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Abstract. Some oscillation criteria are obtained for the damped PDE with p-
Laplacian

N∑
i,j=1

Di( aij(x)‖Dy‖p−2Djy ) + 〈 b(x), ‖Dy‖p−2Dy 〉 + c(x)|y|p−2y = 0.

The results established here are extensions of some classical oscillation theorems due
to Fite-Wintner and Kamenev for second order ordinary differential equations, and
improve and complement recent results of Mařı́k and Usami.

2000 Mathematics Subject Classification. 35J60, 34C35, 34K25

1. Introduction. In this paper we will study the following damped PDE with
p-Laplacian

N∑
i,j=1

Di( aij(x)‖Dy‖p−2Djy ) + 〈 b(x), ‖Dy‖p−2Dy 〉 + c(x)|y|p−2y = 0 (1.1)

in the exterior domain �(r0) = {x ∈ �N : ‖x‖ ≥ r0} for some r0 > 0, where x =
(xi)N

i=1 ∈ �(r0) ⊂ �N , N ≥ 2, p > 1, aij ∈ C1+µ(�(r0), �+), µ ∈ (0, 1), �+ = (0,∞),
and A = (aij)N×N is a real symmetric positive definite matrix, b(x) = (bi(x))N

i=1,
bi, c ∈ Cµ

loc(�(r0), �), Dy = (Diy)N
i=1, Diy = ∂y/∂xi, and where ‖ · ‖ and 〈 ·, · 〉 denote

the Euclidean norm and the scalar product in �N , respectively.
As usual, by a solution (classical solution) of (1.1) we mean a function y ∈

C1+µ(�(r0), �) which has the property aij(x)‖Dy‖p−2Djy ∈ C1+µ(�(r0), �) and which
satisfies (1.1) at each x ∈ �(r0). Regarding the questions of existence and uniqueness of
solution of (1.1), see [3]. In what follows, our attention is restricted to those solutions
which do not vanish identically in any neighborhood of ∞. A solution y(x) of (1.1) is
said to be oscillatory if it has arbitrarily large zeros, i.e., the set {x ∈ �(r0) : y(x) = 0 }
is unbounded. Equation (1.1) is said to be oscillatory if all its solutions (if any exists)
are oscillatory. Conversely, Equation (1.1) is nonoscillatory if there exists a solution
which is not oscillatory.

Equation (1.1) appears for examples in the study of non-Newtonian fluids,
nonlinear elasticity and in glaciology (see, for example, [3]). There are some special
cases of the equation (1.1) as follows:

https://doi.org/10.1017/S0017089507004004 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507004004


130 ZHITING XU

� the undamped PDE with p-Laplacian (A ≡ I , identity matrix, b(x) ≡ 0)

div( ‖Dy‖p−2Dy ) + c(x)|y|p−2y = 0, (1.2)

� the damped PDE with p-Laplacian (A ≡ I)

div(‖Dy‖p−2Dy) + 〈 b(x), ‖Dy‖p−2Dy 〉 + c(x)|y|p−2y = 0. (1.3)

� the second order linear ordinary differential equation (p ≡ 2, N ≡ 1, a11(x) ≡ 1,
b(x) ≡ 0)

y′′(t) + c(t)y(t) = 0. (1.4)

In this paper we deal with extending some classical oscillation criteria for (1.4) to
that of (1.1). As we know, concerning the oscillation of (1.4) there exists well-elaborated
theory, and the most important simple oscillation criterion is the well-known Fite-
Wintner theorem [5, 20] which states that if c ∈ C([t0,∞), �) and satisfies

lim
t→∞ C(t) = lim

t→∞

∫ t

t0

c(s) ds = ∞, (1.5)

then (1.4) is oscillatory. In fact, Fite [5] assumed in addition that c(t) is nonnegative,
while Wintner [20] proved a stronger result which required a weaker condition involving
the integral average of C(t), i.e.,

lim
t→∞

1
t

∫ t

t0

C(s) ds = ∞. (1.6)

Obviously, condition (1.5) is not necessary for the oscillation of (1.4). Actually, suppose
that

lim
t→∞

∫ t

t0

c(s) ds < ∞

holds; (1.4) may be still oscillatory (see, for example, [7, 17]). By constructing function
sequences, in 1977 Kamenev [10] gave some beautiful oscillation criteria for (1.4) under
the assumption that c(t) is an “integrally small” coefficient, that is,

C(t) =
∫ ∞

t
c(s) ds converges. (1.7)

Note that Kamenev studied the more general equation y′′(t) + c(t)f (y) = 0, where
f ′(y) ≥ k > 0, but condition (1.7) is the base one. The results of Fite-Wintner and
Kamenev have been later developed also for various type of equations, namely,
discrete equations, half-linear differential equations, functional differential equations,
semilinear elliptic differential equations, et al. (see, for example, [1, 2, 9, 16, 18, 21, 26]).

In 1998, employing an N-dimensional vector Riccati transformation developed by
Noussair and Swanson [16], Usami [19, Theorem 4] first extended the Fite theorem to
(1.2). Recently, Mařı́k [13, Theorem 3.8] further extended the Fite theorem to (1.3).
For (1.2) and (1.3), for later work in this direction we refer the reader to the papers [4,
8, 11–15, 19, 22–25] and references therein.

However, as far as the author knows, the Fite-Wintner and Kamenev theorems
have not been well developed in existing literature even for (1.2) and (1.3), let alone for
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(1.1). In view of this fact, it is therefore of interest to study the oscillation of damped
PDE with p-Laplacian (1.1).

The aim of this paper is to study oscillation properties of (1.1) via modified Riccati
technique and obtain extensions of Fite-Wintner [5, 20] and Kamenev [10] for this
equation, thereby improving results of Mařı́k [13] and Usami [19]. It is emphasized
that the oscillation criteria obtained here are new even for (1.2) and (1.3). Examples
are also given in the text to illustrate the relevance of our main theorems.

2. Notations and Lemmas. It will be convenient to make use of the following
notations in the remainder of this paper. For φ ∈ C1(�(r0), �+), ρ ∈ C1([r0,∞), �+),
and l > 1, define

cφ, l(x) = φ(x)c(x) − 1
p

(
l
p

)p−1 ‖A‖p

(φ(x)λmin(x)
)p−1 ‖φ(x)b(x)A−1 − ∇φ‖p,

g(r) =
⎛
⎝ρ(r)

∫
Sr

φ(x)‖A‖p

λ
p−1
min (x)

dσ

⎞
⎠

1/(1−p)

, k = 1
2l

(p − 1)(l − 1),

Cφ, ρ, l(r) = ρ(r)
∫
Sr

cφ, l(x)dσ − 1
p

(qk)1−pg1−p(r)

∣∣∣∣ρ ′(r)
ρ(r)

∣∣∣∣
p

,

where ∇φ(x) = (Diφ)N
i=1, Sr = {x ∈ �N : ‖x‖ = r}, ‖A‖ is the norm of the matrix A,

i.e., ‖A‖ = [
∑N

i=1 a2
ij ]1/2, q denotes the conjugate number to p, i.e., q = p/(p − 1), and

where dσ and λmin(x) denote the spherical element in �N and the smallest eigenvalue
of the matrix A, respectively.

The following two lemmas will be needed in the proofs of our results. The first can
be founded in [6, Theorem 41]. The second is a modified version of Lemma 1 in [16]
for (1.1).

LEMMA 2.1. If X and Y are nonnegative, then the inequality

(X + Y )λ ≥ Xλ + λXλ−1Y, λ > 1

holds.

LEMMA 2.2. Let φ ∈ C1(�(r0), �+) and l > 1. Suppose that (1.1) has a nonoscillatory
solution y = y(x) = 0 for all x ∈ �(r1), r ≥ r1. Then the N-dimensional vector function
w(x) is well defined on �(r1) by

w(x) = A(x)‖Dy‖p−2Dy
yp−1

, (2.1)

and satisfies the following inequality

div(φ(x)w(x)) ≤ −cφ, l(x) − 2k
φ(x)λmin(x)

‖A‖q
‖w(x)‖q. (2.2)
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Proof. Differentiation of w(x) with respect to xi, and summation over i, give

divw(x) = 1
yp−1

N∑
i,j=1

Di(aij(x)‖Dy‖p−2Djy) − (p − 1)
‖Dy‖p−2

yp
(Dy)T ADy.

By (1.1), we find that

divw(x) = −c(x) − (p − 1)
‖Dy‖p−2

yp
(Dy)T ADy −

〈
b(x),

‖Dy‖p−2Dy
yp−1

〉
. (2.3)

Note that

‖w(x)‖ ≤ ‖A‖‖Dy‖p−1

|y|p−1
,

and

(Dy)T ADy ≥ λmin(x)‖Dy‖2.

Then from (2.3) it follows that

divw(x) ≤ −c(x) − (p − 1)
λmin(x)
‖A‖q

‖w(x)‖q − 〈 b(x)A−1, wT (x) 〉. (2.4)

Multiplying (2.4) by φ(x), we get

div(φ(x)w(x)) ≤ −φ(x)c(x) − (p − 1)
φ(x)λmin(x)

‖A‖q
‖w(x)‖q

− 〈
φ(x)b(x)A−1 − ∇φ(x), wT (x)

〉
. (2.5)

Application of Young’s inequality ([6], Theorem 37) yields

(p − 1)
φ(x)λmin(x)

‖A‖q
‖w(x)‖q + 〈φ(x)b(x)A−1 − ∇φ(x), wT (x)〉

= p φ(x)λmin(x)
l ‖A||q

[
1
q
‖w(x)‖q + l ‖A‖q

p φ(x)λmin(x)
〈φ(x)b(x)A−1(x) − ∇φ,wT (x) 〉

+ l − 1
q

‖w(x)‖q
]

≥ p φ(x)λmin(x)
l ‖A‖q

[
−1

p

(
l
p

)p ‖A‖pq

(φ(x)λmin(x))p
‖φ(x)b(x)A−1−∇φ(x)‖p + l − 1

q
‖w(x)‖q

]

= −1
p

(
l
p

)p−1 ‖A‖p

(φ(x)λmin(x))p−1
‖φ(x)b(x)A−1 − ∇φ‖p + 2k

φ(x)λmin(x)
‖A‖q

‖w(x)‖q.

Combining the inequality above with (2.5), we obtain (2.2). �

3. Main results. In this section, we will establish some oscillation criteria for
(1.1). First of all, we give Fite-Wintner type criteria (Theorems 3.1 and 3.2) for (1.1).
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THEOREM 3.1. Let φ ∈ C1(�(r0), �+), ρ ∈ C1([r0,∞), �+), and l > 1. If

lim
r→∞

r∫
r0

Cφ, ρ, l(s)ds = ∞, (3.1)

and

lim
r→∞

r∫
r0

g(s)ds = ∞, (3.2)

then (1.1) is oscillatory.

Proof. Without loss of generality, suppose, by contradiction, that y = y(x) is a
solution of (1.1) which is positive on �(r1) for some r1 ≥ r0; then w(x) is well defined
by (2.1) on �(r1). Let

Z(r) = ρ(r)
∫
Sr

〈φ(x)w(x), ν(x)〉dσ for r ≥ r1, (3.3)

where ν(x) = x/‖x‖, ‖x‖ = 0, denotes the outward unit normal to the sphere Sr. By
means of the Green formula in (3.3), we obtain

Z′(r) = ρ ′(r)
ρ(r)

Z(r) + ρ(r)
∫
Sr

div〈φ(x)w(x), ν(x)〉dσ

≤ ρ ′(r)
ρ(r)

Z(r) − ρ(r)
∫
Sr

cφ, l(x)dσ − 2kρ(r)
∫
Sr

φ(x)λmin(x)
‖A‖q

‖w(x)‖qdσ. (3.4)

Hölder’s inequality [6, Theorem 89] implies that

|Z(r)| ≤ ρ(r)
∫
Sr

φ(x)‖w(x)‖‖ν(x)‖dσ

≤ ρ(r)

⎛
⎝∫

Sr

φ(x)‖A‖p

λ
p−1
min (x)

dσ

⎞
⎠

1/p ⎛
⎝∫

Sr

φ(x)λmin(x)
‖A‖q

‖w(x)‖qdσ

⎞
⎠

1/q

,

equivalently,

∫
Sr

φ(x)λmin(x)
‖A‖q

‖w(x)‖qdσ ≥ ρ−q(r)

⎛
⎝∫

Sr

φ(x)‖A‖p

λ
p−1
min (x)

dσ

⎞
⎠

1/(1−p)

|Z(r)|q,

from which, by (3.4), it follows that

Z′(r) ≤ −ρ(r)
∫
Sr

cρ, l(x)dσ + ρ ′(r)
ρ(r)

Z(r) − 2kg(r)|Z(r)|q. (3.5)
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Young’s inequality gives that

|ρ ′(r)|
ρ(r)

|Z(r)| ≤ kg(r)|Z(r)|q + 1
p

(qk)1−pg1−p(r)

∣∣∣∣ρ ′(r)
ρ(r)

∣∣∣∣
p

.

This inequality together with (3.5) yields

Z′(r) ≤ −Cφ, ρ, l(r) − kg(r)|Z(r)|q. (3.6)

Integrating (3.6) over [r1, r], we have

Z(r) +
r∫

r1

Cφ, ρ, l(s)ds + k

r∫
r1

g(s)|Z(s)|qds ≤ Z(r1). (3.7)

In view of (3.1), there exists a r2 ≥ r1 such that for r ≥ r2,

r∫
r1

Cφ, ρ, l(s)ds − Z(r1) ≥ 0.

This and (3.7) imply that

|Z(r)| ≥ k

r∫
r1

g(s)|Z(s)|qds := G(r).

So,

G′(r) = kg(r)|Z(r)|q ≥ kg(r)Gq(r),

and consequently

G′(r)
Gq(r)

≥ kg(r).

Integration of this inequality over [r2,∞) gives a divergent integral on the right
hand side, according to (3.2), and a convergent integral on the left hand side. This
contradiction completes the proof. �

COROLLARY 3.1. [Fite-type Theorem]. Let p ≥ N and l > 1. If

∫
�(r0)

[
c(x) − 1

p

(
l
p

)p−1

Np/2‖b(x)‖p

]
dx = ∞, (3.8)

then (1.3) is oscillatory.

Proof. Follows from Theorem 3.1 for φ(x) ≡ 1 and ρ(r) ≡ 1. �
COROLLARY 3.2. If

∫
�(r0)

{
‖x‖p−N

[
c(x) − 1

p
Np/2‖b(x)‖p

]
− 1

p

(
2

p − 1

)p−1

Np/2|p − N|p‖x‖−N

}
dx = ∞,

(3.9)
then (1.3) is oscillatory.
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Proof. Follows from Theorem 3.1 for φ(x) ≡ 1, ρ(r) ≡ rp−N , and l = p. �

REMARK 3.1. For (1.2), with φ(x) = 1, Theorem 3.1 improves Theorem 4 of [19].
For (1.3), with ρ(x) = 1, Theorem 3.1 improves Theorem 3.8 of [13].

THEOREM 3.2. Let φ ∈ C1(�(r0), �+), ρ ∈ C1([r0,∞), �+), and l > 1. If

lim
r→∞

1
r

r∫
r0

s∫
r0

Cφ, ρ, l(τ )dτds = ∞, (3.10)

and

lim
r→∞

r∫
r0

⎛
⎝ s∫

r0

g1−p(τ )dτ

⎞
⎠

1/(1−p)

ds = ∞, (3.11)

then (1.1) is oscillatory.

Proof. Following the proof of Theorem 3.1, we obtain that (3.7) holds. Integrating
(3.7) from r1 to r and dividing through by r yields

1
r

r∫
r1

Z(s)ds + 1
r

r∫
r0

s∫
r1

Cφ, ρ, l(τ )dτds + k
r

r∫
r1

s∫
r1

g(τ )|Z(τ )|qdτds ≤ Z(r1)
(

1 − r1

r

)
.

(3.12)
By (3.10), we can choose r2 sufficiently large so that, for r ≥ r2,

1
r

r∫
r1

Z(s)ds + k
r

r∫
r1

r∫
r1

g(τ )|Z(τ )|qdτds ≤ 0. (3.13)

Define

H(r) =
r∫

r1

s∫
r1

g(τ )|Z(τ )|qdτds.

Using Hölder’s inequality, we have

H(r) ≤ 1
k

r∫
r1

|Z(s)|ds ≤ 1
k

⎛
⎝ r∫

r1

g1−p(s)ds

⎞
⎠

1/p ⎛
⎝ r∫

r1

g(s)|Z(s)|qds

⎞
⎠

1/q

,

and thus

⎛
⎝ r∫

r1

g1−p(s)ds

⎞
⎠

1/(1−p)

≤ 1
kq

H ′(r)
Hq(r)

.
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Integrating the above inequality from r1 to r, we get

r∫
r1

⎛
⎝ s∫

r1

g1−p(τ )dτ

⎞
⎠

1/(1−p)

ds ≤ 1
(q − 1)kq

(
1

Hq−1(r1)
− 1

Hq−1(r)

)

<
1

(q − 1)kq

1
Hq−1(r1)

< ∞,

which gives a desired contradiction with (3.11) as r → ∞. This completes the proof. �
It is clear that Theorem 3.1 cannot be applied in the following case,

∞∫
Cφ, ρ, l(s)ds < ∞. (3.14)

Next, we shall discuss the oscillatory behavior of solutions of (1.1) satisfying (3.14),
and establish Kamenev’s theorem [10] for (1.1). For this, we start with a useful lemma
which is similar to Hartman’s Lemma ([7, p. 365]) for second order linear ordinary
differential equations.

LEMMA 3.1. Let φ ∈ C1(�(r0), �+), ρ ∈ C1([r0,∞), �+), and l > 1 such that (3.2)
and (3.14) hold. Define

	0(r) =
∞∫

r

Cφ, ρ, l(s)ds < ∞, r ≥ r0. (3.15)

If (1.1) is nonoscillatory, then there exist a constant r1 > r0 and a function Z ∈
C([r1,∞), �) such that for r ≥ r1,

∞∫
r

g(s)|Z(s)|qds < ∞, (3.16)

and

Z(r) ≥ 	0(r) + k

∞∫
r

g(s)|Z(s)|qds. (3.17)

Proof. As in the proof Theorem 3.1, there exist a constant r1 ≥ r0 and a function
Z ∈ C1([r1,∞), �) satisfying (3.7) for r ≥ r1 ≥ r0. Now, we claim that (3.16) holds. To
see this, suppose on the contrary that

∞∫
r

g(s)|Z(s)|qds = ∞. (3.18)

Note that from (3.7), (3.14) and (3.18), there is a r2 ≥ r1 such that

Z(r) ≤ −k

r∫
r1

g(s)|Z(s)|qds, r ≥ r2.
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As in the proof of Theorem 3.1, we can obtain
∞∫
r1

g(s)ds < ∞, which contradicts (3.2).

Hence, (3.16) holds. It follows from (3.7), (3.14) and (3.16) that

Z(r) ≥ lim sup
b→∞

Z(b) +
∞∫

r

Cφ, ρ, l(s)ds + k

∞∫
r

g(s)|Z(s)|qds, r ≥ r0. (3.19)

If lim supb→∞ Z(b) < 0, then there exist two numbers δ < 0 and r2 ≥ r1 such that
Z(b) < δ for b ≥ r2. Thus, from (3.2), we have

∞∫
r

g(s)|Z(s)|qds ≥ δq

∞∫
r

g(s)ds = ∞,

which contradicts (3.16). Thus, lim supb→∞ Z(b) ≥ 0. It follows from (3.7) that (3.17)
holds for r ≥ r1. This completes the proof. �

Let φ ∈ C1(�(r0), �+), ρ ∈ C1([r0,∞), �+), and l > 1 such that (3.2) and (3.14)
hold. For r ≥ r0, we define a function sequence {	n(r)}∞n=0 as follows.

	1(r) =
∞∫

r

g(s)	q
0(s)+ds;

...

	n+1(r) =
∫ ∞

r
g(s)[	0(s) + k	n(s)]q+ds, n = 1, 2, . . . , (3.20)

where 	0(r) is defined by (3.15) and ϕ(r)+ = [ϕ(r)]+ = max{ϕ(r), 0}.
By induction method, it is easy to prove that (3.20) is a nondecreasing sequence;

that is,

	n+1(r) ≥ 	n(r) for r ≥ r0, n = 1, 2 . . . . (3.21)

LEMMA 3.2. Let φ ∈ C1(�(r0), �+), ρ ∈ C1([r0,∞), �+), and l > 1 such that (3.2)
and (3.14) hold. Suppose that (1.1) has a nonoscillatory solution y = y(x) = 0 for all
x ∈ �(r1), r1 ≥ r0. Then (3.20) exists and converges; that is,

lim
n→∞ 	n(r) = 	(r) for r ≥ r1. (3.22)

Proof. Without loss of generality, let us consider y = y(x) > 0 for x ∈ �(r1); then
the results of Lemma 3.1 hold. So (3.17) implies that Z(r) ≥ 	0(r). Consequently,
|Z(r)| ≥ 	0(r)+ for r ≥ r1. Noting (3.16), we have

	1(r) ≤
∞∫

r

g(s)|Z(s)|qds < ∞. (3.23)
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Then, from (3.17) and (3.23), we get

	0(r) + k	1(r) ≤ Z(r).

Thus, by Lemma 3.1,

	2(r) ≤
∞∫

r

g(s)|Z(s)|qds < ∞.

By induction we can easily obtain

	m(r) ≤
∞∫

r

g(s)Z(s)|qds < ∞, m = 1, 2 . . . . (3.24)

In view of (3.21) and (3.24), we see that (3.20) is nondecreasing and bounded. Hence,
(3.20) exists and converges, that is, (3.22) holds. Hence, Lemma 3.2 is proved. �

As an immediate consequence of Lemma 3.2, we have the following Kamenev-type
oscillation criteria [10] for (1.1).

THEOREM 3.3. Let φ ∈ C1(�(r0), �+), ρ ∈ C1([r0,∞), �+), and l > 1 such that
(3.2) and (3.14) hold. Suppose that, for sequence (3.20), one of the following conditions
is satisfied.

(1). There is a positive integer m ≥ 1 such that 	1(r), . . . , 	m−1(r) exist, but 	m(r) does
not exist;

(2). {	i(r)}∞i=1 exists, but there is a r∗ ≥ b for an arbitrarily large b ≥ r0 such that
lim

n→∞ 	n(r∗) = ∞.

Then (1.1) is oscillatory.

In what follows, we further assume that r is sufficient large so that

	0(r) ≥ 0. (3.25)

LEMMA 3.3. Let φ ∈ C1(�(r0), �+), ρ ∈ C1([r0,∞), �+), and l > 1 such that (3.2),
(3.14) and (3.25) hold. Suppose that (1.1) has a nonoscillatory solution y = y(x) = 0 for
all x ∈ �(r1), r1 ≥ r0. Then

lim sup
r→∞

⎧⎨
⎩	(r) exp

⎛
⎝kq

r∫
r1

g(s)	q−1
0 (s)ds

⎞
⎠

⎫⎬
⎭ < ∞, (3.26)

where 	(r) is defined by (3.22).

Proof. By Lemma 3.1, for r ≥ r1, we have

Z(r) ≥ 	0(r) + U(r) ≥ 0,
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where

U(r) = k

∞∫
r

g(s)|Z(s)|qds.

In view of Lemma 2.1, we find that

U ′(r) = −kg(r)|Z(r)|q
≤ −kg(r)[	0(r) + U(r)]q

≤ −kg(r)[	q
0(r) + q	

q−1
0 (r)U(r)]

≤ −kqg(r)	q−1
0 (r)U(r).

Thus it follows that

U(r) ≤ U(r1) exp

⎛
⎝−kq

r∫
r1

g(s)	q−1
0 (s)ds

⎞
⎠ . (3.27)

On the other hand, we showed, in the proof of Lemma 3.2, that (3.24) holds, that is,

U(r) ≥ k	m(r), m = 1, 2, . . . .

This and (3.27) imply that

	m(r) exp

⎛
⎝kq

r∫
r1

g(s)	q−1
0 (s)ds

⎞
⎠ ≤ U(r1)

k
, m = 1, 2, . . . . (3.28)

By Lemma 3.2, {	m(r)}∞m=1 converges, and then, by (3.28) it follows that

lim
m→∞ 	m(r) exp

⎛
⎝kq

r∫
r1

g(s)	q−1
0 (s)ds

⎞
⎠

= 	(r) exp

⎛
⎝kq

r∫
r1

g(s)	q−1
0 (s)ds

⎞
⎠ ≤ U(r1)

k
.

Let limsup as r → ∞ in above inequality, to get that (3.26) holds. �
By Lemma 3.3, we have

THEOREM 3.4. Let ϕ ∈ C1([r0,∞), �+), ρ ∈ C1([r0,∞), �+) and l > 1 such that
(3.2), (3.14) and (3.25) hold. Suppose that, for sequence (3.20), one of the following
conditions is satisfied.

(1). 	i(r), i = 1, 2, . . . , m, exist, and

lim sup
r→∞

⎧⎨
⎩	m(r) exp

⎛
⎝kq

r∫
r0

g(s)	q−1
0 (s)ds

⎞
⎠

⎫⎬
⎭ = ∞; (3.29)
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(2). (3.22) holds, and

lim sup
r→∞

⎧⎨
⎩	(r) exp

⎛
⎝kq

r∫
r0

g(s)	q−1
0 (s)ds

⎞
⎠

⎫⎬
⎭ = ∞, (3.30)

where 	(r) is defined by (3.22). Then (1.1) is oscillatory.

THEOREM 3.5. Let ϕ ∈ C1([r0,∞), �+), ρ ∈ C1([r0,∞), �+) and l > 1 such that
(3.2), (3.14) and (3.25) hold. If

lim
r→∞

∫ r

r0

exp

⎛
⎝−kq

s∫
r0

g(τ )	q−1
0 (τ )dτ

⎞
⎠ ds < ∞, (3.31)

and there exists m ≥ 1 such that

lim
r→∞

∫ r

r0

	m(s)ds = ∞, (3.32)

where 	m(r) is defined by (3.2), then (1.1) is oscillatory.

Proof. Proceeding as in the proof Lemma 3.3, we get that (3.28) holds, that is,

	m(r) ≤ U(r1)
k

exp
(

−kq
∫ r

r1

g(s)	q−1
0 (s)ds

)
.

Noting (3.31) and (3.32), let r → ∞ in the inequality above, to get a contradiction.
This contradiction proves our theorem. �

In the following we illustrate our main theorems with three examples.

EXAMPLE 3.1. Consider (1.1) with

A = diag(‖x‖, ‖x‖), b(x) =
(

x1

‖x‖2
,

x2

‖x‖2

)
, c(x) = 1 + ε sin ‖x‖

‖x‖γ
, (3.33)

where x ∈ �(1), N = 2, 1 < γ ≤ 2, p = 3, and ε ∈ �. For Theorem 3.1, let φ(x) = 1,
ρ(r) = 1 and l = 3; then

Cφ, ρ, l(r) = 2π (1 + ε sin r)
rγ−1

− 25/2π

3r4
, g(r) = (25/2πr2)−1/2.

It is easy to see that all conditions of Theorem 3.1 are satisfied, so (3.33) is oscillatory.

EXAMPLE 3.2. Consider (1.1) with

A = diag(1, 1), b(x) =
(

x1

‖x‖2
,

x2

‖x‖2

)
, c(x) = ν

‖x‖13/4
, (3.34)

where x ∈ �(1), N = 2, ν > 0, p = 4. For Theorem 3.3 (1), let φ(x) = ‖x‖, ρ(r) = 1
and l = 4, then

Cφ, ρ, l(r) = 2πν

r5/4
, g(r) = (8πr2)−1/3.
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It follows, for r ≥ 1, that

	0(r) = 8πν

r1/4
, 	1(r) = 8πν4/3

∞∫
r

1
s

ds = ∞.

Thus, by Theorem 3.3 (1), (3.34) is oscillatory.

EXAMPLE 3.3. Consider (1.1) with

A = diag
(

1
‖x‖ ,

1
‖x‖

)
, b(x) =

(
2x1

‖x‖3
,

2x2

‖x‖3

)
,

c(x) = ε(‖x‖ sin ‖x‖ + cos ‖x‖) + 1
‖x‖5

, (3.35)

where x ∈ �(1), N = 2, 0 ≤ ε < 1 − (1/2)(l/(l − 1))3 for 1 < l < 21/3/(21/3 − 1), p = 4.
For Theorem 3.5, let φ(x) = 1, ρ(r) = ‖x‖2; then

Cφ, ρ, l = 2π [ε(r sin r + cos r) + 1]
r2

, g(r) = (8πr2)−1/3, k = 3(l − 1)
2l

, q = 4
3
.

So

Q0(r) = 2π (1 + ε cos r)
r

and

Q1(r) = 21/3π

∫ ∞

r

(1 + ε cos s)4/3

s2
ds ≥ 21/3π (1 − ε)4/3

r
.

Thus,

lim
r→∞

r∫
1

Q1(s)ds = ∞,

and

lim
r→∞

∫ r

1
exp

⎛
⎝−kq

s∫
1

g(τ )	q−1
0 (τ )dτ

⎞
⎠ ds

= lim
r→∞

r∫
1

exp

⎛
⎝−21/3(l − 1)

l

s∫
1

(1 + ε cos τ )1/3

τ
dτ

⎞
⎠ ds

≤ lim
r→∞

r∫
1

s−21/3(l−1)/ l(1−ε)1/3
ds < ∞.

Hence all conditions of Theorem 3.5 hold, and so (3.35) is oscillatory.
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14. R. Mařı́k, Integral averages and oscillation criteria for a half-linear partial differential
equation, Appl. Math. Comput. 150 (2004), 69–87.

15. R. Mařı́k, Interval-type oscillation criteria for half-linear PDE with damping, Appl.
Appl. Math. 1 (2006), 1–10.

16. E. S. Noussair and C. A. Swanson, Oscillation of semilinear elliptic inequalities by
Riccati transformation, Canad. J. Math. 32(4) (1980) 908–923.

17. C. A. Swanson, Comparison and oscillatory theory of linear differential equations
(Academic Press, 1968).

18. C. A. Swanson, Semilinear second order elliptic oscillation, Canad. Math. Bull. 22
(1979), 139–157.

19. H. Usami, Some oscillation theorems for a class of quasilinear elliptic equations, Ann.
Math. Pura. Appl. 175 (1998) 277–283.

20. A. Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115–117.
21. Z. Xu, Oscillation of second order elliptic partial differential equations with a “weakly

integrally small” coefficient, J. Sys & Math. Scis. 18 (1998), 478–484. (in Chinese).
22. Z. Xu, Oscillation properties for quasilinear elliptic equations in divergence form, J. Sys

& Math. Scis. 24 (2004), 85–95 (in Chinese).
23. Z. Xu, Riccati inequality and oscillation criteria for PDE with p-Laplacian, J. Inequal

Appl. 2006, Art. ID 63061, 1–10.
24. Z. Xu and H. Xing, Oscillation criteria of Kamenev-type for PDE with p-Laplacian,

Appl. Math. Comput. 145 (2003), 735–745.
25. Z. Xu and H. Xing, Oscillation criteria for PDE with p-Laplacian involving general

means, Ann. Mat. Pura Appl. 184 (2005), 395–406.
26. B. G. Zhang, T. Zhao and B. S. Lalli, Oscillation criteria for nonlinear second order

elliptic differential equations, Chin. Ann. Math. Ser. B. 17 (1996), 89–102.

https://doi.org/10.1017/S0017089507004004 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507004004

