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Introduction. The Bass-Serre theorem supplies generators and relations for a
group of automorphisms of a tree. Recently K. S. Brown [2] has extended the result to
produce a presentation for a group of automorphisms of a simply connected complex, the
extra ingredient being relations which come from the 2-cells of the complex. Suppose G is
the group, K the complex and L the 1-skeleton of K. Then an extension of ni{L) by G
acts on the universal covering space of L (which is of course a tree) and Brown's
technique is to apply the work of Bass and Serre to this action. Our aim is to give a direct
elementary proof of Brown's theorem which makes no use of covering spaces, deals with
the Bass-Serre theorem as a special case and clarifies the roles played by the various
generators and relations.

1. Preliminaries. By a group of automorphisms of a simplicial complex K we mean
a group of homeomorphisms of the underlying polyhedron \K\ whose elements permute
the simplexes of K.

A directed edge e of K is a physical edge plus a choice of one of its vertices as initial
vertex i(e). The second vertex is then written t(e) and called the terminal vertex. Making
the other choice for i(e) produces the reverse e of e. From now on we refer to directed
edges simply as edges. Let V denote the set of vertices and E the set of edges of K. These
two sets together with the functions

E—>E, e —* e

form a graph X in the sense of Serre [3] because we clearly have e = e, e^e and
i(e) = t(e) for each e e E.

If G is a group of automorphisms of K we have a natural action of G on V and on E
such that

gi(e) = i(ge) and gt(e) = t{ge)

for each g eG and e e E. We shall assume that edges of K are never reversed by the
action of G. More formally, if g e G and e e E then ge ± e. Thus the quotient X/G has the
structure of a graph. Because X comes from a simplicial complex the initial and terminal
vertices of an edge are always different. Of course this property may well be lost on
passage to X/G.

A path in K (and in A^ joining vertex u to vertex v is an ordered string of edges
• • en such that /(e,) = u, i{ek+x) = t{ek) for l^k^n-1, and t(en) = v. A path of
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the form ee will be called a round trip. Let ex . . . ekek+l . . . en be a path and suppose
i{ek), t{ek), t(ek+1) are the three vertices of a triangle of K. Let e be the edge of this
triangle determined by i(e) = i(ek), t(e) = t{ek+l). Replacing the pair ekek+l by e in our
original path is called taking a short cut.

We shall work with a complex which is both connected and simply connected. Each
of these notions has a combinatorial description. A complex is connected if any two
distinct vertices can be joined by a path. It is simply connected if two paths which join the
same pair of vertices u, v are always homotopic. That is to say we can convert one path
into the other (keeping a path from u to v throughout) by a finite number of steps each of
which involves the addition or removal of either a round trip or a short cut.

We adopt the usual notation whereby Gu denotes the stabilizer of the vertex u. If
g e G happens to fix u we write gu for the element g thought of as a member of Gu. Of
course Ge denotes the stabilizer of the edge e. If u is a vertex of e then Ge is a subgroup
of Gu.

Recall that a graph is a tree if any two of its vertices may be joined by a path, and any
path which joins a vertex to itself must contain a round trip.

With G, K, X as above choose a maximal tree M in X/G and lift it [3, Proposition
1.14] to a subtree T of X. The vertices of T form a set of representatives for the action of
G on the vertices of X. For each pair of edges/, /from X/G - M, select one, say/, and
lift it to an edge e of X which has its initial vertex JC in T. Exactly one vertex z of T lies in
the same orbit as t(e) and we choose an element yyfrom G that maps z onto t(e). We can
now lift / to (yf)~

le. This has its initial vertex z in T and yj = {yf)~
l sends the vertex x of

T to its terminal vertex (Fig. 1). Finally we extend the correspondence /—*yf over the
edges of M by setting yf = 1 (the identity element of G) whenever f eM.

Figure 1

https://doi.org/10.1017/S0017089500007424 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007424


AUTOMORPHISMS OF A SIMPLICIAL COMPLEX 333

The elements of all the Gw, where w is a vertex of T, and the yy, where / is an edge
of XIG, together generate G. They satisfy the relation

rj8*Yf = (Y-fgYf)z

whenever g fixes the canonical lift e off, plus relations which come from the triangles of K
and which will be described in the next section.

2. Tail wagging. Let g eG and let e^e2... en be a path which joins a vertex v of T
to gv. If the path lies entirely in T then gv = v because no two vertices of T lie in the
same orbit. Therefore g = gv, where as usual gv denotes the element g interpreted as a
member of Gv. Otherwise there is a first edge em that is not in T. The path emem+1. . . en

will be called the tail of ete2 .. . en. Let xx be the initial vertex of em. Project em into X/G
to give an edge fx. The canonical lift e1 of /j into X has its initial vertex in T, so i{el) = xr.
Choose an element aXi e GXi which sends e1 to em. Let

el = (y/.aj/K

for m + 1 «£ k =£ n and replace exe2 • . . en by the new path em+iei,+2. . . e\. We call this
process tail wagging. Our new path begins at

which is a vertex of T and ends at {Yfxa~{g)v; see Fig. 2. We walk along it to the first
point JC2 where it quits T and repeat the above procedure. Since we shorten the tail at
each step we eventually obtain a path which lies entirely in T and ends at, say,

Then y/,aj/ . . . Yjfi^g must fix v, say y/raj/ . . . Y/ia7ig = aveGv. We now have
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This shows that the elements of the Gw, w eT, together with the yf, / a n edge ofX/G, do
indeed generate G.

Now for the extra relations mentioned in §1. Our group G acts on the collection of
all triangles in K. From each orbit we choose a triangle which has a vertex in T. Let A be
such a triangle and let v be a vertex of A which belongs to T. Walking round the
boundary of A (there is a choice of direction here) produces a path which joins v to
v = lv, and tail wagging this path expresses the identity element of G as a word rA in our
generators. The missing relations have the form

one for each orbit of triangles in K.
With the notation established above let *GW denote the free product of the

stabilizers of the vertices of T, and F the free group generated by symbols Xf, one for each
edge of X/G. Let R be the normal consequence in (%GW) * F of the words

Xf (/ an edge of M),
kjkf (for each edge of X/G),

XjgxXf{YjgYf)~l (when g fixes the canonical lift e of/) , and

r^ (obtained from rA by changing each occurrence of yf

to Xf, one such for each orbit of triangles).

PRESENTATION THEOREM. If G is a group of automorphisms of a connected simply
connected complex K, and if no edge of K is reversed by the action of G, then G is
isomorphic to [(*GW) * F]/R.

If K is one-dimensional, so that A' is a tree, this is the Bass-Serre Theorem [3,
Theoreme 1.13]. For dimension two or more the extra relations were provided by K. S.
Brown [2].

3. Homotopy. We shall produce an isomorphism

as follows. Take a vertex v of T as base point. Given g e G, choose a path a in K which
joins v to gv. By tail wagging a we express g as a word aXlyfl.. . aXrYfr0v and we define

Of course various choices are involved here and we must show that ty is well defined.
For a particular path a joining v to gv the first ambiguity occurs in the choice of the
element aXi e GXt which maps e1 to em. That a different choice at this and subsequent
stages gives the same coset for ip(g) is verified exactly as in [1]. As to the choice of the
actual path a we need only check that altering a by the addition or removal of a single
round trip or short cut makes no difference to the value of ip(g).
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Let a be the string c,e2 . . . en leading to the word aXtkfl. . . axkfav in (%GW)*F.
Suppose we add the round trip eoeo. Let / be the image of e0 in X/G and e the canonical
lift of/back into X, so that i(e) = x lies in T. Tail wagging the new path gives a word of
the form

l)aXk^kfk+l . . . axkfav

if x is distinct from all the xh or possibly

ax>kfl . . . aXkkfk(axkf)(kfXa'x'
laXk+lkfkJ . . . axkfav

if x = xk+i. We have used parentheses to emphasise groups of symbols which correspond
to a single tail wag. Removing a round trip has the opposite effect and clearly neither
process changes the coset of the original word.

Suppose now we start with a and take a short cut, calling the new path /3. Tail
wagging /3 proceeds as for a until we reach a vertex w of T from which the modified a
runs along two sides of a triangle Ao, whereas what remains of /3 short cuts along the third
side. Clearly a and /3 give the same i?-coset if r^0 belongs to R. The following lemma
shows that this is the case.

LEMMA. Let A be a triangle which has a vertex u in T and suppose that r& e R. If g
sends A to a triangle Ao which also has a vertex in T then r&0 e R.

Proof. We may as well assume that the situation is represented by Fig. 3, the only
possible ambiguity being the direction in which we choose to go round one or other of the
triangles. As is easily checked a reversal of direction produces a word which is
R-equivalent to the inverse of the original word, and does not affect our lemma.

For m = 1, 2, 3 let/m be the projection of em into X/G and em the canonical lift of/m
back into X with i(em) e T. Tail wagging eie2ei gives, say,

A = aukflaX2kf2awkhbu (1)

and taking the boundary of Ao in the direction shown leads to

rl0 = (awkh)(bucuaukf)(aX2kh)dw (2)

Figure 3
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where cu fixes the edge e3. Now

dw = [{awyhbucu

= [(awYhbu)(awyhbucu)-
l]w by (1)

because bucJ>Zx fixes y/3e
3. Substitution in (2) gives

and shows that r^0 belongs to R.

4. Composite paths. To complete the proof of the Presentation Theorem we show
that i/> is a homomorphism and a bijection.

Given elements g, h eG join v to gv and hv by paths a, /3 respectively. Tail wag a
and /3 to give say

xp{h) = bx.Xn. . . bx,XfbvR.

Now a followed by the image of /J under g joins v to (gh)v. Using this composite path to
compute ip(gh) gives

= (aXlkfl). . . (aM

provided x[ is not the same as v, or

r) ... (bx.Xr)bvR

iix[ = v. Therefore ty{gh) = tl>(g)ip(h) and %p is a homomorphism.
Our construction of xp ensures that if tyig) = R then g = 1. So xp is injective. The

cosets hwR (w a vertex of T and hw = w) and XfR (/ an edge of XIG) together generate
[(*GW)*F]/R. We show \p surjective by checking that q(h) = hwR and ty{yf) = XfR. If
x, y are vertices of T write xy for the geodesic (shortest path) in T which joins x to _y. This
geodesic is unique because T is a tree. Suppose A fixes the vertex w of T. Let JC be the
closest vertex of T to v such that xw is left fixed by h, and note that vx followed by the
image of xv under h joins v to /iu. This path leaves T for the first time at x and a single
tail wag using h~l shows that xp(h) = hxR. But /i fixes all of the geodesic xw. Hence
hxR = hwR as required.

Finally, if/is an edge ofX/G with canonical lift e in Z then (with the usual notation)
the composite path vx followed by e followed by Yf(zv) joins v to yfv. This path leaves T
for the first time at x and a single tail wag by y-f shows ip(yf) = XfR. This completes the
argument.
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