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Effect of gas content on cavitation nuclei
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Cavitation inception originates from nuclei in a liquid. This paper proposes a Gibbs free
energy approach that provides a smooth transition from homogeneous to heterogeneous
nucleation when gas is present. The impact of gas content on nucleation is explored.
It is found that the gas content stabilises nuclei, a phenomenon not present in pure
liquid–vapour systems. This reduces the energy barrier over that required to nucleate a
vapour bubble. Different gas saturation levels are studied. Gas content can significantly
reduce the energy barrier required for nucleation, and under certain circumstances
eliminate it. An analytic solution for the critical radius and activation energy is obtained
that accounts for gas content. The classical Blake radius is recovered as a limiting case. The
hysteresis between incipience and desinence is explained using the asymmetry observed
in the critical radii. The solution is used to obtain the initial bubble radius, given a
critical pressure condition in cavitation susceptibility meter experiments. The relationship
between initial bubble diameter and critical pressure is described by an analytic solution
that accounts for gas content. A model for the derivative of the cumulative nuclei histogram
with respect to bubble diameter is proposed. An analytic expression is obtained that shows
good agreement with decades worth of experimental data compiled by Khoo et al. (Exp.
Fluids, vol. 61, issue 2, 2020, pp. 1–20) from ocean to water tunnels. The expression
recovers the −4 power law that is observed experimentally.

Key words: cavitation, variational methods, multiphase flow

1. Introduction

Cavitation can generally be described by the process of liquid rupturing due to a drop
in pressure at constant liquid temperature (Brennen 2014). As the pressure is lowered, by
static or dynamic means, a state is reached where vapour (or gas)-filled bubbles (cavities)
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grow and become detectable. The rate of growth is nominal if the process is due to the
diffusion of dissolved gas, or due to the expansion of gas as a result of a pressure drop.
The rate of growth is explosive if it is primarily a result of vaporisation into the cavity. In
its early stages, cavitation manifests from random molecular motions. In advanced stages
beyond inception, it can manifest from more complex hydrodynamic events.

The events in the inception and development stages of cavitation depend on the
condition of the liquid and on the pressure field in the zone of cavitation. Nuclei can
be freely suspended (Yount, Gillary & Hoffman 1984); in this situation, if there are
no impurities such as non-condensible gas, it is commonly referred to as homogeneous
nucleation, and the tensions required to cause a rupture are greater than −60 MPa (Ando,
Liu & Ohl 2012). On the other hand, heterogeneous nucleation occurs at pre-existing
weaknesses, such as particles, or small pockets of gas in contact with solid boundaries
such as container walls and particle surfaces (Andersen & Mørch 2015), or other gaseous
contaminants (Arora, Ohl & Mørch 2004; Borkent, Arora & Ohl 2007; Borkent et al.
2008; Zhang et al. 2014). In engineering applications, cavitation occurs at pre-existing
nuclei in the liquid, commonly observed at major weaknesses at the boundary between a
solid and liquid (Greenspan & Tschiegg 1967; Caupin & Herbert 2006). A detailed review
on pre-existing gaseous nuclei can be found in Jones, Evans & Galvin (1999).

The liquid can be either in motion or at rest, which is why cavitation is often
observed in flowing streams, moving immersed bodies and under acoustic excitation.
Typically, cavitation is characterised based on its appearance. Travelling cavitation is when
individual transient nuclei form into bubbles in low-pressure regions, such as moving
vortex cores that occur on the blade tips of ships’ propellers, or in turbulent shear flows
where they expand and shrink in the liquid phase, and then collapse in higher-pressure
regions. Fixed cavitation is typically associated with situations that develop after inception
in which the liquid flow detaches from a solid boundary. If the cavity is attached then it is
usually stable in a quasi-steady sense. Vibratory cavitation occurs due to high-amplitude,
high-frequency pressure pulsations without any significant flow. This can occur near
surfaces that vibrate, or due to ultrasonic excitation. Therefore, cavitation that occurs under
dynamic pressure reduction, such as that under hydrodynamic and acoustic fields, causes
a cyclical behaviour of bubble growth and collapse. Gas content plays a significant role in
the sequence of events beginning with bubble formation and extending through bubble
collapse. The incipient stage of cavitation is when cavities become barely detectable.
The developed stage, which succeeds the incipient stage, is when cavities grow and
vaporisation rates increase due to changes in velocity, pressure or temperature conditions.
If the pressure is below some critical value for a certain period of time, then it will produce
a cavitation event. This critical pressure is a characteristic of the physical properties of
the system. The threshold between no cavitation and detectable cavitation is not always
identical and is referred to as incipient and desinent cavitation events (Knapp, Dailey &
Hammitt 1970).

1.1. Nuclei in cavitation
Experimentally, detecting sub-micrometre particles in a liquid is difficult, making it
challenging to distinguish between homogeneous and heterogeneous nucleation. Studies of
the fundamental physics of the formation of vapour voids in the body of a pure liquid date
back to Gibbs (1906), Volmer & Weber (1926), Farkas (1927), Becker & Döring (1935)
and Zeldovich (1943). A well-known approach is classical nucleation theory (CNT).
Comprehensive reviews on CNT can be found in books by Frenkel (1955), Skripov (1974)
and Carey (2020) and in articles by Blake (1949a), Bernath (1952), Cole (1974), Blander
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& Katz (1975) and Lienhard & Karimi (1981). Recently, simulations using molecular
dynamics have focused on modelling the inception and nucleation events (Menzl et al.
2016; Chen et al. 2019; Gao, Wu & Wang 2021).

In this paper, we approach CNT from a general Gibbs free energy description with
a focus on the behaviour and transition from homogeneous nucleation to heterogeneous
nucleation in the presence of contaminant gas and the absence of a solid boundary.
Vincent & Marmottant (2017) investigate similar behaviour for confined bubbles within
shells under static and dynamic conditions. The idea in this paper is to show that there
is a smooth continuous behaviour between the two regimes. Expressions for the critical
radius, activation energy and diameter of the initial bubble distribution are given by a set
of analytic solutions. The transition between the two regimes is captured analytically with
the continuous variation of gas content. The method recovers the homogeneous model in
the limiting case, and well-known results such as Blake’s critical radius, while further
adding more insight into predicting the presence of stable nuclei.

Generally speaking, the term CNT is not universal. From a broad perspective, it can refer
to a theoretical framework to describe the formation of spatially non-uniform densities,
e.g. clusters of a thermodynamically stable phase within a metastable parent phase.
Thermodynamic fluctuations are central to nucleation phenomena and are governed by
the Boltzmann distributions and the canonical ensemble of classical statistical mechanics.
Essentially, there is always a finite probability that a particle can occupy a high-energy
state no matter how unstable (given a period of time). This form of thermodynamic
fluctuations is the main driver which allows a momentary breach of the activation energy
barrier that leads to a phase transition forming a vapour bubble (Maeda 2020). Kashchiev
(2000) showed that spatially non-uniform pathways are the least taxing from an energy
perspective, and therefore the basis of CNT, which permits the formation of clusters
of various sizes in a presumably spatially uniform metastable parent phase. Therefore,
stochasticity lies at the heart of the nucleation process. Brennen (2014) refers to these
random molecular motions as ephemeral vacancies, the process being couched in terms
of a probability that a vacancy of a critical radius will occur during the time for which
the tension is applied. As a result, the body of liquid has to deposit energy to create the
nucleus (known as the critical Gibbs number or activation energy). In a liquid isolated
from any external radiation, the mechanism is reduced to an evaluation of the probability
that the stochastic nature of the thermal motions of the molecules lead to a local energy
perturbation that exceeds the critical Gibbs number.

Mullin (2001) describes the critical radius as the minimum size of a stable nucleus.
Particles smaller than that critical value will dissolve back, and larger ones will continue
to grow. In both instances, the system is getting rid of unfavourable free energy. Gibbs
free energy by itself does not explain how the particle overcoming the activation energy
is achieved, it simply explains how stable nuclei are produced. The process itself can be
explained by the energy fluctuations. For fixed pressure and temperature conditions, the
energy fluctuates about the mean resulting in a statistical distribution of energy. When
energy levels rise temporarily to a high value overcoming the critical energy barrier,
nucleation will be favoured.

Therefore, there appears a consensus that Gibbs free energy describes the stability of
phase change. However, the equations themselves do not describe how the excess energy
is produced to overcome the barrier in the nucleation process. The assumption is that the
underlying stochastic nature of thermodynamic fluctuations is the driving force. We aim to
extend that analysis to include the effect of gas content, describing both the homogeneous
case and the heterogeneous case in the absence of solid boundaries. It is reported that in
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water, micro-bubbles of air seem to persist almost indefinitely and are almost impossible
to remove completely, perhaps because of contamination of the interface. It is possible
to remove most of the nuclei from small research laboratory samples, but their presence
dominates most engineering applications (Franc & Michel 2006; Brennen 2014).

1.2. Overview
In this paper we show that the Gibbs free energy formulation gives a more comprehensive
view of nucleation in the presence of gas. It allows for the continuous change of gas content
capturing both homogeneous and heterogeneous nucleation under a unified framework.
This approach recovers well-known results for the homogeneous case, e.g. critical radius
and Gibbs number (activation energy), and Blake’s radius for the heterogeneous case when
gas is present. We show that the stability requirement to obtain Blake’s radius is a sufficient
but not necessary condition to obtain a critical radius as a function moles of gas; hence,
it extends the results to intermediate values ranging from pure liquid–vapour phases,
to undersaturated, saturated and supersaturated liquid–gas phases. Analytic expressions
for the critical radius and Gibbs number are obtained in the traditional form with
a scaling factor that varies with gas content. The hysteresis between incipience and
desinence is explained from first principles as we observe that the scaling factors for
incipience and desinence are asymmetric. The analysis is extended to calculate the initial
bubble diameter analytically from cavitation susceptibility meter (CSM) measurements,
traditionally obtained using numerical methods. The results are compared with a variety of
experimental measurements using CSM, acoustics, holography, light scattering and laser
diffraction. The theoretical model predicts the −4 power law observed in experiments.
A concept of a detectable radius is also discussed which gives a better collapse in the data
that were obtained visually (e.g. holography, light scattering and laser diffraction).

This paper is organised as follows. A general Gibbs free energy representation of the
system is presented in § 2. An analysis of free suspended bubbles is presented in § 3
where four cases of different gas content are discussed. Their stability is examined, and
the critical energy and resultant critical radius required for nucleation are derived. The
incipient regime is analysed in § 4. The analytical solution, in its most general form, for the
critical radius and activation energy that accounts for the fluctuation in gas concentration
is also presented, whose expressions are given by (4.1) and (4.3), respectively. The
desinent regime is analysed in § 5. The analytic solution for the equilibrium radius that
accounts for the variation of gas content is also presented, whose expression is given by
(5.1). The implications for hysteresis are explored in § 6. The model is compared with
experimental data in § 7, and an analytic solution to the bubble diameter as a function
of critical pressure is given by (7.10). Finally, the conclusions are presented in § 8,
and supplementary mathematical derivations are provided in Appendix A. Stability and
cross-sectional analysis is also provided in Appendix B.

2. Gibbs free energy of the system

We describe a generalised thermodynamic model using Gibbs free energy for a gas
bubble. The model represents a closed system comprised of gas bubbles surrounded
by a bulk liquid in a reservoir with a dissolved gas content. It takes into account any
surface/solid impurities that exist, and therefore a free bubble is a special case of a more
general expression. The equilibrium liquid–gas interface position is obtained through the
minimisation of the total Gibbs free energy of a multi-component system (Landau &
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Lifshitz 1980) that is given by

Gtot =
∑
α

(Uα + p�Vα − TSα) + Gint, (2.1)

where Gtot denotes the total Gibbs free energy, Uα the internal energy of the system, p�

the liquid pressure, Vα the volume of each phase α in the system, T the temperature and
Sα the entropy of each phase. Here Gint denotes the free energy of all interfaces present in
the system:

Gint = σ�gA�g + σsgAsg + σ�sA�s, (2.2)

where σ�g, σsg and σ�s represent the surface tension of the liquid–gas (�g), solid–gas
(sg) and liquid–solid (�s) interfaces, respectively. Similarly A�s, Asg and A�s represent the
surface areas of each corresponding phase. The details can be found in the supplementary
material of Xiang et al. (2017) and are repeated here for convenience. The internal energy
can be expressed as

Uα = nαμα − pαVα + TαSα. (2.3)

The terms nα and μα are the mole number and chemical potential of phase α, respectively.
The subscript α denotes the following phases: bulk water (w), dissolved gas (dg), trapped
gas comprising free gas (g) and vapour (v). Since we assume an isothermal case, then
Tα = T . For the bulk liquid, water and dissolved gas have the same pressure (pw = pdg =
p�), hence the sum of their partial volumes gives the total liquid volume (V� = Vw + Vdg).
The trapped gas and vapour in a bubble are the same (Vg = Vv), and pg and pv are their
respective partial pressures. Combining the above results in the following:

Gtot =
∑
α

[( p� − pα)Vα + nαμα] + Gint

= ( p� − pg − pv)Vg + nwμw + ndgμdg + ngμg + nvμv + Gint. (2.4)

We assume a mixture of ideal gases within the bubble, where the chemical potentials for
gas and vapour are given by

μg = BT
[
φg(T) + ln

pg

p0

]
(2.5)

and

μv = BT
[
φv(T) + ln

pv

p0

]
, (2.6)

where B is the gas constant, φg(T) and φv(T) are functions dependent on temperature and
p0 is the reference state pressure. In the liquid, the chemical potential of the dissolved gas
(dg) is modelled as a dilute solution written as

μdg = gdg( p�, T) + BT ln xdg, (2.7)

where xdg = ndg/(ndg + nw) is the mole fraction of the dissolved gas in the liquid and
gdg(T) is a function of T and liquid pressure p�. We denote the dissolved gas saturation
degree by s, with respect to p�. It is defined as the ratio of the current mole fraction of
dissolved gas to the saturated one, i.e. s = xdg/x∗

dg. The asterisk denotes the saturated
state. Since we assume the volume of bulk liquid to be much larger than the bubble size,
we can regard xdg as a constant, and ignore the air diffusion between the liquid and the
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bubble. For the saturation state, the chemical potentials of free gas μ∗
g and dissolved gas

μ∗
dg are equal to each other, and so are the chemical potentials of vapour μ∗

v and water μw.
Therefore, we can define

μ∗
g = BT

[
φg(T) + ln

p� − p∗
v

p0

]
= μ∗

dg = gdg( p�, T) + BT ln x∗
dg (2.8)

and

μ∗
v = BT

[
φv(T) + ln

p∗
v

p0

]
= μw. (2.9)

Analogous to (2.8), we can relate μdg and μg by rewriting μdg in terms of an effective
partial pressure s( p� − pv) such that

μdg = BT
[
φg(T) + ln

s( p� − p∗
v)

p0

]
. (2.10)

It can be shown that the total free energy can be written as

Gtot = ( p� − pg − pv)Vg + σ�g(A�g + Asg cos θY)

+ ngBT ln
pg

s( p� − p∗
v)

+ nvBT ln
pv

p∗
v

+ Go( p�, T, s). (2.11)

The first term on the right-hand side of (2.11) is attributed to the bulk phases, i.e. total bulk
free energy Gbulk. The second term represents surface tension attributed to the interface,
simplified using the Young equation, where θY is Young’s contact angle, which is the
total interfacial energy Gint. The third term is attributed to the difference in chemical
potential between the free gas in the entrapped air within the cavity and dissolved gas in
the liquid phase. The fourth term is attributed to the chemical potential difference between
the unsaturated and saturated vapour phase. The third and fourth terms can be combined
into the total chemical potential energy Gchem. The last term Go is the free energy of the
Wenzel state (Wenzel 1936) which is a constant for a given p�, T and s at the reference
state such that

Go( p�, T, s) = ntotμdg + nH2Oμw + σ�sAs. (2.12)

In (2.12), ntot is the total gas mole number of the system such that ntot = ng + ndg and
nH2O is the mole number of water and its vapour such that nH2O = nw + nv . One can
rewrite (2.11) such that it is expressed as

ΔGtot = ( p� − pg − pv)Vg + σ�g(A�g + Asg cos θY)

+ ngBT ln
pg

s( p� − p∗
v)

+ nvBT ln
pv

p∗
v

, (2.13)

where ΔGtot = Gtot − Go( p�, T, s). Alamé, Anantharamu & Mahesh (2020) developed a
methodology to numerically obtain an equilibrium surface over complex geometries using
the general form of (2.13). In order to obtain an equilibrium state, which is an energy
minimum of the system, the first-order variation of the total free energy in (2.13) should
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pg + pv

p�

Figure 1. A free spherical bubble of radius r suspended in a partially filled container. The liquid pressure is
given by p�. The pressure outside the liquid and inside the bubble is the combination of vapour pressure pv and
dissolved gas pressure pg.

be set to zero, i.e. δGtot = 0 where

δGtot = ( p� − pg − pv)δVg + σ�g(δA�g + δAsg cos θY)

+ BT ln
pg

s( p� − p∗
v)

δng + BT ln
pv

p∗
v

δnv. (2.14)

The first and second terms are variations with respect to the volume and surface area,
respectively. Geometrically, the sum of the first two terms results in the expression for
curvature (Frankel 2011; Giacomello et al. 2012) which determines the equilibrium shape
and location of the interface. As a result, the expression yields the classical Young–Laplace
equation:

p� − pg − pv = −σ�gκ. (2.15)

The third term yields the variation with respect to δng, which is the chemical equilibrium
condition between the free and dissolved gas in water:

pg = s( p� − p∗
v). (2.16)

The fourth term describes the variation with respect to δnv , which is the equilibrium
equation between vapour and water:

pv = p∗
v. (2.17)

3. Free bubble

A common theme when studying free bubbles (as shown in figure 1) is the use of critical
radius and pressure to describe mechanical instability. However, this by itself cannot
represent a complete cavitation model. The governing equation is given by

3ngBT
4πr3 + pv = p� + 2

σ�g

r
, (3.1)

where r is the bubble radius and the gas pressure pg is expressed using the ideal gas
law. The rate of expanding forces on the left-hand side needs to be larger than the rate
of collapsing force on the right, e.g. (d/dr)( pv + 3ngBT/4πr3) > (d/dr)( p� + 2σ�g/r).
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This describes the stability of the system, and results in an expression for critical radius
that is a function of ng:

rcr =
√

9ngBT
8πσ�g

. (3.2)

To obtain an equation as a function of critical pressure, the expression for rcr is substituted
in the Laplace equation to get

rcr = 4σ�g

3( pv − p�,cr)
. (3.3)

This is known as Blake’s radius (Blake 1949a,b). Note that in the limit of ng → 0,
the critical pressure p�,cr → −∞. Atchley & Prosperetti (1989) address this fact to be
perplexing at first sight since one does not expect that an infinite tension is required to
promote growth of a vapour bubble. They clarify that it is a false conclusion since a
bubble with little to no gas has a radius rcr = 2σ�,g/( pv − p�). We believe that describing
the state of the system using the Gibbs free energy framework gives a clearer picture of
such dynamics in a more straightforward manner. This method will not only recover the
critical radius and pressure, but will result in an analytic solution to the general expression
of rcr as a function of ng. Another advantage of this framework is the ability to obtain
an analytic solution to the activation energy required for nucleation which takes into
account the variation in gas content. The stability of the system can also be described in a
straightforward manner. The Gibbs free energy framework also provides a direct extension
to the presence of solids or impurities in the system but is not discussed in this paper. The
following sections will explore these topics in more detail. Using (2.13), for a spherical
bubble, the equation simplifies to

ΔGtot = 4π

3
( p� − pv)r3 + (4πσ�g)r2

+ ngBT
[

ln
(

3ngBT
4πs( p� − p∗

v)r3

)
− 1

]
+ nvBT ln

pv

p∗
v

. (3.4)

To examine how the system behaves as a function of bubble radius r or the moles of gas ng,
consider the total Gibbs energy as ΔGtot(r, ng). Compute the first and second derivatives
with respect to both variables. The first derivative with respect to r is

∂Gtot

∂r
= 4π( p� − pv)r2 + (8πσ�g)r − 3ngBT

r
(3.5)

and the second derivative with respect to r is

∂2Gtot

∂r2 = 8π( p� − pv)r + 8πσ�g + 3ngBT
r2 . (3.6)

To find an equilibrium solution, the first variation of Gibbs free energy with respect to
the radius (3.5) needs to be set to zero, e.g. ∂Gtot/∂r = 0, which results in the following
expression:

4π( p� − pv)r2 + (8πσ�g)r − 3ngBT
r

= 0, (3.7)

which is precisely (3.1) after rearranging, giving the equilibrium solution of
Young–Laplace. However, instead of taking the derivatives on the left-hand side and
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Figure 2. A surface plot of the Gibbs free energy ΔGtot as a function of the radius r and moles of gas ng. (a)
The incipient conditions when the liquid pressure is less than the vapour pressure (p� < pv). It is worth noting
that the red point denotes the saddle point which coincidentally recovers Blake’s radius. (b) The desinent
conditions when the liquid pressure is greater than the vapour pressure (p� > pv). The solid black lines are the
cross-sectional locations used for analysis.

right-hand side to establish conditionals on the expanding and contracting forces, we solve
for a cubic equation instead. Dividing (3.7) by 4π( p� − pv) yields the following cubic
equation:

r3 + 2σ�g

( p� − pv)
r2 − 3ngBT

4π( p� − pv)
= 0. (3.8)

For the following analysis, we define

f (ng) = 2
(

9ngBT
8πσ�g

)[
3
4

( p�,cr − pv)

σ�g

]2

. (3.9)

The term f (ng) represents the effect of gas content. It is a non-dimensional number, and
for a special case it corresponds to the stability limit of Blake’s radius when ∂G/∂r =
∂2G/∂r2 = 0 and cos(3Θ) = 1 of (A11). In other words, it recovers the well-known
expression √

9ngBT
8πσ�g

= 4σ�g

3( pv − p�,cr)
. (3.10)

This ratio is unity for the stability limit of Blake’s radius, and varies for different saturation
degrees. That is, in some sense f (ng) is an indicator of the saturation degree. If f (ng) = 2,
then (3.10) is satisfied and Blake’s radius is recovered, representing a saturated regime.
If f (ng) > 2, it is supersaturated and if f (ng) < 2 it is undersaturated, and if f (ng) = 0
then it is a pure liquid–vapour phase representing a homogeneous regime. The roots to
(3.8) can be obtained using the method outlined in Appendix A whose general expression
is given by (A15). For each case with different gas content, two regimes are examined.
The first regime is p� − pv < 0 which corresponds to incipience, and the second regime
is p� − pv > 0 which corresponds to desinence. The Gibbs free energy of each regime is
shown in figures 2(a) and 2(b), respectively.
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Case Range of interval f (ng) Saturation degree Type of nucleation

I f (ng) = 0 0 N/A Homogeneous
II 0 < f (ng) < 2 1 Undersaturated Heterogeneous
III f (ng) = 2 2 Saturated Heterogeneous
IV f (ng) > 2 3 Supersaturated Heterogeneous

Table 1. Summary of the different cases investigated and the corresponding cross-section.

Consider figure 2(a) for the incipient regime. Notice that when no gas is present, ΔGtot
goes to zero for r = 0 and increases with increasing r until it reaches a local maximum
before a sharp drop in energy is observed. As the gas content increases, ΔG forms a
local minimum with decreasing r and does not go to zero. The energy starts to rise
again with increasing r to reach a local maximum before a sharp drop. On this surface
plot, the saddle point is highlighted with a red circle. Beyond the saddle point, with
increasing ng, the local minimum disappears and shallower gradients are observed. From
this figure, we identify two key areas of interest. The first location corresponds to zero gas
content which represents homogeneous nucleation, and the second location corresponds
to a saturated nucleus at the saddle point. Those locations are equivalent to f (ng) = 0
and f (ng) = 2, respectively, each of which behave differently. Based on those key areas of
interest, four different cross-sections are analysed based on the following intervals: the first
being f (ng) = 0, which corresponds to a homogeneous nucleation (pure liquid–vapour);
the second being in the interval of 0 < f (ng) < 2, where heterogeneous nucleation begins
to take place but the gas is undersaturated; the third being the saddle point at f (ng) = 2,
where the gas is saturated; and finally the fourth interval corresponding to f (ng) > 2,
where the gas is supersaturated. For the sake of convenience, equal intervals are taken for
the analysis and are summarised in table 1. One might argue that it could be sufficient to
take the saddle point location as the representative case for heterogeneous nucleation in the
presence of gas due to the fact the it can be interpreted as the thermodynamically preferred
(and efficient) path to equilibrium. We can also show that in that particular location, it
recovers Blake’s radius, as discussed in our analysis in the subsequent section. However,
due to the nature of nucleation, thermodynamic fluctuations do not always necessarily lead
to the most efficient path. Two different time scales are at play: one is related to mechanical
equilibrium (bubble growth and collapse corresponding to the change in r) and the other
is diffusion (increasing and decreasing gas content ng in a bubble). Given any system, the
response of nuclei could easily be growth in r at a much faster rate to reduce ΔGtot instead
of increasing ng for example to achieve stability. Hence, we explore all possible scenarios
and quantify their effect on the nucleation process.

Consider figure 2(b) which illustrates the second regime corresponding to desinence.
For zero gas content, ΔGtot goes to zero at r = 0 and increases with increasing r. However,
as the gas content in the system increases, ΔGtot does not go to zero. In fact it increases as
r approaches zero, decreases with increasing r then increases again beyond some critical
value, leading to a local minimum. This behaviour carries on with increasing gas content.

A detailed analysis of the different cross-sections of figures 2(a) and 2(b) is discussed
§§ 4 and 5, respectively. The only exception is in § 5, where we do not go into a full
breakdown of the cross-sectional plots for the sake of brevity, as we believe a similar
analysis conducted in § 4 can be easily extended by the interested reader. The same ranges
and case numbers are used for both regimes as described in table 1.
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Figure 3. Value of the coefficient multiplier for the incipience case as a function of gas content.

4. Incipience

For the incipient regime ( p� − pv) < 0, we consider the four cases presented in table 1.
We analyse each cross-section and give a physical interpretation of the nuclei behaviour
in Appendix B. We investigate the critical radius required for nucleation, and generalise
those expressions to include the effect of gas content. We also investigate the change in the
required activation energy and the stability of the nuclei formed. The analysis highlights
the effect of gas content on nucleation. We have shown that with increasing gas content, the
critical radius is reduced due to the presence of gas which effectively reduces the activation
energy required for phase change. Under certain circumstances, it can potentially eliminate
it. The reduction in rcr is clearly observed over the four cases considered. One can in fact
derive an analytic expression for rcr in the incipient regime as a function of gas content ng.
The details of the derivations are not shown here. The general expression is given by the
following:

rcr = ξinc(ng)
2σ�g

( pv − p�)

= ξinc(ng)rcr,v, (4.1)

where ξinc(ng) is the correction factor that modifies rcr for different gas content, such that

ξinc(ng) = 2
3 cos{1

3 cos−1[1 − f (ng)]} + 1
3 , for 0 ≤ f (ng) ≤ 2. (4.2)

Figure 3 shows the variation of ξinc as a function of ng. It is clear that the effective rcr is
reduced. Note the range of validity, where beyond the threshold of f (ng) > 2, no activation
barrier is required to nucleate as it is effectively reduced to zero. Hence, no critical radius
exists beyond those values.

The reduction in the critical activation energy for all the previous cases can also be
summarised by the following expression:

ΔG∗
act = ξact(ng)

(
16πσ 3

�g

3Δp2
cr

)

= ξact(ng)ΔG∗
act,v, (4.3)
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Figure 4. Value of the coefficient multiplier for the critical Gibbs energy required for activation as a function
of gas content. The solid blue line is obtained from the analytic solution given by (4.4).

where the variation in the coefficient ξact(ng) multiplying ΔG∗
act,v can be expressed as a

function of f (ng) whose analytic solution is given by

ξact(ng) = 1
9

⎡
⎣(6 cos Θ + 3 cos 2Θ − 2

√
3 sin Θ +

√
3 sin 2Θ)

+4
3

f (ng) ln

(
1 − cos Θ + √

3 sin Θ

1 + 2 cos Θ

)3
⎤
⎦ . (4.4)

Keep in mind that Θ = (1/3) cos−1[1 − f (ng)] and was used in (4.4) for clarity. Figure 4
shows the variation of ξact as a function of f (ng). It is clear that an increase in gas content
reduces the required activation energy.

5. Desinence

For the desinent regime, ( p� − pv) > 0. We consider the four cases presented in table 1.
In § 4 we investigated the critical radius required for nucleation, but as we can observe
from figure 2(b), the desinent regime can sustain nuclei since a local minimum is always
present. The term ‘critical’ radius does not make much sense since there is no energy
barrier to overcome. Instead, we define an equilibrium radius req, and generalise those
expressions to include the effect of gas content. We also investigate the stability of the
nuclei formed. The analysis highlights the effect of gas content on sustaining nuclei for
the desinent regime. We have shown that the equilibrium radius increases with increasing
gas content. The increase in req is clearly observed over the four cases considered, as more
gas can help sustain larger bubbles/nuclei. Similar to the previous section, we derive an
analytic expression for req as a function of gas content that takes into account ng. The
general expression is given by the following:

req = ξdes(ng)
2σ�g

( p� − pv)
, (5.1)
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Figure 5. Value of the coefficient multiplier for the desinence case as a function of gas content.

where ξdes(ng) is the correction factor that modifies req for different gas content, such that

ξdes(ng) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3

cos
{

1
3

cos−1[ f (ng) − 1]
}

− 1
3
, if 0 ≤ f (ng) ≤ 2

2
3

cosh
{

1
3

cosh−1[ f (ng) − 1]
}

− 1
3
, otherwise.

(5.2)

Notice the range of validity as compared with the incipient case. There are no limitations
necessarily since gas content can increase to supersaturation degrees. Figure 5 shows the
variation in ξdes as a function of ng. With increasing gas content, we observe that larger
req can be sustained. The stability argument shows that for all cases, the system is always
stable and can sustain nuclei with the exception of pure liquid–vapour systems where the
vapour dissolves back into the liquid.

6. Hysteresis

Cavitation hysteresis is the process by which the cavitation number at which cavitation
appears when the pressure is decreased is different from the cavitation number at which
cavitation disappears when the pressure is raised (Holl & Treaster 1966; Brennen 2014).
Notice how in figures 2(a) and 2(b) there is a clear difference in the surface plot of the
Gibbs free energy between the two regimes. While certain critical radii are required to
overcome the energy barrier in the incipient regime, the equilibrium radius in the desinent
regime does not show a one-to-one correspondence for the same pressure difference.
The critical radius required for nucleation is reduced with increasing gas content, but
beyond saturation there is no energy barrier, and cavitation becomes spontaneous. This
could be indicative of the two different types of ‘vaporous’ and ‘gaseous’ cavitation. In
the degassing process (i.e. the desinent regime), nuclei can be maintained at req which
increases with increasing gas content, and the nuclei do not necessarily dissolve back
into liquid unless it was a pure vapour. Therefore, it is expected that after cavitation
inception, more nuclei can be sustained after an increase in pressure due to the increase
in the population of stable nuclei. Another form of asymmetry can be observed in the
constant coefficients of the incipient and desinent regimes depicted in figures 3 and 5,
respectively. The coefficients of the incipient and desinent regimes correspond to (4.2)
and (5.2), respectively. Note the range of validity where ξinc(ng) is limited by the saturation
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rcr Desinence (Δp > 0) Incipience (Δp < 0)

Case I 0 |2σ�g/Δp|
Case II (0.244)(2σ�g/Δp) (0.910)|2σ�g/Δp|
Case III (0.333)(2σ�g/Δp) (0.666)|2σ�g/Δp|
Case IV (0.398)(2σ�g/Δp) −(0.398)|2σ�g/Δp|

Table 2. Summary of the critical radii obtained for different gas content under positive and negative pressure
difference.

degree beyond which no critical radius exists. The maximum value is 1, which recovers
the homogeneous rcr,v , and has a minimum value of 2/3 for the saturated case, which
recovers Blake’s radius. In contrast, ξdes has a minimum value of 0 and largely no
upper bound going into supersaturation. Another difference is the rates at which these
coefficients vary, thus indicating further differences that could explain the hysteresis
observed experimentally. This strong dependence on the gas concentration is in agreement
with Amini et al. (2019).

Table 2 shows typical values obtained from our expressions for a theoretical case. The
first feature we observe is the fact that for the same value of |Δp|, different values for rcr are
obtained for the case incipience versus desinence. Another feature to point out is the fact
that the coefficient (a function of ng) multiplying the expression 2σ�g/Δp is different for
each case, and also different in the rate it changes with varying ng. Asymmetry is clearly
observed. Take for example a degassing process to ensure all micro-bubbles are dissolved,
the facility static pressure being controlled at 100 kPa. For case I, no gas is present, and
therefore it is expected that all micro-bubbles will dissolve back into the system. In our
analysis, this corresponds to an equilibrium solution with rcr = 0 as shown in table 2,
where the contracting forces dominate the expanding forces. For cases II, III and IV, it is
obvious that an equilibrium solution exists, whose analysis can be found in § 3, with values
for rcr = 0.35, 0.48 and 0.57 μm, respectively.

The takeaway point is the fact that the presence of gas will prevent the complete
dissolution of all the micro-bubbles since there exists an equilibrium solution for the
system. This implies that higher pressures are required to further dissolve any existing
nuclei. However, on the nanoscale or angstrom scale, the ideal gas assumption fails and
some modification to the model is warranted. The second implication is the asymmetry in
the values of rcr. After the degassing process, the measurements commence as the flow
rate begins to increase. At certain critical tensions, cavitation events are registered. Take
for example a critical tension Δp = −100 kPa. The critical radii obtained are rcr = 1.44,
1.31 and 0.96 μm for cases I, II and III, respectively. Remember that the negative value
associated with case IV simply means that there is no critical radius, and that the
gas–vapour bubble forms spontaneously. This is due to the fact that the expanding forces
dominate the compressive forces. For the same |Δp|, different critical radii are obtained,
providing a possible explanation for the hysteresis observed between incipient and desinent
events.

7. Comparison with experiments

We discuss the implications of our solutions for experimental measurements of nuclei.
One method for measuring nuclei concentrations is by direct imaging, which has its set of
limitations. Concentrations can be low such that they require impractically long periods
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of optical measurements. The size of the nuclei can also be of the order micrometres
(0.1 μm), such that imaging with visible light wavelengths is beyond diffraction limits. In
the presence of solid contaminants, the imaging would not reveal the volume of trapped
gas but instead the size of the particle itself. These limitations are overcome by using a
CSM (Oldenziel 1982; d’Agostino & Acosta 1991; Lecoffre 1999). A CSM measures the
nuclei distribution in water by passing sampled water through a venturi exposing it to
a reduced pressure. The nuclei are activated at the critical pressures of the venturi, and
are counted by analysing the output signal from a high-frequency piezoceramic sensor.
Different cumulative histograms of nuclei concentration are obtained by varying the
flow rate. The nuclei population is dependant on the dissolved gas content, the level of
contaminants present in the water sample and the artificial seeding of micro-bubbles. The
standard method is to use Blake’s radius as a representative of the critical bubble size with
dissolved gas. In our analysis, this is achieved by equating the critical pressure at initial
conditions to the same equation at critical conditions. The diameter of the bubble is then
obtained numerically. The method is described here for completeness and is then extended
to the different cases presented earlier. At equilibrium:

p�,0 = pv − 2σ�g

r0
+ 3ngBT

4πr3
0

. (7.1)

For a constant T and ng, Blake’s radius is given by

rcr =
√

9ngBT
8πσ�g

. (7.2)

Substituting Blake’s radius in the Laplace equation gives the following expression:

p�,0 = pv − 2σ�g

r0
+ 2σ�g

3
r2

cr

r3
0

. (7.3)

Another similar expression can be obtained by substituting Blake’s radius in the Laplace
equation at critical conditions to get the following expression:

p�,cr = pv − 2σ�g

rcr
+ 2σ�g

3
r2

cr

r3
cr

, (7.4)

such that

rcr = − 4σ�g

3( p�,cr − pv)
. (7.5)

Therefore, we can write the equality between the initial and critical conditions as

p�,0 − pv + 2σ�g

r0
= 2σ�g

3
r2

cr

r3
0

. (7.6)

Simplifying the expression and substituting the second value of the critical radius we get
the following:

4
27( p�,cr − pv)2 = ( p�,0 − pv)

(
r0

2σ�g

)3

+
(

r0

2σ�g

)2

. (7.7)

982 A4-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.79


K. Alamé and K. Mahesh

In terms of bubble diameter:

4
27( p�,cr − pv)2 = ( p�,0 − pv)

(
d0

4σ�g

)3

+
(

d0

4σ�g

)2

, (7.8)

where d0 is obtained numerically. The bubble diameter may be expressed in the cubic
polynomial form

d3
0 + 4σ�g

( p�,0 − pv)
d2

0 − 4σ�g

3( p�,0 − pv)

[
4σ�g

3( p�,cr − pv)

]2

= 0. (7.9)

The details for finding the solution analytically are described in Appendix A.2. Notice that
the above solution is a special case in our Gibbs free energy formulation corresponding to
case III. It does not take into account the variation of ng. Therefore, a similar approach is
used for the other cases whose details are not shown here. The final solution for the most
general form is written as

d0 = ξ0(ng)
4σ�g

( p�,0 − pv)
, (7.10)

where

ξ0(ng)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
3

cos

{
1
3

cos−1

[
f (ng)

(
p�,0 − pv

p�,cr − pv

)2

− 1

]}
− 1

3
, if

|p�,cr− pv|
|p�,0− pv| ≥

√
2f (ng)

2

2
3

cosh

{
1
3

cosh−1

[
f (ng)

(
p�,0 − pv

p�,cr − pv

)2

− 1

]}
− 1

3
, otherwise.

(7.11)

The practitioner who desires to obtain d0 using Blake’s assumptions can simply substitute
f (ng) = 2 into (7.11) and calculate (7.10) accordingly. We hope that this approach is useful
for CSM measurements since it bypasses the need to numerically calculate d0, and instead
provides a more reliable and analytic solution. Figure 6 shows a comparison between the
numerical solution obtained using Newton–Raphson and the analytic solution obtained in
(7.10). Good agreement is observed, validating our results. The analytic results can now
be used in conjunction with the experimental values obtained in Venning et al. (2018)
for cumulative background nuclei distributions C as a function of critical tension. The
measurements are obtained using a CSM (Pham, Michel & Lecoffre 1997; Khoo et al.
2016) at the Australian Maritime College (AMC) cavitation tunnel. Furthermore, figure 7
shows a combined plot of C versus Δpcr, the bubble diameter obtained analytically using
(7.10) being given on the top horizontal axis, and a power-law fit is given by

C = (1.7 × 10−22)d−4.075
0 , (7.12)

where C is given in units of m−3 and d0 in m. Note that for completeness, Venning et al.
(2018) give C in units of cm−3 and d0 in μm which results in an expression with a modified
constant given by

C = (4.84 × 10−4)d−4.075
0 . (7.13)
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Figure 6. Comparison between the bubble diameter obtained using the numerical solution and the bubble
diameter obtained using the analytic solution.
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Figure 7. Cumulative background nuclei distribution in the AMC cavitation tunnel. Trend line drawn in red is
a power-law fit, and the symbols are experimental values. The values for d0 on the top axis are calculated using
(7.10) with f (ng) = 2, which recovers Blake’s assumption.

There are three things to note here. First, the values of d0 obtained analytically using
(7.10) result in a power-law fit coefficient that matches with the values presented in
Venning et al. (2018) who obtained d0 numerically. Second, the exponent of the bubble
diameter follows a −4 power law. Third, the constant coefficient multiplying the bubble
diameter term is of O(10−22) indicating a coefficient that is proportional to molecular
scales. It is not of the order of the bubble diameter. Therefore, it appears that the constant
coefficient and the exponent are two quasi-independent quantities involved.

In short, for a given bubble diameter, we are able to obtain a background nuclei
distribution given the power-law fit. Recall that the standard methods are based on Blake’s
radius, which we have shown to be a special case in our derivations, specifically case III.
Therefore, the gas content is fixed in some sense. In our method, we have the flexibility of
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Figure 8. Cumulative background nuclei distribution in the AMC cavitation tunnel with different trend lines
corresponding to different gas content. The symbols are the experimental results. The value for d0 is calculated
using (7.10) with varying gas content f (ng). The orange triangles denote case II, the blue squares denote case
III, which is the baseline case that uses Blake’s radius, and the green circles denote case IV. The solid lines
denote the corresponding power-law fit for each case.

varying the gas content. The effect of varying the gas content is demonstrated in figure 8
by comparing case II, case III and case IV. For the same experimental measurements, i.e.
C versus Δpcr, we get different values for d0, indicating that the amount of gas molecules
present during the nucleation process determines different bubble size distributions. The
power-law fits in SI units for case II and case IV are, respectively,

C = (4.74 × 10−23)d−4.075
0

C = (3.57 × 10−22)d−4.075
0 .

}
(7.14)

The two equations can also be written as C = (1.35 × 10−4)d−4.075
0 and C = (1.01 ×

10−3)d−4.075
0 , where C and d0 have units of cm−3 and μm, respectively. Notice that the

variation of moles of gas influences the value of the constant coefficient multiplying
the bubble diameter. Also note that in order for the power-law fit to be dimensionally
consistent, the multiplier coefficient needs to have a dimension of per unit length.

In Khoo et al. (2020), an alternative plot is presented based on experimental CSM
measurements. The bubble diameter is compared with the derivative of the cumulative
nuclei distribution −(∂C/∂d). The quantitative variations in data based on measured
populations from different experiments result in a power-law fit that has the following
form:

∂C
∂d

= Adn, (7.15)
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where n, the index of the power law, averages around −6.2 with high probability but
also varies over −3.4 to −12.9, and the multiplier A averages around 9.8 × 108 with
high probability but varies between 4.6 × 107 and 4.3 × 109. They note that the spread
has no clear correlation with tunnel operating parameters nor any long-term temporal
fluctuations. After an in-depth analysis of the different measuring techniques, they
conclude that the data overall tend to follow a power law with an index of −4. We can
relate the constant coefficient to the critical Gibbs free energy presented earlier in this
paper to describe the nucleation process with the presence of gas. Based on Kashchiev
(2000), we can model the cumulative concentration by the following expression:

C∗ = C0 exp
[
−ΔG∗

act

kT

]
, (7.16)

where C0 is the concentration of nucleation sites within the system on which clusters of the
new vapour phase form and C is the equilibrium concentration of critical nuclei containing
M molecules such that

C0 = M
V

= 6M

πd3
0
. (7.17)

Therefore, we can write

C∗ = 6M
π

exp
[
−ΔG∗

act

kT

]
d−3

0 , (7.18)

and as a result
∂C∗

∂d0
= −18M

π
exp

[
−ΔG∗

act

kT

]
d−4

0 , (7.19)

which has the form of (7.15), where A = −(18M/π) exp[−ΔG∗
act/kT] and n = −4. It is

clear that using CNT models leads to a solution consistent with observed experimental
results. Note that the −4 power law comes out of a volumetric term which indicates
homogeneity in the nucleation process; as a result any deviation from that constant
will indicate a form of heterogeneity related to solid boundaries or impurities. Also,
the multiplier is also not so much dependent on macroscale conditions, but more of
a function of the molecular dynamics. Thus the model provides a bridge between the
molecular nanometre scales and the vapour bubble formation on the micrometre scales
that eventually leads to cavitation. The model is compared with the experimental data
as presented in figure 9. The CSM long-acquisition data seem to exhibit a steeper
slope. This is indicative of possible heterogeneous nucleation due to solid impurities,
as the likelihood of their presence increases with longer acquisition time. The solid
grey lines represent our model with the following constants in increasing order: A =
(1010, 1014, 1015, 1016, 1017, 1018, 1019). To obtain those constants we assumed that A is
a function of the molecular scale. Let M = N/k be a function the number of molecules
N and k the Boltzmann constant. On the nanoscale, we expect N to vary between a few
and a few hundred molecules, which puts M of O(1023 − 1025). Another argument worth
testing is the validity of the concept of a detectable radius versus a critical radius that was
presented in § 4. On average, rdet was twice as large as rcr; hence, any diameter obtained
using visual instruments (e.g. holography, light scattering or laser diffraction) is scaled by
half. Figure 10 illustrates the previous example. Measurements obtained visually show a
better collapse in the data when scaled by rdet.
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Coulter counter, Pacific Ocean (Long Point) 33 m (O′Hern et al. 1988)

Holography, Pacific Ocean (Long Point) 33 m (O′Hern et al. 1988)

Holography, TDF tunnel (Peterson et al. 1975)

Holography, HSWT tunnel (Katz, 1982)

Holography, LTWT tunnel (Gates et al. 1975)

Light scattering, LTWT tunnel (Gates et al. 1979)

Light scattering, NSMB tunnel DO = 6.3 ppm (Arndt and Keller, 1976)

Light scattering, NSMB tunnel DO = 12.5 ppm (Arndt and Keller, 1976)

Light scattering, HMB tunnel DO = 30 ppm (Keller and Weitendorf, 1976)

Light scattering, TDF tunnel (Peterson et al. 1975)

Light scattering, DTNSRDC 12–in tunnel gamma = 7 % (Shen et al. 1984)

Light scattering, DTNSRDC 12–in tunnel gamma = 50 %  (Shen et al. 1984)

Light scattering, DTNSRDC 12–in tunnel gamma = 120 % (Shen et al. 1984)

Light scattering, Atlantic Ocean (Exuma Sound) 10 m (Shen et al. 1986)

Light scattering, Atlantic Ocean (Gulf Stream) 10 m (Shen et al. 1986)

Light scattering, Lake Pend Oreille 10 m (Shen et al. 1986)

Laser diffraction, Southern Ocean 6–9 m (Randolph et al. 2014)
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Figure 9. Comparison of nuclei distribution histograms −(∂C/∂d) from a variety of laboratory and
environmental waters using different measurement techniques as a function of nucleus diameter d at ambient
pressure pinf. The thick grey lines come from the model presented in this paper.

8. Conclusions

Cavitation inception is an important phenomenon that describes phase transition in liquid
phases. Understanding the mechanism behind this phase transition provides considerable
insight into how nuclei are formed and how micro-bubble populations control the inception
and dynamics of cavitating flows.

The Gibbs free energy approach is used to predict cavitation inception for homogeneous
nucleation, and provides a smooth continuous transition to heterogeneous nucleation
which takes into account the variation of gas content, in the absence of solid impurities.
This is largely ignored in the literature. It is found that the gas content stabilises nuclei
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Figure 10. Comparison of nuclei distribution histograms −(∂C/∂d) similar to figure 9 where all data obtained
using visual measurement techniques (i.e. holography, light scattering or laser diffraction) have been scaled by
the detectable diameter.

formation. A stable and unstable critical radius can be present under certain gas content,
and in some situations it is not present at all, implying spontaneous nucleation. This
phenomenon is not observed in pure homogeneous liquid–vapour systems. The presence
of gas content reduces the energy barrier required to nucleate a vapour bubble, and
under certain circumstances eliminates it. This effect has been typically attributed to
heterogeneous nucleation in the presence of solid impurities. The saturation levels are
divided into four categories. Each case determines how much the of the energy barrier
is reduced. This effect is realised experimentally when nucleation rates increase for the
same critical pressure (tensile strength). Incipience and desinence can also be explained
by the asymmetry observed in the critical radii obtained for favourable and unfavourable
pressure gradients. We show that Blake’s radius, the minimum radius possible when gas is
present, is a special case of Laplace’s equation, which is shown to be a saddle point on the
surface plot of the Gibbs free energy. The Gibbs free energy framework results in a analytic
solution for the critical radius as a function of gas content (for both the incipient and
desinent regimes). An analytic expression for the activation energy barrier, as a function
of gas content, is also obtained. The framework allows us to relate the initial bubble
diameter to critical pressures using a cubic equation, whose analytic solution takes into
account the variation of gas content. This provides an advantage of the standard method
that is typically solved numerically and is a function of Blake’s radius. A model for the
derivative of the cumulative nuclei histogram with respect to bubble diameter is proposed.
It recovers a −4 power law that is observed experimentally, and has a constant multiplier
that is a function of the Gibbs number (activation energy).
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Appendix A. Cubic polynomial

In order to find the solution to the cubic polynomial, take a general cubic equation of the
form

P( y) = a3y3 + a2y2 + a1y + a0 = 0. (A1)

Normalise by a3 such that

P( y) = a′
3y3 + a′

2y2 + a′
1y + a′

0 = 0, (A2)

where a′
3 = 1. The following forms will be used to obtain the solutions to the critical

radius and the initial bubble diameter problems, respectively.

A.1. Solution for the critical radius
Based on (3.8), we obtain the following values:

a′
2 = 2σ�g

( p� − pv)
,

a′
1 = 0

and a′
0 = − 3ngBT

4π( p� − pv)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A3)

We modify the equation such that we solve for a simpler cubic polynomial:

x3 + a′′
1x + a′′

0 = 0, (A4)

where

a′′
1 = −a′

2
2

3
= −4

3

[
σ�g

( p� − pv)

]2

and a′′
0 = 2

27
a′

2
3 + a′

0 = 16
27

[
σ�g

( p� − pv)

]3

− 3ngBT
4π( p� − pv)

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A5)

Using the following trigonometric identity:

cos(3Θ) = 4 cos3 Θ − 3 cos Θ, (A6)

and letting x = m cos Θ , we can show that

x3 + a′′
1x + a′′

0 ≡ 4 cos3 Θ − 3 cos Θ − cos(3Θ) ≡ m3 cos3 Θ + a′′
1 m cos Θ + a′′

0 ≡ 0.

(A7)
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The above expressions define the following ratios:

4
m3 = −3

a′′
1m

= cos(3Θ)

a′′
0

, (A8)

with a′′
1a′′

0 /= 0, it follows that

m = 2

√
−a′′

1
3

= 4
3

σ�g

|( p� − pv)| (A9)

and

cos(3Θ) = 3a′′
0

a′′
1m

= |p� − pv|
( p� − pv)

{
−1 + 81

64π

(
ngBT
σ�g

)[
( p� − pv)

σ�g

]2
}

. (A10)

By rearranging the constants in the second term within the braces, we can write the above
equation as

cos(3Θ) = 3a′′
0

a′′
1m

= |p� − pv|
( p� − pv)

{
−1 + 2

(
9ngBT
8πσ�g

)[
3
4

( p� − pv)

σ�g

]2
}

. (A11)

Note that if the value on the right-hand side (RHS) of the expression in (A11) is less than
or equal to one, the value of Θ is straightforward. The general solution for the unknown x
becomes

xk = m cos Θk = 4
3

σ�g

|( p� − pv)| cos Θk, for k = 1, 2, 3, (A12)

where Θk = Θ + 2(k − 1)π/3. Otherwise, we resort to a hyperbolic solution where
cos(3Θ) becomes cosh(i3Θ), and

Θ = − i
3

cosh−1(RHS). (A13)

Similarly, Θk has a similar expression. The only difference is that two solutions admit an
imaginary value, and one solution remains such that the real solution is given by

x = m cos Θ = ±m cos

[
i
cosh−1(RHS)

3

]
= ±m cosh

[
cosh−1(RHS)

3

]
, (A14)

where the sign of the solution x is determined by the sign of the right-hand side. The
desired final solution for y is then given by the following expression:

yk = xk − a′
2

3
= 4

3
σ�g

|( p� − pv)| cos Θk − 2
3

σ�g

( p� − pv)
. (A15)
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A.2. Solution for the initial diameter
Based on (7.9), we obtain the following values:

a′
2 = 4σ�g

( p�,0 − pv)
,

a′
1 = 0

and a′
0 = − 4σ�g

3( p�,0 − pv)

[
4σ�g

3( p�,cr − pv)

]2

.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A16)

We modify the equation such that we solve for a simpler cubic polynomial:

x3 + a′′
1x + a′′

0 = 0, (A17)

where

a′′
1 = −a′

2
2

3
= −16

3

[
σ�g

( p�,0 − pv)

]2

and a′′
0 = 2

27
a′

2
3 + a′

0 = 2
[

4σ�g

3( p�,0 − pv)

]3
[

1 − 2
(

p�,0 − pv

p�,cr − pv

)2
]

.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A18)

Let

m = 2

√
−a′′

1
3

= 8
3

σ�g

|( p�,0 − pv)| (A19)

and

cos(3Θ) = 3a′′
0

a′′
1m

= |p�,0 − pv|
( p�,0 − pv)

[
2
(

p�,0 − pv

p�,cr − pv

)2

− 1

]
. (A20)

The general solution for the unknown x becomes

xk = m cos Θk = 8
3

σ�g

|( p�,0 − pv)| cos Θk, for k = 1, 2, 3, (A21)

where Θk = Θ + 2(k − 1)π/3. The desired final solution for yk is then given by the
following expression:

yk = xk − a′
2

3
= 8

3
σ�g

|( p�,0 − pv)| cos Θk − 4
3

σ�g

( p�,0 − pv)
. (A22)

Note that for this specific case, static pressure is typically held constant such that ( p�,0 −
pv) > 0. The solutions Θ2 and Θ3 yield imaginary solutions, so we only have to take into
account Θ = Θ1. Therefore, the general solution simplifies to

y = 4
3

σ�g

( p�,0 − pv)
(2 cos Θ − 1). (A23)
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Appendix B. Stability analysis of the Gibbs free energy

In the following analysis we focus on the incipient case with p� − pv < 0. A similar
analysis can be can be done for the desinent case but will be left out in the interest of
brevity. Consider the surface plot given by figure 2 for the Gibbs free energy. Consider
four different cross-sections that corresponds to cases I, II, III and IV given in table 1.
Figure 11 shows the breakdown of ΔGtot and its components as a function of radius r. The
effect of gas content is evident by the behaviour of ΔGtot. With increasing gas content the
critical energy required to overcome the energy barrier for nucleation is reduced. Case
I corresponds to a pure liquid–vapour system (i.e. lim ng → 0). Figure 11(a) shows a
schematic of the total Gibbs free energy curve (solid black line) for the homogeneous
case. The green dotted curve corresponds to Gbulk which decreases with the third power of
r. While the red dashed curve corresponds to Gint which increases with the square of r. As
a consequence, ΔGtot first increases, reaches a maximum, then decreases. Physically, this
means that vapour begins to form a cluster of molecules within the liquid; hence its total
free energy increases depending on the size of the cluster. If it reaches a point beyond a
critical radius rcr, growth will continue while the system’s total free energy decreases. On
the other hand, if the cluster size is below rcr, then the cluster will shrink and dissolve back
into the liquid. We refer to a subcritical cluster as an embryo, and one that is greater than rcr
as a nucleus. Once a cluster becomes a nucleus and exceeds rcr, then the nucleus will keep
growing to a macroscopically detectable bubble. The growth continues until it consumes
all of the metastable phase. The well-known expressions from CNT are recovered:

rcr = 2σ�g

pv − p�

(B1)

and

p�,cr = pv − 2σ�g

rcr
. (B2)

The maximum energy at rcr, given by ΔGtot(rcr), is the activation energy required for
a nucleation event to take place. It is denoted by an activation energy ΔG∗

act as shown
in figure 11(a). The value for ΔG∗

act is obtained by substituting the value for rcr in the
expression of ΔGtot such that

ΔG∗
act,v = 16π

3

σ 3
�g

Δp2
cr

, (B3)

where the subscript v denotes the pure liquid–vapour system. Note that in the rest of the
paper, we use the same subscript to denote the relevant homogeneous quantities, e.g. rcr,v
and Δpcr,v .

When gas is present, dissolution does not take place when r < rcr, and a stable gas
nucleus can be achieved when r = req as shown in figure 11(b) for case II. Note how the
energy barrier is reduced due to the extra contribution of the chemical potential Gchem
which varies with ln(1/r3). The blue dash-dotted line represents Gchem in figure 11(b–d).
Further increasing the gas content leads to the reduction of the energy barrier to zero, and
req and rcr coincide as shown in figure 11(c) for case III. Case IV shown in figure 11(d)
corresponds to a spontaneous nucleation. This is where (4.1) and (4.3) capture that effect.
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Figure 11. A schematic showing (a–d) four different cross-sections of the Gibbs free energy surface. The total
Gibbs free energy ΔGtot (thick solid black line), and its components, as a function of radius r. The red dashed
line represents the free surface energy Gint, the green dotted line represents the bulk energy Gbulk and the blue
dash-dotted line represents the chemical potential Gchem. The activation energy ΔG∗

act is denoted at the critical
radius rcr .

Figure 11 shows a detectable radius rdet. Define the zeroth moment of energy by

M0 =
∫

r0ΔGtot(r) dr, (B4)

the total energy of the system. We argue that the system always wants to be in a baseline
stable state such that M0 = 0. When an embryo forms, it can dissolve back into the
metastable phase and the condition is satisfied. Once the nucleus overcomes the energy
barrier, the nuclei grow as a response (to reduce energy). Up until that point M0 > 0.
Therefore, there exists a value r such that the condition M0 = 0 is satisfied. That value of
r is what we define to be the macroscopically detectable radius rdet such that

M0 =
∫ rdet

0

(
4πσ�gr2 − 4π

3
Δpcrr3

)
dr

= 4π

3
σ�gr3

det − π

3
Δpcrr2

det = 0, (B5)

which gives the following relation:

rdet = 4σ�g

Δpcr
= 2rcr. (B6)

The detectable radius is exactly twice as large the critical radius required for nucleation.
It is easy to see from figure 11(a) that ΔGtot(rdet) < 0 since Gbulk > Gint. Hence, the
vapour bubble undergoes spontaneous growth. Therefore, it is reasonable to expect that
when a cavitation bubble is detected, the measured size is that of the detectable radius and
not necessarily the critical radius. Moreover, an expression for the critical tensile strength
Δpcr as a function of rdet can then be defined as

Δpcr = 4σ�g

rdet
. (B7)

For the rest of the cases when gas is present, the ratio of rdet/rcr is reduced from 2 to a
value close to 1.85 and can be calculated numerically.

The Gibbs free energy and its first and second derivatives with respect to the bubble
radius are shown in figure 12 for the four different cases. The solid blue vertical line
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G

0
rcr

0

∂2G/∂r2

0

req rcr rcr

∂G/∂r

(a) (b) (c) (d )

Figure 12. A schematic of the Gibbs free energy G (top), its first derivative ∂G/∂r (middle) and second
derivative ∂2G/∂r2 (bottom) with respect to the radius r for (a–d) the four different cross-sections considered.
The blue lines highlight the location of the equilibrium or critical radius (req and rcr, respectively). The red
arrow denotes a small perturbation about rcr.

is drawn at the critical radii indicating where ∂G/∂r is zero. This does not apply to
case IV since no critical radius exists. Note that ∂2G/∂r2 is negative for cases I and
II, indicating a maximum for ΔGtot at rcr as expected. It is positive for req in case II,
indicating a stable minimum, and is zero for cases III and IV, indicating neutral stability.
For case I, when r = 0, ΔGtot = 0 indicating a metastable state where ∂2G/∂r2 is positive.
The equilibrium at rcr where ∂G/∂r = 0 conveniently recovers the well-known Laplace
equation (B2). Metastability of a gaseous embryo is achieved in case II at r = req and
when ΔGtot /= 0. Case III recovers Blake’s solution when ∂G/∂r = ∂G2/∂r2 = 0. The
stability of the system can be derived by a Taylor expansion to model small perturbations
about rcr. The perturbations are represented by the red arrows in figure 12 extending in
both the expanding and shrinking directions. The following analysis of the stability of the
system can thus be performed. Define a quantity F(r) as the force that encourages a radius
change (e.g. radial perturbation). From the definition of a potential, we can then write F(r)
as

F(r) = −∂G
∂r

∣∣∣∣
rcr

. (B8)

Therefore, the criteria for stability at rcr are defined as follows:

for stability:
dF
dr

< 0

for instability:
dF
dr

≥ 0.

⎫⎪⎪⎬
⎪⎪⎭ (B9)
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Mathematically, (B8) can be viewed as a Taylor series expansion of the force in a region
near rcr, such that

F(rcr + δr) = F(rcr) + dF
dr

∣∣∣∣
rcr

δr

= −
�

�
��

0
∂G
∂r

∣∣∣∣∣∣∣
rcr

+
(

−∂2G
∂r2

)∣∣∣∣
rcr

δr. (B10)

The signs of the different components in (B10) can be extracted from figure 12. The
perturbations in the radius will cause the nucleus to either collapse or grow spontaneously
depending on the signs of the components. The analysis can be expanded for all the
different cases in a straightforward manner.
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