^{n_{1}} J_{1 j} \cup \bigcup_{j=1}^{n_{2}} i_{2 j}^{*}$, any point $u+i v \in \hat{o} S(v>0)$ has $v \geqq \frac{\pi}{2}-2^{-2}$.

Taking
$E_{3}=\left\{u\right.$: there is a $w \in \partial S$ with $\Omega w=u \geqq u_{0}^{\prime}$ and $2^{-3}<\frac{\pi}{2}-\mathscr{I} w \leqq 2^{-2} ;$

$$
\left.|u-\mu| \geqq 2^{-1} \text { if } \mu \in \bigcup_{j=1}^{n_{1}} J_{1 j} \cup \bigcup_{j=1}^{n_{2}} i_{2 j}^{*}\right\},
$$

we follow the process outlined above and define intervals $I_{m j}, J_{m j}\left(1 \leqq j \leqq n_{m}\right.$ $<+\infty ; m=1,2, \cdots)$ inductively so that, for each $j\left(1 \leqq j \leqq n_{m}\right)$ we have
(a) $\quad 2 \cdot 2^{1-m} \leqq\left|J_{m j}\right| \leqq 4 \cdot 2^{1-m}, \quad\left|I_{m j}\right|=\lambda_{m j}$,
(b) $\quad \stackrel{\circ}{u}_{m j} \in I_{m j} \subseteq i_{m j} \subset i_{m j}^{*} \subseteq J_{m j}$ and $\stackrel{\circ}{u}_{m j}+i\left(\frac{\pi}{2}-\lambda_{m j}\right) \in \partial S$,
(c) if $u \in I_{m j}, u+i v \in \partial S$, then $v \geqq \frac{\pi}{2}-\lambda_{m j}$,
(d) $\quad 2^{-m}<\lambda_{m j} \leqq 2^{1-m}$ so that $2 \lambda_{m j} \leqq\left|J_{m j}\right|<8 \lambda_{m j}$,
(e) $\bigcup_{m=1}^{M} \bigcup_{j=1}^{n_{m}} J_{m j} \cup \bigcup_{j=1}^{n_{k+1}} i_{m+1, j}^{*}$ covers the set of $u\left(\geqq u_{0}^{\prime}\right)$ for which a $v(>0)$ can be found so that $u+i v \in \partial S$ and $v<\frac{\pi}{2}-2^{-M-1}$.

Then each value $u\left(\geqq u_{0}^{\prime}\right)$ for which a $v\left(0<v<\frac{\pi}{2}\right)$ can be found such that $u+i v \in \partial S$ lies in some $J_{m j}$. Suppose $J_{m j}=\left[u_{m j}^{\prime}, u_{m j}^{\prime \prime}\right]$ and denote by A the set of accumulation points of $\left\{u_{m j}^{\prime}\right\}\left(1 \leqq j \leqq n_{m} ; m=1,2, \cdots\right)$. Define inductively

$$
\begin{array}{ll}
\sigma_{1}=\inf _{u \in A} u, & \sigma_{2}=\inf _{u \in A \cap\left[\sigma_{1}+1, \infty\right)} u, \\
\sigma_{3}=\inf _{u \in A \cap\left[\sigma_{2}+2^{-1}, \infty\right)} u, \cdots, & \sigma_{n+1}=\inf _{u \in A \cap\left[\sigma_{n}+n^{-1}, \infty\right)} u, \cdots .
\end{array}
$$

If $A \cap\left[\sigma_{n_{0}}+n_{0}^{-1}, \infty\right)=\phi$ for some n_{0}, then there will be a finite number of values σ_{n}. Otherwise $\left\{\sigma_{n}\right\}_{1}^{\infty}$ is a monotonically increasing sequence with
$\sigma_{n} \rightarrow+\infty$ as $n \rightarrow+\infty$. We set

$$
\begin{aligned}
& K_{1}^{*}=\left[\sigma_{1}-1, \sigma_{1}+1\right] \cap\left[u_{0}^{\prime}, \infty\right), \\
& K_{2}^{*}=\left[\sigma_{2}-2^{-1}, \sigma_{2}+2^{-1}\right] \cap\left[\sigma_{1}+1, \infty\right), \cdots \\
& K_{n}^{*}=\left[\sigma_{n}-n^{-1}, \sigma_{n}+n^{-1}\right] \cap\left[\sigma_{n-1}+(n-1)^{-1}, \infty\right), \cdots ;
\end{aligned}
$$

a finite or countable number of intervals having disjoint interiors, and ordered so that $\mu_{1} \in K_{m}^{*}$ separates $\mu_{2} \in K_{n}^{*}$ from $+\infty$ in $\left[u_{0}^{\prime}, \infty\right)$ if $m>n$ and K_{m}^{*}, K_{n}^{*} are not empty. If $u \in K_{n}^{*}$ and $u+i v \in \partial S, v>0$, it follows from (c) and (d) that $v \geqq \frac{\pi}{2}-\frac{1}{2 n}$. Thus the area of

$$
\bigcup_{n}\left\{w: \Re w \in K_{n}^{*} ; \frac{\pi}{2}-\frac{1}{2 n} \leqq \mathscr{I} w \leqq \frac{\pi}{2}\right\}
$$

is finite, and we also have

$$
\bigcup_{n}\left\{w: \Re w \in K_{n}^{*} ; 0 \leqq \mathscr{I} w<\frac{\pi}{2}-\frac{1}{2 n}\right\} \subset S .
$$

There are no members of A in $\left[u_{0}^{\prime}, \infty\right) \backslash \cup K_{n}^{*}$ and so we can define a reordering

$$
K_{n}=\left[\tau_{n}, \tau_{n}^{\prime}\right]\left(\tau_{n}^{\prime} \leqq \tau_{n+1}, n=1,2, \cdots ; \tau_{n} \rightarrow \infty \text { as } n \rightarrow \infty\right)
$$

of those intervals $J_{m j}$ which are outside, or have a subinterval outside, $\bigcup_{n} K_{n}^{*}$. The subinterval of K_{n} arising from the $I_{m j}$ is denoted by I_{n}, and we also set

$$
\lambda_{m j}=\lambda_{n}, \quad \dot{u}_{m j}=u_{n} \in I_{n} \quad \text { when } \quad J_{m j}=K_{n} .
$$

By construction, condition C (with $c=1, \alpha_{n}=1$ all n) is satisfied by the sequence of boundary points $w_{n}=u_{n}+i\left(\frac{\pi}{2}-\lambda_{n}\right)$ and the intervals I_{n}. Theorem 2 indicates that

$$
\sum_{n=1}^{\infty} \lambda_{n}^{2}<+\infty .
$$

Put

$$
\min _{\substack{u+i v \in=S, v>0 \\ u \in K_{n}}} v=\nu_{n},
$$

so that

$$
\lambda_{n} \leqq \frac{\pi}{2}-\nu_{n} \leqq 2 \lambda_{n} .
$$

We define a subdomain S_{1} of $S \cap\{\mathscr{I} w>0\} \cap\left\{\mathscr{\Re} w>u_{0}^{\prime}\right\}$. For $u \in K_{n}$ $(n=1,2, \cdots)$, the points $u+i v \in S_{1}$ if $0<v<\nu_{n}$; if $u \notin \bigcup_{n=1}^{\infty} K_{n}$, but $u \in K_{m}^{*}$ for some m, then $u+i v \in S_{1}$ if $0<v<\frac{\pi}{2}-\frac{1}{2 m}$; for other values of $u\left(\geqq u_{0}^{\prime}\right)$, $u+i v \in S_{1}$ if $0<v<\frac{\pi}{2}$. Then ∂S_{1} consists of $\left[u_{0}^{\prime}, \infty\right)$ together with straight line segments parallel to the coordinate axes. Further the area of $\left\{w: \mathscr{\Re} w \geqq u_{0}^{\prime} ; 0<\mathscr{I} w<\frac{\pi}{2}\right\} \backslash S_{1}$ is finite.

Given $\varepsilon>0$, we draw straight line segments in S_{1}, making angles ε or $\pi-\varepsilon$ with the real axis, from the vertices of the polygonal line ∂S_{1} with positive imaginary part. This removes from S_{1} a finite area of magnitude $O\left(\varepsilon^{-1} \sum \lambda_{n}^{2}\right)$, and the boundary of the new subdomain, S_{2}, consists of $\left\{w: \Re \sim>u_{0}^{\prime} ; \mathscr{I} w=0\right\}$, a segment of $\Re w=u_{0}^{\prime}$, and a polygonal line none of whose sides makes an angle greater than ε with both directions of the real axis.

Using a sequence of boundary points on Γ_{2} and the method described above we construct $S_{2}^{\prime} \subset S \cap\left\{w: \Omega w>u_{0}^{\prime} ;-\frac{\pi}{2}<\mathscr{I} w<0\right\}$ such that the area of $\left\{w: \Omega w>u_{0}^{\prime} ;-\frac{\pi}{2}<\mathscr{I} w<0\right\} \backslash S_{2}^{\prime}$ is finite.

The boundary of the largest subdomain of $\left\{w: \Omega w>u_{0}^{\prime} ; \mathscr{I} w=0\right\} \cup S_{2} \cup S_{2}^{\prime}$ which is symmetric about $\mathscr{I} w=0$ will be described by a function $v=\beta(u)$ having the desired properties. This completes the proof of Theorem 1 (necessity).

References

[1] L.V. Ahlfors, Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen, Acta Soc. Sci. Fenn. N.S. (A), No. 9, (1930), 40 pp.
[2] B.G. Eke, On the angular derivative of regular functions, Math. Scand. 21, (1967), 122-127.
[3] B.G. Eke and S.E. Warschawski, On the distortion of conformal maps at the boundary, J. London Math. Soc. 44, (1969), 625-630.
[4] J. Lelong-Ferrand, Représentation conforme et transformations à intégrale de Dirichlet bornée, Gauthier-Villars, Paris, 1955.
[5] S.E. Warschawski, On the boundary behaviour of conformal maps, Nagoya Math. J. 30 (1967), 83-101.
[6] J. Wolff, Sur la représentation d'un demi-plan sur un demi-plan a une infinité d'incisions circulaires, C.R. Acad. Sci. 200, (1935), 630-632.

Queen's University, Belfast, Northern Ireland.

[^0]: Received June 10, 1969.

 1) Work supported partially by U.S.A.F. Contract AFOSR-68-1514, with the University of California, San Diego.
 2) More precisely: if $z-w(z)$ tends to a finite limit as $z \rightarrow z\left(w_{\infty}\right)$ with $|\mathscr{J} z|<\frac{\pi}{2}-\delta(\delta>0)$. This implies the above definition, and if, for each $\Psi>0$, there is a $u(\Psi)$ such that $\{w: \mathfrak{S} w>u(\Psi)$; $\left.|\mathscr{J} w|<\frac{\pi}{2}-\Psi\right\} \subset S$, then the implication can be reversed.
[^1]: 3) This follows for instance from [4], p. 194, (4). It is now known that the convergence of $\sum_{1}^{\infty} \nu_{n}^{2} \log \nu_{n}^{-1}$ is necessary and sufficient for R to have an angular derivative at W_{∞}. (Comment. Math. Helv. to appear)
 4) For $0 \leqq \alpha \leqq 1$, this is an unpublished observation of Warschawski.
[^2]: 5) Using the ideas of [2], we may replace \varlimsup lim lim, but we do not need this fact here.
