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Abstract

Bed topography is a critical parameter for determining the modern-day and future dynamics of
ice sheets and their outlet glaciers. This is because the topography controls the state of stress for
glaciers. At glacier termini, topography can influence the timing of terminus retreat by control-
ling access to warm ocean waters and/or by influencing the ability of a glacier terminus to retreat
over bed bumps (moraines). Inland from the terminus, the topography can also influence where
glacier retreat and thinning can stabilize. In part, this is because of knickpoints in bed topography
created through glacial erosion that may influence the extent to which thinning can diffuse inland
for an individual glacier and thus, the timing and magnitude of long-term mass loss. Here we
provide a review of the current literature on these topics. While much of the reviewed literature
assumes that topography is stable on relevant timescales to humans, new research suggests that
topography may change much faster than previously thought and this further complicates our
ability to project future outlet glacier change.

1. Introduction

The Greenland Ice Sheet (GrIS) is presently the largest contributor of added mass to rising sea
levels (10.9 mm; 22.3%), recently surpassing alpine glaciers and ice caps (7.5 mm; 15.4%), the
Antarctic Ice Sheet (6.4 mm; 13.1%) and land water storage (7.2 mm; 14.8%) (IPCC, 2021). For
comparison, sea level rise due to thermal expansion accounts for 16.7 mm (34.4%) (IPCC,
2021). For Greenland, most of the mass loss is concentrated around the periphery of the ice
sheet (Velicogna and others, 2020) due to the low elevations found in these regions
(Pritchard and others, 2009; Shepherd and others, 2020), which promotes large negative sur-
face mass balance (Fettweis and others, 2020), abundant supraglacial melt that promotes fast
flow at the ice sheet bed (Andrews and others, 2014; Nienow and others, 2017), and the pres-
ence of nearly 300 fast-flowing outlet glaciers that act as conveyor belts draining ice from the
interior toward the coast (Joughin and others, 2010; Moon and others, 2020). Outlet glaciers
are impacted by numerous processes including external climate triggers (surface mass balance
and oceanographic heat transfer), which in turn impact the boundary conditions of glaciers
(Nick and others, 2009; Howat and others, 2010; Straneo and Heimbach, 2013; Catania and
others, 2020). Externally, topography of the ice sheet bed influences surface elevation and
ice thickness gradients and thus exerts a first-order control on ice dynamics. This means
that while outlet glaciers remain acutely sensitive to climate change (ocean and atmosphere),
the magnitude of dynamic adjustment that they make in response to climate perturbations is
to a large degree controlled by topography. This idea has been suggested previously by Pfeffer
(2007) and forms the premise of this brief review paper.

Our review of the current understanding of how topography controls GrIS mass loss focuses
on outlet glacier dynamic response, which exhibits heterogeneity between individual glacier
catchments in ice thickness (Csatho and others, 2014), velocity (Moon and others, 2020), and
terminus change (Murray and others, 2015; Catania and others, 2018). We first discuss early the-
ories underlying our understanding of irreversible glacier retreat related to topography and how
modern observations and modeling of subglacial topography may be used to explain the
observed heterogeneous response of the GrIS outlet glaciers to recent climate change. We
then discuss the role of topography in modulating the ability, timing and amount of terminus
retreat of marine-terminating outlet glaciers as well as how topography far inland from the ter-
minus influences the amount of mass loss resulting from a terminus perturbation. Finally, we
will explore the commonly held assumption that topographic change with time is slow and
not necessary to include in ice sheet models. We end with an outlook on future research prior-
ities aimed at improving our understanding of topographic influence on the GrIS.

2. How topography controls ice sheet change

The bed topography of ice sheets is deeper in the interior than at the periphery of the ice sheet
owing to lithospheric loading that depresses the crust where the overlying weight of ice is
greatest (Fig. 1). As a result, Earth’s remaining ice sheets both have basal topography that is
largely characterized as retrograde - sloped inward to the ice sheet interior from the margins.
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Early research into the impact of ice sheets on retrograde bed
slopes under climate warming led to the development of a theory
now termed Marine Ice Sheet Instability (MISI) (e.g., Weertman,
1974; Mercer, 1978; Thomas and Bentley, 1978). MISI suggests
that glaciers and ice sheets resting on retrograde beds are more
susceptible to rapid and irreversible mass loss as the climate
warms. This is because the flux of ice through the grounding
line increases with bed depth. Thus, ice sheet retreat on retrograde
bed slopes results in greater flux of ice and additional retreat. This
runaway process is suggested as a possible mechanism that could
lead to rapid collapse of the West Antarctic Ice Sheet, with the
potential for much faster rates of sea level rise than currently esti-
mated (IPCC, 2021). Early theories regarding MISI laid the
groundwork for modeling this process. This includes Schoof
(2007), who found that the presence of topographic overdeepen-
ings results in hysteresis in terminus position; termini that sit on
retrograde bed slopes have unstable grounding line states and can
rapidly retreat given a climate perturbation, while termini that sit
on prograde bed slopes are stable and can advance given a climate
perturbation.

3. Topography observations for Greenland

While the theory and modeling of MISI demonstrated its import-
ance, there has been little observational evidence of it in part due to
the lack of adequately resolved bed topography. Bed topography
became more readily resolved with the collection and publication
of radar-derived bed topographic data and the use of these data
via the production of BedMachine (Figure 1; Morlighem and
others, 2011), a data-constrained estimate of the bed elevation for

the GrIS. BedMachine uses radar-derived ice thickness, surface vel-
ocity and surface mass balance data with the assumption of mass
continuity to estimate bed elevation for fast-flowing portions of
the ice sheet. This approach is an improvement over kriging
because it provides a physically-realistic bed elevation in areas
where radar data are unavailable. This technique is focused at the
fast-flowing margin of the ice sheet and in the slower-flowing inter-
ior, BedMachine relies on kriging to interpolate between radar-
derived ice thickness measurements to create a complete map of
topography beneath the ice sheet. BedMachine has been improved
over time with the addition of fjord bathymetry data (Fenty and
others, 2020), providing seamless topography across outlet glacier
termini (Morlighem and others, 2023).

While BedMachine provides improvements to bed topographic
estimates, the terminal regions of outlet glaciers remain poorly
resolved because radar-derived ice thickness is more difficult to
obtain in these wet, crevassed and deep regions. Further compli-
cating improvements to outlet glacier topographic measurements
is the fact that there are nearly 300 outlet glaciers, each with their
own unique characteristics, making data collection onerous. The
topography that shapes outlet glaciers partially arises because gla-
ciers are natural erosive agents (Kessler and others, 2008; Koppes
and Montgomery, 2009; Love and others, 2016) capable of deli-
vering large amounts of sediment to their termini where it
often becomes visible as sediment plumes at the fjord surface
(McGrath and others, 2010; Hudson and others, 2014). Glacier
erosion is likely to be largest where ice is moving fastest and
where there is efficient removal of sediment via an active subgla-
cial system (Hallet and others, 1996; Cowton and others, 2012;
Love and others, 2016; Brinkerhoff and others, 2017).
Supraglacial water delivery to the bed downstream of the equilib-
rium line provides a steady water supply in summers, possibly
explaining the much deeper beds observed in these locations
(Fig. 2). In addition to erosion, because many outlet glaciers
approach floatation toward their margins, sediment may preferen-
tially deposit close to the terminus creating a moraine (sometimes
called a sill in the literature), which also shapes the topography at
termini (Figure 2; Batchelor and others, 2018). Comparisons of
BedMachine to radar-derived topography in outlet glaciers reveals
that there may be a systematic offset of the bed elevation between
the two but that the radar-derived bed slopes are well-preserved in
BedMachine (Morlighem and others, 2017; Catania and others,
2018; Narkevic and Anton, 2023). In addition, BedMachine is
unrealistically smooth at small scales making it less useful for
examining subglacial water routing and the influence of
small-scale bed features on dynamics (MacKie and others,
2021). Stochastic modeling of bed topography has emerged as
an additional technique to simulate the most realistic bed topog-
raphy using the statistics of the bed elevation uncertainty to drive
the scope of simulations (e.g., Goff and Jordan, 1988; MacKie and
others, 2020, 2021).

3.1 Topographic controls on retreat and inland thinning

Much of the dynamic mass loss for the GrIS is thought to have
initiated by warm ocean temperatures and sufficient supraglacial
melt to drive enhanced melt of the ice marginal region. This
has been demonstrated as a consequence of 20th century ocean
and atmospheric warming (Holland and others, 2008; Murray
and others, 2010; Straneo and Heimbach, 2013; Trusel and others,
2018; Wood and others, 2021). However, while the overwhelming
majority of GrIS outlet glaciers have experienced retreat (King
and others, 2020), acceleration (Moon and others, 2012) and thin-
ning (Smith and others, 2020), there is heterogeneity in the
dynamic response of glaciers to climate (Csatho and others,
2014; Catania and others, 2018; Hill and others, 2018; Moon

Figure 1. Topography of the Greenland Ice Sheet from BedMachine (Morlighem and
others, 2023) showing the location of knickpoints (black dots) and outlet glacier flow
lines (black and red lines). Black lines are glaciers with knickpoints, red do not have
knickpoints. All data from Felikson and others (2020).
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and others, 2020) with a small number of glaciers exhibiting sta-
bility over this time period. In part, this may be due to the inabil-
ity for warm ocean waters to access the terminus where fjords are
shallow or protected with shallow sills or paleo-moraines down-
stream of glacier termini (Bartholomaus and others, 2013;
Carroll and others, 2016; Batchelor and others, 2019). However,
the climate alone is not sufficient to force retreat of every glacier
terminus. This was demonstrated by Christian and others (2022)
who found that some bed bumps at glacier termini could cause
persistent terminus stability even when climate change produces
an increased probability of retreat. This is because ice flux reduces
as ice flows up to a bed peak, flattening surface slopes and redu-
cing the ability for climate to affect terminus position (Robel and
others, 2022). The enhanced stability of glacier termini near the
peaks of bed bumps may thus explain why there are a number
of persistently stable glaciers despite widespread coincident
warming of the ocean and atmosphere around Greenland since
the late 1990s.

In addition to controlling the timing of glacier terminus retreat
since the 1990s, topography also regulates how much retreat
occurs. Using BedMachine data, Catania and others (2018) con-
firmed that glacier termini retreat from one bed bump to another
further inland with retreat that appears insensitive to bed bumps
smaller than the seasonal amplitude of the terminus. Carnahan
and others (2022) examined this for neighboring glaciers
Umiamiko Isbræ and Ingia Isbræ, both of which began to retreat
in ∼2001. While both glaciers retreated significantly, Umiamiko
Isbræ restabilized on the prograde side of a large bed bump in
2010, while Ingia Isbræ has continued to retreat (Zhang and
others, 2023). The ongoing retreat of Ingia Isbræ was enabled,
in part, because its fjord has flat bed topography, which permits
low basal resistance to driving stress for several kilometers
upstream of the terminus (Carnahan and others, 2022). The
ongoing retreat occurring for many GrIS glaciers in spite of wide-
spread ocean cooling in ∼2008 (Wood and others, 2021) suggests
that climate alone cannot sustain retreat, and that topography
may permit the degree to which a climate trigger will influence
future dynamics of individual glaciers.

While we have focused largely on bed topographic controls so
far, we note that other variables can exert control on the pace and
timing of retreat. In streaming ice, Greenwood and others (2021)
found that along-flow bed slope was a poor predictor of retreat

style with similar retreats occurring on all types of bed slopes.
This suggests that bed topography alone may not be the dominant
control to terminus retreat. For the relatively narrow outlet gla-
ciers in Greenland, changes in fjord width also appear to exert
control in model studies of glacier retreat (Enderlin and others,
2013; Akesson and others, 2018; Hill and others, 2018). Indeed,
model simulations from Akesson and others (2018) show that ter-
mini can retreat through fjord embayments even in the presence
of bed topographic bumps in the bed. For the GrIS, it has been
difficult to ascertain the degree to which changes in fjord width
have impacted observed retreat rates because observed variations
in width are small compared to variations in bed topography
over the relatively short length scale of most retreats (Catania
and others, 2018).

Terminus retreat is thought to precede surface steepening,
acceleration and inland thinning of outlet glaciers (Carnahan
and others, 2022). Inland thinning of ice is diffusive and leads
to slow, long-term mass loss but represents the majority of future
committed sea level rise (Price and others, 2011). The amount of
inland thinning permitted is also controlled by bed topography
(Felikson and others, 2017), with the presence of bed topographic
‘knickpoints’ - steep reaches where the bed rises from below sea
level to above sea level far inland from the glacier terminus
(Figures 1, 3; Felikson and others, 2020). These knickpoints also
control the degree to which interior ice accelerates in response
to thinning and retreat (Williams and others, 2021). The proxim-
ity of knickpoints to a glacier’s terminus and the steepness of that
knickpoint is correlated with regional topographic steepness,
which likely steers outlet glacier tributaries to converge enhancing
bed erosion (Kessler and others, 2008; Felikson and others, 2020).
In regions of steeper terrain, there are steeper, more well-defined
knickpoints, while in gentler terrain, there are no knickpoints or
much gentler sloped knickpoints (Figures 1, 3; Felikson and
others, 2020). Where they are present, knickpoint locations are
roughly coincident with the location of the equilibrium line, sug-
gesting that surface meltwater is required to sufficiently lubricate
the bed enabling enhanced erosion downstream of knickpoints as
opposed to frozen bed conditions upstream of knickpoints
(Felikson and others, 2020). When retreat occurs on glaciers with-
out well-defined knickpoints, inland diffusive thinning may be
slower, but occurs for much longer than for glaciers with well-
defined knickpoints. This suggests that glaciers without

Figure 2. Schematic of outlet glacier topography showing retrograde inland topography, the presence of a knickpoint at the location of the equilibrium line altitude
(ELA), an overdeepening in the region of fast flow and the presence of moraines (both active and paleo) at the glacier terminus.
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knickpoints may represent bottlenecks of mass loss; where
ongoing long-term mass loss can continue well after the retreat
has occurred.

Given the importance of bed topography, and our knowledge
that glaciers are effective at erosion, it seems logical then to sus-
pect that topography can co-evolve with glacier dynamics.
Indeed, this was proposed to explain the ‘tidewater glacier cycle’
(Meier and Post, 1987; Nick and others, 2007), which is a long-
term cycle of slow terminus advance and rapid retreat initially
described as typical of Alaskan tidewater glaciers. The importance
of coupling sediment to ice dynamics was demonstrated by
Brinkerhoff and others (2017) who showed that the tidewater gla-
cier cycle could be reproduced within a steady climate simply
through interactions between ice flow, glacier erosion and sedi-
ment transport. Glacier erosion is also responsible for the creation
of overdeepenings (Patton and others, 2016), which then feedback
onto the ice dynamics including the rate of terminus retreat
(Robel and others, 2022) and the ice flux (Hooke, 1991; Creyts
and others, 2013). Differences in glacier bed erosion rates are
also likely responsible for the formation of knickpoints (Kessler
and others, 2008; Felikson and others, 2020), which suggests
that long-term erosion may be responsible for the heterogeneous
dynamic response in inland thinning of the ice sheet that is
observed today.

4. Future research priorities

While the role of topography in controlling outlet glacier dynam-
ics is of clear importance, our ability to actually observe subglacial
topography with reasonable accuracy is quite recent. For the GrIS,
considerable data acquisition occurred through CReSIS (Gogineni
and others, 2001, 2014), NASA’s Operation IceBridge (Studinger
and others, 2010; MacGregor and others, 2021) and Oceans,

Melting, Greenland Missions (Fenty and others, 2020), which
provided significant improvements in the spatial resolution and
coverage of bed topography in Greenland. Despite the significant
funding and effort that went to securing these data, we still lack
adequate topographic data for many outlet glacier terminal
regions in Greenland. Thick, warm, wet and steep-walled ice con-
ditions here pose unique challenges for airborne radar data collec-
tion. Some progress is being made to counter these challenges
using unmanned aircraft, which can house lower frequency
radar systems than are typically used, permitting deeper penetra-
tion (Arnold and others, 2018). Additional dedicated funding is
needed to fully map these parts of the ice sheet, perhaps focusing
on those glaciers that are most susceptible to initiating large
changes in mass loss.

Similarly, additional surveying of fjord topography is needed
(Jakobsson and Mayer, 2022), particularly for fjords that are per-
sistently chocked with melange, making the terminus region
much more difficult to access via ship (e.g., Helheim Glacier).
For glaciers without persistent melange, coordination across
nations can crowd-source data collection to happen during peri-
ods of time when accessibility is available. Perhaps this means
that we make use of even single-beam sounding from fishing
and expedition ships working in Greenland. For fjords that have
persistent melange, a different approach is needed that allows
remote sounding of the sea floor topography. This could occur
via including remotely operated vehicles (Jakobsson and Mayer,
2022), using novel remote-sensing techniques that make use of
iceberg draft heights (Scheick and others, 2019) and the use of air-
borne gravity (Boghosian and others, 2015; Tinto and others,
2015). While airborne gravity provides a coarser resolution bed
topography estimate compared to multibeam data, it can be
done more easily by plane and with complete coverage of the ter-
minal zone (An and others, 2019).

Figure 3. Subglacial and surface topography along flowlines of two GrIS glaciers. Grey lines show smoothed bed topography along six individual flowlines for each
glacier, black line shows the mean of all six flowlines. Blue shows ice surface topography. All topography data from (Felikson and others, 2020). Sea level is indi-
cated at zero elevation with a red dotted line. The approximate equilibrium line elevation is ∼1500m (Noël and others, 2019) and is indicated for each glacier. (a)
Humbolt Glacier showing an overdeepened bed near the terminus but no presence of a strong knickpoint detected. (b) Helheim Glacier showing a strongly over-
deepened bed topography near the terminus and a steep knickpoint at ∼35 km where inland thinning would be limited according to Felikson and others (2020).
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Given the importance of bed topography, particularly at the
ice-ocean boundary, we must next understand the pace at
which topographic change is possible. Glaciologists largely
assume stable bed topography over time assuming that bed ero-
sion and deposition rates are small compared to terminus change
rates (Koppes and Montgomery, 2009). Yet, sedimentation has
been observed to be critical to understanding the stability state
of glacier termini (Alley and others, 2003, 2007). Indeed, glacier
advance has been shown to be uniquely dependent on sediments
infilling into bed lows in front of the advancing terminus (Nick
and others, 2007). Further, sedimentation rates at Alaskan glaciers
were recently measured to be on the order of several meters per
year (Eidam and others, 2020), which is larger than the vertical
motion of the solid Earth following deglaciation, now considered
an important stabilizing feedback on ice loss (Barletta and others,
2018). Despite its clear importance, sedimentation is either
entirely missing from sea level projecting models of ice sheets
(Aschwanden and others, 2019) or is modeled without clear
knowledge of the types and rates of processes that contribute to
moraine building (Brinkerhoff and others, 2017). While there
has been extensive research on glacial landforms from past glacia-
tions, most of these studies are not able to produce a precise
depiction of the coincident ice dynamics at the time of deposition.
Thus, we lack a set of governing equations that describe how to
couple ice and sediment dynamics in a way that is consistent
with observations. We thus recommend new observations of sedi-
mentation rates that can be paired with observed glacier dynamics
so that we can build equations that describe moraine-building and
erosion of overdeepenings that are consistent with observations.

Finally, there is a remaining need to consider outlet glacier
dynamics holistically because there are multiple processes (both
internal and external to the ice sheet) that impact dynamics mak-
ing it difficult to tease apart cause and effect of glacier change.
Poorly constrained boundary conditions for outlet glaciers exacer-
bates this (Malles and others, 2023). New observations must
therefore be coupled to focused modeling of ice sheet outlet gla-
ciers to discern the processes that are most important for accur-
ately estimating future sea level.

5. Conclusions

Ice sheet mass loss has direct implications to sea level rise for
coastal communities who rely on accurate forecasts of sea level
across a wide range of time scales (Larour and others, 2017;
Ultee and others). To address this need, there have been increased
efforts to coordinate and improve model predictions of ice sheets
over the last decade (Nowicki and others, 2016; Seroussi and
others, 2020). Capturing historical GrIS mass change in model
simulations remains a challenge (Aschwanden and others,
2021), which is due to a range of uncertainties including the
lack of understanding of processes that control ice sheet mass
loss. Such uncertainties make accurate model prediction of sea
level challenging. For example, recent modeled future mass loss
of the GrIS suggests that it will contribute somewhere between
5–33 cm to sea level by 2100 (Aschwanden and others, 2019).
Meanwhile, the most recent IPCC report for the first time
included a ‘low-likelihood, high-impact storyline’ suggesting
that sea level could be 0.5 m or more higher than anticipated by
2100 from ‘deeply uncertain processes related to ice sheet instabil-
ity’ (IPCC, 2021). Such a large range in future sea level means the
difference between a coastal city that remains largely untouched
by sea level rise versus one that becomes submerged. The research
community has the responsibility to improve ice sheet uncertain-
ties. Within the focus of this review, we argue for improved radar-
data coverage over the more difficult to access terminal regions of
outlet glaciers that will improve the mass conserving bed

solution. We also argue for observations of the role of sedimenta-
tion/erosion for sculpting and changing bed topography over
time. To a first order we need a better understanding of the
rates of topographic change that are possible and what controls
such rates.
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