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We study the energy stability of pressure-driven laminar magnetohydrodynamic flow in a
rectangular duct with a transverse homogeneous magnetic field and electrically insulating
walls. For sufficiently strong fields, the laminar velocity distribution has a uniform core
and convex Hartmann and Shercliff boundary layers on the walls perpendicular and
parallel to the magnetic field. The problem is discretized by a double expansion in
Chebyshev polynomials in the cross-stream coordinates. The linear eigenvalue problem for
the critical Reynolds number depends on the streamwise wavenumber, Hartmann number
and the aspect ratio. We consider the limits of small and large aspect ratios in order to
compare with stability models based on one-dimensional base flows. For large aspect
ratios, we find good numerical agreement with results based on the quasi-two-dimensional
approximation. The lift-up mechanism dominates in the limit of a zero streamwise
wavenumber and provides a linear dependence between the critical Reynolds and
Hartmann numbers in the duct. As the aspect ratio is reduced away from unity, the duct
results converge to Orr’s original energy stability result for spanwise uniform perturbations
imposed on the plane Poiseuille base flow. We also examine different possible symmetries
of eigenmodes as well as the purely hydrodynamic case in the duct geometry.

Key words: high-Hartmann-number flows, shear-flow instability, turbulent transition

1. Introduction

The main goal of hydrodynamic stability theory is to predict the parameters for which a
given laminar flow can lose its stability and, possibly, turn turbulent. It requires monitoring
both the short-time and long-time fate of infinitesimal disturbances to the so-called base
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flow (Schmid & Henningson 2001). The concept of energy stability threshold is a key
element of the associated toolbox. It refers to the largest value of the governing parameter
(here the Reynolds number) below which the kinetic energy of all disturbances decays
monotonically in time, regardless of their amplitude. For many academical flow cases, the
value of that threshold, denoted ReE, matches exactly the value above which unstable
modes are found. For flows characterised by strong non-normality of the associated
linear operator, however, ReE lies strictly below the onset of instability. Such flows
include most incompressible flows dominated by shear. Rather than separating stable from
unstable regimes, it divides the real Re axis into a lower range (Re � ReE) where all
disturbances monotonically decay, and an upper range (Re > ReE) where energy growth is
momentarily possible, possibly transient, at least for well-chosen initial conditions. Early
historical examples of energy stability calculations include the works of Joseph, Busse
and co-authors in simple subcritical flow configurations such as plane Couette flow, plane
Poiseuille flow or pipe flow (Busse 1969, 1972; Joseph & Carmi 1969; Joseph 1971),
which have been revised recently (Falsaperla, Giacobbe & Mulone 2019; Xiong & Chen
2019; Nagy 2022). The transition to turbulence in such flows is known to be subcritical
in Reynolds number, and to be dominated by linear yet non-normal effects (Reddy &
Henningson 1993; Trefethen et al. 1993). Since the exact transition threshold for actual
subcritical transition is statistical it is typically difficult to evaluate (Lemoult et al. 2016;
Kashyap, Duguet & Dauchot 2022). The value of ReE given by energy stability theory
appears as a much simpler quantity to evaluate in practice, since it is based mostly on
linear mechanisms and is perfectly well-defined mathematically speaking.

Energy stability remains an important robustness indicator also for stable flow regimes,
as it indicates a safe range of Reynolds numbers in which the flow can be operated without
any risk of transition. Additional forces acting on a given flow affect the momentum and
the energy balance, which can have a quantitative repercussion on the value of ReE. We
focus in this paper on flows of liquid metals in channels and ducts in the presence of an
imposed magnetic field. While this configuration is relevant for certain applications such
as liquid metal cooling systems for fusion reactors (Müller & Bühler 2001), it remains a
simplified configuration that is of fundamental interest in magnetohydrodynamic (MHD)
research since the beginning of the field (Hartmann & Lazarus 1937). For the parameters
under study, the magnetic Reynolds number Rem is small enough so that the classical
low-Rem approximation (Müller & Bühler 2001) holds, and no induction equation needs
be taken into account. The magnetic field, depending on its orientation, generates Lorentz
forces inside the flow that can modify the net force balance, while the presence of an
electrical current contributes to increased dissipation. In particular, the global stability of
the laminar flow can be enhanced if all velocity perturbations are damped by magnetic
effects. This results in transition being delayed to higher Reynolds numbers, a property
easily quantified by monitoring ReE (although the value of ReE underestimates in this case
the exact values of Re where transition occurs).

Specifically, the MHD duct accommodates two different types of boundary layers,
namely the Hartmann and the Shercliff layers (Knaepen & Moreau 2008). These are
respectively orthogonal and parallel to the applied magnetic field. For a unidirectional
fluid flow subject to an externally imposed magnetic field, the interaction between the
fluid motion and the magnetic field imposes a difference in electric potential between
the Shercliff walls that drives a transversal electric current density. Assuming that the
walls are electrically insulating, conservation of charge makes this current turn and reverse
through the Hartmann layers such that closed current streamlines are formed. Due to such
a reversal in the flow of charges, the Lorentz force, which is proportional to the current,
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tends to impede the fluid motion in the bulk and simultaneously accelerate the flow within
the Hartmann layers (Müller & Bühler 2001). This in turn leads to Hartmann and Shercliff
layers with different thicknesses: for the former, it is inversely proportional to the strength
of the magnetic field, while for the latter, it is inversely proportional to its square root.

A large body of literature has already focused on the effects of a steady magnetic field
imposed on a shear flow near rigid walls. The most dramatic consequence of the magnetic
field is, when it is strong enough, an effective or quasi-two dimensionalization of the
flow (Moreau 1990; Pothérat, Sommeria & Moreau 2000). This is expected and observed
in practice outside boundary layers once the interaction parameter, which characterizes
the ratio of Lorentz to inertial forces, becomes large compared with unity. For weaker
magnetic fields, turbulent and transitional shear flows typically feature coherent structures
such as streamwise streaks, like their non-MHD counterpart, but their range of existence
in terms of Re differs. Nevertheless, from the point of view of transition to turbulence,
they remain subcritical so that again a mismatch between the energy stability threshold
ReE and the proper transition values is expected. Moreover, as in other shear flows, the
underlying non-normality is strong, which results in strong amplification by transient
growth mechanisms even without any instability of the base flow.

Most energy stability calculations have been done for very simple flow geometries. The
earliest calculations were performed in plane channel geometries for planar Couette and
Poiseuille flow (Joseph & Carmi 1969). In the context of MHD flows amenable to the
low-Rem approximation, the energy stability of the Hartmann layer has been studied by
Lingwood & Alboussière (1999). Idealized geometries such as channel and boundary
layer are never found neither in nature nor even in industrial contexts. We therefore
decided to investigate the more realistic rectangular duct geometry, when the applied
magnetic field is parallel to one of the sidewalls. This flow has been the subject of several
experimental (Hartmann & Lazarus 1937; Murgatroyd 1953; Moresco & Alboussière
2004) and numerical studies (Kobayashi 2008; Krasnov et al. 2010; Krasnov, Zikanov &
Boeck 2012; Krasnov et al. 2013; Zikanov et al. 2014; Krasnov, Zikanov & Boeck 2015).
Yet to our knowledge it has never been documented from the point of view of energy
stability.

Duct geometries have long been used as research laboratories for the generalization
of linear/nonlinear concepts first developed in channel geometries. In the context of
transitional flows, instability threshold (Tatsumi & Yoshimura 1990; Tagawa 2019)
transient growth (Krasnov et al. 2010; Cassells et al. 2019), edge states (Biau, Soueid
& Bottaro 2008; Brynjell-Rahkola, Duguet & Boeck 2022) and exact coherent states
(Wedin, Bottaro & Nagata 2009; Uhlmann, Kawahara & Pinelli 2010) have been recently
documented in square duct geometries.

The goal of the present paper is to estimate numerically and report values of ReE for
rectangular ducts as functions of both the aspect ratio and the intensity of the magnetic
field. The asymptotic cases of three-dimensional MHD channel flow are considered, as
well as the quasi-two dimensional limit corresponding to strong magnetic fields. Besides
this exhaustive parametric study, this study also aims at characterizing the coherent
structures reported for these parameters, their symmetries, their link with linear optimal
modes and their implication for transition to turbulence at higher Reynolds number.

The paper is structured as follows. The mathematical formulation of the continuous
problem is given in § 2, together with the details about the numerical techniques (see also
Appendix A). Results relevant to the channel geometry are first given in § 3. Duct results
are shown in § 4. The description of optimal coherent structures is left for § 5. Conclusions
and outlooks are given in § 6.
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2. Problem formulation

Our aim is to model the flow of liquid metal in a periodic duct geometry with four
sidewalls. The flow is subject to a magnetic field imposed in a direction transverse to
the flow and parallel to one of the walls. For simplicity, we focus on the case where the
walls are all electrically insulating.

2.1. Governing equations
The flow is governed by the incompressible Navier–Stokes equations for the velocity field,
coupled to the Maxwell’s equations for the magnetic part. The quasistatic approximation
holds if the magnetic Reynolds number Rem is negligible with respect to unity, which will
be assumed throughout the whole paper. In this low-Rem approximation (Müller & Bühler
2001) the induced electric field can be represented as the gradient of the electric potential,
determined by Ohm’s law for a moving conductor in combination with Ampère’s law,
which requires the induced current density to be solenoidal. The original coupled system
of equations reads

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u + Ha2

Re
( j × eB) , (2.1)

∇ · u = 0, (2.2)

j = −∇φ + u × eB, (2.3)

∇ · j = 0 ↔ ∇2φ = ∇ · (u × eB). (2.4)

The variables p and φ denote the pressure and electric potential, respectively, whereas u
denotes the velocity field, eB is the direction of the magnetic field and j the electric current
density. All quantities are non-dimensionalized using the centreline velocity Uc of the
laminar flow for velocities, the shorter half-width H of the duct for lengths, the strength
B0 of the imposed magnetic field and the electrical conductivity σ of the fluid. This leads
to a division by ρU2

c for the pressure, by UcB0H for the electric potential and by σUcB0
for the electric current density. The governing non-dimensional control parameters are the
Reynolds number

Re ≡ UcH
ν

(2.5)

and the Hartmann number

Ha ≡ B0H
√
σ

ρν
, (2.6)

where ρ is the fluid density and ν is its kinematic viscosity. The walls are electrically
insulating, i.e. the wall-normal component of the electric current density is zero at each
wall. Besides the no-slip condition u = 0 is applied at each wall.

For the energy stability analysis, the flow is first decomposed, according to u = U + u′,
into the base laminar state with parallel velocity field U and a perturbation velocity field
u′. Moreover, a similar decomposition leads to the perturbation current density j′, the
perturbation electric potential φ′ and the perturbation pressure p′. The equations for the
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H

S S S S S S

H
y

z

eB

H H

HH

1γ < 1 γ > 1

γ

Figure 1. Sketch of the geometry of a cross-section of duct flow, as the aspect ratio γ = Ly/Lz is varied from
below to above unity (γ = 1 for a square duct). The labels H and S stand respectively for the Hartmann and
Shercliff layers in the presence of a magnetic field aligned with the z direction also noted eB. The reference
length (used e.g. in the definition of the Hartmann number) is always one half of the shorter side: for γ < 1 it
is half of the distance between the Shercliff walls and for γ > 1 it is half of the distance between the Hartmann
walls. The channel case corresponds to the limit γ → 0.

perturbation fields u′, φ′ and p′ are

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U + (u′ · ∇)u′ =−∇p′ + 1

Re
∇2u′ + Ha2

Re

(
j′ × eB

)
, (2.7)

∇ · u′ = 0, (2.8)

j′ = −∇φ′ + u′ × eB, (2.9)

∇2φ′ = ∇ · (u′ × eB), (2.10)

where the boundary conditions for u′ are of Dirichlet type except at the inlet and outlet
where periodicity is imposed. Superscript primes will be dropped from the perturbation
quantities throughout the rest of this paper.

2.2. Duct and channel geometries
The main geometry under consideration in this study is a duct aligned with the streamwise
direction x. The sides of the cross-section are parallel to the transverse directions y and
z. By convention, the magnetic field is aligned with the z direction, eB = ez (this renders
the coordinates y and z equivalent in the absence of the magnetic field). The velocity field
is considered periodic in the streamwise direction with a period Lx. The distance between
the sidewalls is noted as 2Ly and 2Lz in the y and z directions, respectively. The reference
length H, used to build, for instance, the Reynolds number and the Hartmann number,
is always taken to be half the shorter side of the cross-section. The pedagogic sketch in
figure 1 explains how the geometry of the cross-section changes from γ < 1 to γ > 1,
with γ = 1 referring to a square duct.

For the channel geometry, periodicity is assumed both in the streamwise and spanwise
direction, which is called here y. The reference length becomes the gap between the two
walls, while the reference velocity Uc is still the laminar centreline velocity.
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2.3. Base flow
The base flow is streamwise independent and only the streamwise velocity component is
non-zero. The induced current density is therefore two dimensional and can be represented
by the induced streamwise magnetic field through Ampère’s law, J = ∇ × (Bex). The
governing equations in dimensional form are

�ν∇2U + B0

μ0

∂B
∂z

= ∂p
∂x
, (2.11)

λm∇2B + B0
∂U
∂z

= 0, (2.12)

where μ0 is the magnetic permeability of free space and λm = 1/(μ0σ) is the magnetic
diffusivity. The gradient operators have to be understood as two-dimensional gradients
defined with respect to the cross-flow variables y and z only. By choosing the shorter edge
as the length scale and appropriate units for U and B, one can make the prefactors of the
terms multiplying the z derivatives on the left-hand sides equal and the pressure gradient
equal to unity. The non-dimensional equations for the base flow then read

∇2U + Ha
∂B
∂z

= 1, (2.13)

∇2B + Ha
∂U
∂z

= 0. (2.14)

These equations can be decoupled by adding and subtracting them. One obtains the two
equations (

∇2 ± Ha
∂

∂z

)
(U ± B) = 1 (2.15)

for the Shercliff variables U ± B with homogeneous Dirichlet conditions.
An analytical solution to (2.15) in the form of a Fourier series was originally derived

by Shercliff (1953) and later elaborated upon in Müller & Bühler (2001). However, in this
work (2.15) is discretized as described in § 2.6 and solved directly. Upon resolution, the
desired base velocity distribution is obtained from the sum of the appropriately scaled
Shercliff variables. This solution is shown in figures 2 and 3 for different duct aspect ratio
γ and Hartmann numbers. The Hartmann and Shercliff layers on the walls z = ±1 and
y = ±γ are clearly apparent by comparison between the cases Ha = 0 and Ha = 20.

2.4. Energy stability as a minimization problem
Energy stability analysis is concerned with the behaviour of the total perturbation kinetic
energy, defined as

E =
∫

V

u2
i

2
dV, (2.16)

using tensor notation. The evolution equation for E is obtained by multiplying the
momentum equation (2.7) by u and integrating over the volume of the duct. Using
integration by parts, this leads to

∂E
∂t

= −
∫

V
uiul

∂Ui

∂xl
dV − 1

Re

∫
V

∂ui

∂xl

∂ui

∂xl
dV − Ha2

Re

∫
V

jiji dV. (2.17)

This equation is equivalent to the Reynolds–Orr equation (Reddy & Henningson 1993)
in wall-bounded shear flows, save for the additional contribution of the Lorentz force.
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Figure 2. Base flow for Ha = 0 (a,c) and Ha = 20 (b,d) for an aspect ratio γ =1 (a,b) and γ = 2 (c,d).
Surface plot of the streamwise velocity U( y, z).
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Figure 3. Profiles of the base flow in the midplanes for different Hartmann numbers and γ = 1. (a) The
z profile of the streamwise velocity, (b) y profile of the streamwise velocity, (c) z profile of the streamwise
magnetic flux density.

The slowest possible temporal decay of E occurs for the perturbation that provides the
minimum of the functional (Doering & Gibbon 1995)

1
E

(∫
V

uiul
∂Ui

∂xl
dV + 1

Re

∫
V

∂ui

∂xl

∂ui

∂xl
dV + Ha2

Re

∫
V

jiji dV
)
. (2.18)
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This functional is subject to the constraint (2.8), and the current density is represented by
(2.9) and (2.10). We use Lagrange multipliers q and λ to add the mass conservation and
energy normalization constraints to the functional, i.e. we seek the extrema of the scalar
functional F, defined by

F =
∫

V
uiul

∂Ui

∂xl
dV + 1

Re

∫
V

∂ui

∂xl

∂ui

∂xl
dV + Ha2

Re

∫
V

jiji dV

−
∫

V
q ∇ · u dV − λ (E − 1) , (2.19)

where the minimization is carried over all admissible divergence-free velocity fields
satisfying the boundary conditions. The current density j depends directly on u and is
given by (2.9) with φ satisfying (2.10). One stationarity condition is obtained via variation
of the velocity field, i.e. from

0 = δF
δu

= d
dε

F[u + εδu]|ε=0 . (2.20)

It leads to the Euler–Lagrange equation

λu = +∇q + 2Ŝu − 2
Re

∇2u − 2Ha2

Re
j × eB, (2.21)

where Ŝ is the symmetric part of the velocity gradient of the base flow and the current
density is defined through (2.9)–(2.10). Variation of F with respect to q gives the constraint
(2.8). The multiplier λ is the growth rate of the perturbation satisfying (2.21), (2.8), (2.9)
and (2.10) for given values Re and Ha. We are interested in the lowest value of Re where
non-decaying solutions exist, i.e. λ = 0. The minimizing velocity field is such that (2.21)
reduces to the following eigenvalue problem for Re (Doering & Gibbon 1995):

Re Ŝu = −Re
∇q
2

+ ∇2u + Ha2j × eB. (2.22)

The lowest eigenvalue Re defines the energy stability Reynolds number ReE. The
corresponding eigenvector represents a flow field whose kinetic energy does, for
Re = ReE, neither experience initial growth nor initial decay. The spectral problem (2.22)
admits other eigenvalues beyond the lowest one. They correspond to larger values of Re
for which the problem admits neutral modes, i.e. non-monotonically decaying energy
variations. By convention, each eigenvector indexed by i = 1, 2, . . . corresponds to the
neutral flow field expressed at the value of Re = Re(i=1,2,...).

2.5. Detailed formulation
The incompressiblity condition leads to difficulties for the numerical solution of the energy
stability equations. We therefore adopt the approach used by Priede, Aleksandrova &
Molokov (2010) and represent the velocity field by a vector streamfunction ψ , i.e.

u = ∇ × ψ . (2.23)

By that, ∇ · u = 0 is always satisfied. The vector streamfunction is defined only up to an
additive gradient field. In order to fix this gradient field, we impose the gauge condition

∇ · ψ = 0, (2.24)

whereby ψ is defined up to the gradient of a harmonic function. The condition (2.24) also
simplifies the relation between ψ and the vorticity field to ω = −∇2ψ .
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By taking the curl of (2.22), we obtain equations for ωy and ωz and eliminate the field
q. They read

∇2ωy − Ha2 ∂

∂z

(
∂φ

∂y
+ ux

)
= Re ey · ∇ × Ŝu, (2.25)

∇2ωz − Ha2 ∂
2φ

∂z2 = Re ez · ∇ × Ŝu, (2.26)

∇2ψy + ωy = 0, (2.27)

∇2ψz + ωz = 0, (2.28)

∇2φ − ωz = 0. (2.29)

2.5.1. Streamwise-dependent perturbations
Since the streamwise direction is homogeneous, the eigenfunctions of the energy stability
eigenvalue problem are Fourier modes with streamwise wavenumber α. We therefore write

{ψ,ω, φ} (x, y, z) =
{
ψ̂( y, z), ω̂( y, z), φ̂( y, z)

}
eiαx. (2.30)

Equations (2.27)–(2.29) turn into three two-dimensional Helmholtz equations for each
Fourier mode of the components ψy, ψz and the electric potential φ with the vorticity
components as right-hand sides. Each of them is supplemented with a homogeneous
boundary condition. Upon discretization, these equations become linear invertible
mappings between the discrete representations of ψy, ψz and φ and the discrete
representations of ωy, ωz augmented by a set of zero boundary data. The actual eigenvalue
problem consists of (2.25)–(2.26) with ωy and ωz as independent variables. With this
representation, the streamwise components ψx and ωx are directly obtained from the other
two components ψy, ψz and ωy, ωz via (2.24) and ∇ · ω = 0.

The boundary conditions for the Fourier modes ofψy,ψz or ωy, ωz have to be formulated
such that the no-slip condition is satisfied. Following Priede et al. (2010), we first impose
that the tangential vector streamfunction component ψt in the ( y, z) plane vanishes on
each wall. This is admissible since it is equivalent to a Dirichlet condition for the arbitrary
harmonic function (whose gradient can be added to ψ). The other conditions are ux = 0
and un = 0, where subscript n denotes the normal component. We note that un = 0 is
equivalent to ∂ψn/∂n = 0 when ψt = 0 and that ux = 0 implies ∂ψz/∂y − ∂ψy/∂z = 0.
The third condition ut = 0 in the ( y, z) plane is equivalent to ωn = 0. For (2.27) forψy and
(2.28) for ψz, one of the conditions ψt = 0 and ∂ψn/∂n = 0 is selected on each segment
of the boundary. Equation (2.29) for φ requires homogeneous Neumann conditions.
Equations (2.25)–(2.26) are complemented with the conditions ∂ψz/∂y − ∂ψy/∂z = 0 or
ωn = 0.

2.5.2. Streamwise-independent perturbations
The case of zero streamwise wavenumber must be treated separately since the
representation of the streamwise velocity ux by the other components fails when α = 0.
One can then use the classical scalar streamfunction representation

uy = ∂ψx

∂z
, uz = −∂ψx

∂y
, (2.31a,b)
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for the in-plane components of the velocity. Likewise, the in-plane components of the
electric current density are

jy = ∂χ

∂z
, jz = −∂χ

∂y
, (2.32a,b)

where the streamfunction χ for the current density is proportional to the streamwise
component of the induced magnetic field. The streamwise current density is jx = uy. It
stems from Ohm’s law with the assumption that a mean streamwise current is excluded.
Using Ohm’s law one can also show that

∇2χ = −∂ux

∂z
. (2.33)

Equations for ψx, ωx, ux and χ are obtained from the streamwise component of (2.22) and
the streamwise component of its curl. These equations are

∇2ux + Ha2 ∂χ

∂z
= Re

2

(
∂U
∂y
∂ψx

∂z
− ∂U
∂z
∂ψx

∂y

)
, (2.34)

∇2ωx − Ha2 ∂
2ψx

∂z2 = Re
2

(
∂U
∂y
∂ux

∂z
− ∂U
∂z
∂ux

∂y

)
, (2.35)

∇2ψx − ωx = 0, (2.36)

∇2χ + ∂ux

∂z
= 0. (2.37)

The boundary conditions for (2.36) and (2.37) are ψx = 0 and χ = 0. For the other two
equations, the no-slip conditions ux = 0 and ut = 0 are required. The latter is equivalent to
∂ψx/∂n = 0. As discussed earlier for the case α > 0, the quantities χ and ψx are obtained
via one-to-one maps from ωx and ux. The actual eigenvalue problem consists of (2.34) and
(2.35).

2.6. Spatial discretization for the duct and channel geometry
We use a spectral collocation method based on the Chebyshev polynomials T0, T1, . . .
defined over [−1, 1] by Tn(x) = cos(n arccos x), n � 0 (Canuto et al. 2007).

For the duct flow, both cross-stream vorticity components are expanded as a finite double
sum, i.e.

f ( y, z) =
Ny∑

k=0

Nz∑
l=0

f̂k,lTk( y/Ly)Tl(z/Lz), (2.38)

where f denotes either ω̂y or ω̂z. Equations (2.25)–(2.26) and the corresponding boundary
conditions for ωy, ωz are enforced pointwise at the (Ny + 1)(Nz + 1) Gauss–Lobatto
collocation points yk and zl defined by

yk = Ly cos
(
kπ/Ny

)
, zl = Lz cos (lπ/Nz) . (2.39a,b)

Each collocation point provides one scalar equation for the expansion coefficients of ωy
and ωz (Canuto et al. 2007). The corners of the rectangular domain may require special
consideration when derivatives are specified along the boundaries. In these cases it may
be appropriate to impose the differential equation itself at a corner.
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As a result, one obtains a generalized linear eigenvalue problem of the type

AY = Re BY , (2.40)

where the vector Y contains the unknown expansion coefficients of ωy and ωz. The
streamfunction components and the electric potential in (2.25)–(2.26) are represented
as linear functions of ωy or ωz since they are given by (2.27)–(2.29). The discrete
representation of these quantities is also obtained through spectral collocation. However,
this requires more collocation points because ψy, ψz and φ do not only depend on
the inhomogeneity but also on the boundary data. We therefore use (Ny + 3)(Nz + 3)
expansion coefficients for ψy, ψz and φ in the ansatz (2.38) and in (2.39a,b). By that,
we obtain an invertible linear system between the expansion coefficients of either ωy or ωz
augmented by the zero boundary data and the expansion coefficients of ψy, ψz or φ. These
three inverse matrices are computed and stored before the matrices of problem (2.40) are
assembled. The computation of these matrices as well as of matrices A, B is described in
the Appendix.

Problem (2.40) was solved with MATLAB’s eig routine (The MathWorks, Inc. 2020) to
find all eigenvalues and eigenvectors. The routine also works with a matrix B whose rank
is smaller than the rank of A (as it is the case for (2.40)). It associates the spurious solutions
that stem from equations not containing the eigenvalue Re with infinite eigenvalues. The
numerical approach for the special case α = 0 is analogous with ωx and ux taking the role
of ωy and ωz as primary unknowns.

In contrast to the duct geometry, the base flow in the infinitely wide channel depends
only on the z coordinate. Owing to this homogeneity, the solution to the eigenvalue
problem can be represented by Fourier modes with respect to x and y with arbitrary
wavenumbers α and β. The ansatz for a velocity or vorticity component then becomes

f (x, y, z) =
Nz∑

k=0

f̃k Tk(z/Lz) exp(i(αx + βy)). (2.41)

The velocity field is represented through the vertical velocity and vorticity components.
Equations for these quantities are obtained by taking the vertical components of the
curl and the double curl of the stability eigenvalue problem (2.22). These equations are
complemented by (2.10) for the electric potential. The number of unknowns corresponds
to the expansion coefficients of vertical velocity, vorticity and potential, i.e. approximately
3Nz. The discretized form is obtained by enforcing the equations pointwise at collocation
points zk, and the resulting generalized linear eigenvalue problem, also of the form (2.40),
is solved with MATLAB’s eig routine. The energy stability of the quasi-two-dimensional
(Q2D) model was formulated in a similar way with the spanwise velocity component as
the sole dependent variable.

2.7. Code verification and numerical resolution
The code has previously been used in the context of magnetoconvection (Bhattacharya
et al. 2024). Its accuracy for the duct geometry was verified with linear stability results
from the hydrodynamic literature. For the streamwise-independent perturbations, we
computed the eigenvalues of the Stokes operator for γ = 1 and compared them with
Leriche & Labrosse (2004). The 10 leading eigenvalues in table 2 of Leriche & Labrosse
(2004) were reproduced to at least eight significant digits with a resolution of Ny = Nz =
25. For the perturbations with α > 0, we took a case from Priede et al. (2010) (their table 2,
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Ha γ N1 N2 ReE �ReE/ReE

0 1 25 30 77.828 5 × 10−8

10 1 30 35 174.92 2 × 10−7

20 1 35 40 300.59 1 × 10−8

40 1 45 53 546.84 6 × 10−8

60 1.2 60 70 792.80 4 × 10−8

Table 1. Resolution tests for MHD duct flow with α = 2. Energy stability eigenvalues ReE were computed
with maximum orders N1 and N2 of Chebyshev polynomials in both y and z resulting in a difference �ReE.

left column) with a simplified base flow (1 − y2)(1 − z2) in a square duct. For Re = 104,
α = 1, we reproduced the complex relative phase velocity of the leading eigenmode to six
significant digits with a resolution of Ny = Nz = 60 modes.

A direct comparison for energy stability was only possible without a magnetic field
for γ = 1 (see § 4.1). The additional electromagnetic terms in the equations could not be
checked directly. However, the MHD channel results should provide appropriate limits to
the duct results for either large Ha or small/large γ . This will also become apparent in the
following sections.

The numerical resolution for the duct flow has to be increased with Ha in order to
resolve the electromagnetic boundary layers. The requirements were systematically tested
for γ ≈ 1 and different Ha by comparing two different resolutions. Table 1 indicates that
the results are sufficiently accurate for the lower order N1 of Chebyshev polynomials.
However, the accuracy also depends on α. It becomes poorer as α is decreased. This can
be expected since α → 0 is a singular limit for the formulation based on ωy and ωz.

When the aspect ratio γ is not close to unity, the number of polynomials must be
increased along the longer edge of the duct to maintain adequate resolution. We decided
to keep the maximum spacing of the collocation points constant on the longer edge. Since
this spacing scales as 1/N (where N is the polynomial order), the appropriate choice is
to multiply Ny by γ or to divide Nz by γ (for γ > 1 and γ < 1, respectively). This is
done relative to the reference case γ = 1. Depending on the lowest α of interest, the base
resolution may have to be increased to ensure valid results. This can also be detected from
the magnitude of the imaginary part of ReE, which should ideally be zero. Eigenvalues
with significant imaginary parts are discarded in the computations.

The numerical resolution is mainly limited by the computing time, which approximately
scales with the third power of the number of unknowns. For Ny = Nz = 60, the assembly
of the matrices and eigenvalue computation took about 2.5 hours for fixed α and γ on an
Intel Xeon E5 processor.

3. Channel geometry

3.1. Energy stability for Ha = 0
We begin by considering the purely hydrodynamic channel case with only two parallel
walls, when Ha = 0. This configuration is one of the earliest cases treated in the literature.
For a recent comparative review, we refer, for instance, to Falsaperla et al. (2019). Orr
has initially sought neutral modes under the hypothesis that their spanwise wavenumber
β is zero and found analytically a value of ReE ≈ 87 (Orr 1907). A more accurate value
is ReE = 87.6 at α = 2.09 (Falsaperla et al. 2019). Later Joseph & Carmi (1969), Busse
(1969), by seeking neutral perturbations with zero streamwise wavenumber α, reported a
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Figure 4. Cartography of ReE in the (α, β) plane, where α and β are the streamwise and spanwise
wavenumbers, respectively. Channel geometry, from (a–d) Ha = 0, 5, 10, 20.

lower value of ReE = 49.6 at β = 2.04. In the present computation, both α and β can
be freely varied. The two values of ReE put forward by Orr and by Busse (1969) are
confirmed in figure 4 by focusing on the axes α = 0 or β = 0. Whereas the value for
α = 0 corresponds to a local minimum of ReE in the (α, β) plane, the minimizer for β = 0
appears as a saddle in the unfolded (α, β) plane.

3.2. Influence of increasing Ha
The local minima of the ReE in the (α, β) plane evolve as Ha departs from zero. Maps of
ReE can be seen in figure 4 for Ha = 5, 10 and 20. For Ha � 10, the global minimizer for
ReE corresponds to a mode with β = 0 in strong contrast with the case Ha = 0. This
minimizer is actually independent of Ha since there is no Lorentz force for β = 0. It
represents the solution found by Orr. For the intermediate value Ha = 5, the minimizer
is neither along the axis α = 0 nor along the axis β = 0. Instead it corresponds to an
oblique wave vector with both α and β non-zero.

4. Rectangular duct geometry

We move now to the rectangular duct case with four walls and a transverse magnetic field
parallel to one of the walls. The minimization problem leading to the value of ReE is
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Figure 5. Cartography of ReE in the (α, log10(γ )) plane. Duct geometry, from (a–d) Ha = 0, 5, 10, 20.

governed by two main parameters, notably the aspect ratio γ = Ly/Lz and the Hartmann
number Ha based on the shorter edge.

4.1. Energy stability for Ha = 0
Figure 5 shows colour maps of the values of ReE in an (α, γ ) plane, where α is the
streamwise wavenumber and γ is represented in (base 10) logarithmic scale. Values of
Ha = 0, 5, 10 and 20 are shown. The numerical resolutions for these computations are
given in table 2.

We focus first on figure 5(a) that has Ha = 0. As far as we know, no exhaustive energy
stability study has been performed in a rectangular duct flow even in the absence of MHD
effects. This configuration, where Ha = 0, is characterized by an additional degree of
symmetry compared with the MHD case: all sidewalls are equivalent and the notion of
Shercliff and Hartmann walls is irrelevant. Mathematically this results in the equivalence
between an aspect ratios γ = Ly/Lz > 0 and its inverse 1/γ = Lz/Ly. We thus expect the
symmetric relation ReE(γ ) = ReE(1/γ ) to be valid. This should manifest itself graphically
in a flip symmetry with respect to the zero axis when plots are made according to the
variable log γ . As expected, the symmetry property ReE(γ ) = ReE(1/γ ) is clearly visible
in the figure.

The location of the wavenumber α = αm associated with the optimal value ReE has
been represented in figure 5 for each value of γ , by using a plain white line. For the case
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Ha γ Ny Nz

0 �1 [27γ ] − 2 25
5 �1 [31γ ] − 2 33
10 �1 [32γ ] − 2 36
20 �1 [42γ ] − 2 45
5 <1 28 [38/γ ] − 2
10 <1 30 [38/γ ] − 2
20 <1 40 [47/γ ] − 2

Table 2. Resolutions for the computations of figure 5 indicated by maximum order of Chebyshev
polynomials. The square brackets denote the integer part.
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Figure 6. Plots of ReE and αm vs γ in the duct geometry.

Ha = 0, non-zero values of αm appear to be restricted to an interval where | log10(γ )| �
0.2, i.e. 0.6 � γ � 1.6. The largest value of αm (i.e. the shortest wavelength) is found
on the symmetry axis for Ly = Lz and corresponds to the cusp in the figure. Outside this
interval the wavenumber minimizing ReE is everywhere zero.

The variation of ReE (at optimum wavenumber) with γ is shown in figure 6(a). As
one would expect, the values for Ha = 0 approach the channel limit with Re = 49.6 for
decreasing as well as for increasing γ . One can also notice two discontinuities in the
slope of the curve ReE(γ ) on either side of γ = 1. For γ > 1, these occur at γ ≈ 1.8 and
γ ≈ 2.8. They correspond to a qualitative change in the structure of the mode providing
ReE, which will be shown in § 5.

We focus now on the square case, i.e. γ = 1. In the literature, to our knowledge only
a numerical value of ReE = 79.44 (based on the centreline velocity) has been reported
by Biau et al. (2008) in the absence of MHD effects, associated with a zero streamwise
wavenumber. This is at odds with our result α = 1.3 corresponding to a smaller value
ReE = 74.1. For α = 0, we obtain ReE = 78.5 in reasonable agreement with Biau et al.
(2008), where a different numerical method was used. We note, for comparison, that
the companion circular geometry of Hagen–Poiseuille flow also features a non-zero axial
optimal wavenumber α = 1.07 found for ReE = 81.5 (Joseph & Carmi 1969).
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4.2. Influence of increasing Ha
As Ha increases above zero, the flip symmetry in figure 5(a) is immediately lost. This
corresponds to an increasing dissymmetry between the two different pairs of boundary
layers along the sidewall: the Hartmann and the Shercliff boundary layers are now two
distinct boundary layers with different scalings. The minimal value of ReE in figure 5 is
always achieved, unlike for Ha = 0, for a finite wavenumber αm. This minimum is always
found at the lowest γ values computed. This corresponds to the configuration where the
longer edge is parallel to the magnetic field: the laminar base flow is then dominated by
wider Shercliff layers and the two thinner Hartmann layers are well separated. The minimal
value of ReE itself increases with Ha. For Ha = 0, 5, 10, 20, it is respectively 52.2, 88.1,
102.2 and 127.3.

The global trend for the value of ReE is an increase with Ha, which is also seen in
figure 6(a). It appears that ReE and the corresponding wavenumber α shown in figure 6(b)
approach Orr’s value represented by a black square on the left axis γ = 0.25 for all Ha �
5. This is consistent with the channel flow with a spanwise magnetic field because the base
flow in the duct approaches the Poiseuille profile as γ tends to zero (with the exception of
the Hartmann layers).

Figures 6(a) and 6(b) also show that a plateau emerges for both ReE and αm at large
γ . The higher the value of Ha, the earlier the plateau is reached as γ is increased. For
Ha � 5, αm stays away from zero for all aspect ratios γ shown. The range of values of
αm found by varying γ shifts upwards as Ha is increased. This corresponds, as Ha gets
larger, to increasingly shorter wavelengths found at criticality. For Ha = 10 and beyond,
the shorter wavelengths are found for γ > 1.

4.3. Connection with the quasi two-dimensional theory
We investigate now the other limiting configuration γ → ∞ where the shorter edge is
parallel to the magnetic field. This is associated visually with the right of each subplot
in figure 5, in which the same values of Ha = 0, 5, 10 and 20 are displayed. In this
configuration, the laminar flow consists of two narrow Shercliff layers and two laterally
extended Hartmann layers. From figure 5 it is clear that, at least for Ha /= 0, ReE achieves,
for asymptotically large γ , a minimum value associated with non-zero values of αm. The
corresponding values of ReE and αm are reported in figures 7(a) and 7(b), respectively.
The additional values of ReE and αm for Ha > 20 were typically computed at two distinct
values of γ > 1. This was done in order to ensure that the plateau is reached without going
to the computationally expensive case γ = 4.

Both ReE and αm increase monotonically with increasing Ha. This is interpreted, for
this large γ limit, as a delay of the transition by the magnetic field, associated with smaller
axial wavelengths at criticality.

The present results can be compared with earlier work (Pothérat 2007) carried out in
the framework of the Q2D approximation (Sommeria & Moreau 1982; Pothérat et al.
2000). In the Q2D model the flow is represented by a two-dimensional velocity field that
corresponds to the actual flow averaged along the direction of the magnetic field. The
averaged flow satisfies the two-dimensional Navier–Stokes equations with an additional
linear damping term −HaQ2Du. This term accounts for the friction on the Hartmann walls.
The Q2D Reynolds number is defined with the lateral dimension Ly/2, i.e. ReQ2D = γRe.
Correspondingly, αQ2D = α/γ . The relation between HaQ2D and Ha is HaQ2D = γ 2Ha/2.
The basic flow in the Q2D model is equivalent to the Hartmann flow profile but with a
side layer thickness ∼ Ha−1/2

Q2D . For HaQ2D 
 1, the Q2D energy stability analysis shows
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Figure 7. Plots of (a) ReE vs Ha, (b) αm vs Ha in the duct geometry (in the large γ limit), with comparison
with (4.1) from Q2D theory.

10–1

10–2 100 102

100

101

102

103

Re
no

rm

αnorm αnorm

 

0 0.5 1.0 1.5 2.0

1.0

1.5

2.0

2.5

3.0

3.5
Ha = 60
Ha = 40
Ha = 20
Ha = 10
HaQ2D = 1000

HaQ2D = 1 × 102

HaQ2D = 5 × 102

HaQ2D = 1 × 103

∼ 1/α
∼ α2

(b)(a)
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results from the Q2D model for several HaQ2D. (b) Comparison of duct results (in the limit γ 
 1) with results
from the Q2D model.

a universal, self-similar dependence between Reynolds and wavenumber illustrated in
figure 8(a). This agreement between different HaQ2D demonstrates that the (averaged)
Shercliff layers on the opposite walls become decoupled, i.e. outer length scale (width of
the duct) does not affect the result. In particular, the minimum αQ2D and the corresponding
ReQ2D therefore scale as Ha1/2

Q2D. The numerical values of the coefficients in the scaling
relations are given in Pothérat (2007). Transformed to our definitions, they read

Re = 65.3
√

Ha, α = 0.863
√

Ha. (4.1a,b)

The qualitative as well as quantitative match between the present computations and the
Q2D results in figure 7 is good, despite a slight drift observed for the largest values of
Ha (computed here up to Ha = 80). The perturbations are therefore expected to become
localized in the Shercliff layers, and to exhibit a shape with approximate uniformity along
the magnetic field.

We can further verify the universal scaling behaviour for our duct results over intervals
of α. This is reported in figure 8(b). It shows the dependence of normalized ReE and
α for different Ha as well as the universal curve from the Q2D model in figure 8(a).
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Figure 9. (a) Plot of ReE for α = 0 (full lines) and optimal α (dashed) vs γ in duct geometry. (b) Plot of ReE
for α = 0 (duct, limit γ 
 1) vs Ha and comparison with Hartmann layer scaling.

The agreement with the Q2D model is excellent except in the limit α → 0, where the duct
curves depart from the Q2D theory. In contrast to the Q2D asymptotic behaviour Re ∼
1/α, they saturate at finite values of Re for α = 0. These values increase monotonically
with Ha.

As already noted, the dependence Re(α) in the Q2D model appears to be a power law
for α → 0 and for α → ∞ (see figure 8a). The former is consistent with a regular limit
α → 0 in the Q2D equations. The O(α2) scaling for large α cannot be justified in this way.
It can be understood as a diffusive scaling associated with wavelengths with a viscous
damping rate O(α2Re−1) so high that it requires Re = O(α2) for damping to be balanced
instantaneously by non-normal amplification.

4.4. Case α = 0
While the disturbances with α = 0 do not minimize ReE for Ha � 5, they are interesting
in their own right since their corresponding ReE has a different dependence on Ha than
the optimal mode. This is apparent from figure 9(a) that shows the γ dependence of
ReE for α = αm and α = 0. For large γ , ReE for α = 0 saturates like the minimal ReE
but the saturation levels for αm and α = 0 separate further as Ha grows. For small γ ,
a saturation is only apparent for Ha = 5 with comparable levels for αm and α = 0. For
Ha = 10 and Ha = 20, the curves for αm and α = 0 continue to decay below γ = 0.25.
It can be expected that the curves for α = 0 eventually reach the saturation levels for the
channel case. These correspond to the minima of ReE on the axis α = 0 in figures 4(c) and
4(d). For Ha = 10 and Ha = 20, these values are ReE ≈ 158 and ReE ≈ 310, respectively.

The saturated values of ReE for α = 0 and γ > 1 are shown in figure 9(b) as black
circles. They clearly scale as ReE ∼ O(Ha) with a proportionality constant ≈ 23. This
linear scaling is consistent with the behaviour of linear, streamwise-independent optimal
perturbations investigated by Krasnov et al. (2010). These authors found that those
perturbations reside in the Shercliff layers. A linear scaling was also obtained by Lingwood
& Alboussière (1999). These authors investigated energy stability for a single insulating
Hartmann layer. They found ReE = 25.6 Ha for purely streamwise-independent modes
(α = 0). Although the numerical value of the proportionality constant for the duct is close
to 25.6, the corresponding modes are distinct. Perturbations localized in the Hartmann
layers only appear as higher modes in the duct case. For γ = 1, the ninth mode is the
lowest one with such a spatial structure. The corresponding ReE of the ninth mode (also
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displayed in figure 9b) agrees very well with the energy stability limit from Lingwood &
Alboussière (1999).

In summary, the case α = 0 provides a linear dependence between Reynolds and
Hartmann numbers for energy stability. This is consistent with threshold values of Re
found in experiments on the relaminarization of turbulent MHD duct flows (Branover
1978; Moresco & Alboussière 2004). A scaling with Ha1/2 is not observed in those
experiments. This underlines the dynamical importance of long-wave modes in transitional
and turbulent MHD duct flows despite their non-optimal properties.

5. Coherent structures at criticality

5.1. Theoretical link with linear optimal perturbations
Although many energy stability calculations principally report values of ReE and the
corresponding optimal wavenumbers at criticality (i.e. at Re = ReE), the associated flow
structures, corresponding to the eigenvectors of the linearized operator in (2.22), are
usually not investigated in detail with the possible exception of Pothérat et al. (2000).
These coherent structures are not directly observable flow structures in an experimental
setting, unlike, e.g. unstable global modes. However, as mentioned earlier, they bear a
strong relation with the linear optimal perturbations (LOPs) celebrated in non-modal
instability analysis (Schmid 2007; Kerswell 2018). The LOPs are the initial velocity fields
u(T)opt that optimize the finite-time perturbation energy growth

G(T,u(0)) = |u(T)|2/|u(0)|2 (5.1)

for any given time horizon T > 0, under the action of the linearized dynamics (Reddy
& Henningson 1993). They are relevant for Re > ReE, when energy growth is indeed
instantaneously possible and max (G) > 1 for at least some value of T . The maximum
energy growth corresponding to the short-time horizons �t � 1 verifies G(�t,u�t

opt) �
‖I + 2(�t)L‖ at first order in �t, where L is the linearized operator at t = 0. This tends
to unity, for fixed �t, as Re approaches ReE from above. The structures achieving the
largest energy growth at Re = ReE are hence precisely the critical perturbations computed
in all energy stability studies as a byproduct of the eigenvalue problem (2.22). In other
words, the LOPs computable at Re > ReE continue smoothly into the critical perturbations
computed here. In the same way as the detailed investigation of the LOPs has shed light on
the (linear) transition mechanisms, it is hence useful to investigate the critical perturbations
at ReE as they might already feature elements related to the transition observed at larger
Re. This is, for instance, the case for the channel flow discussed in § 3, where the mode
that attains the lowest ReE changes from a streamwise to a spanwise uniform structure as
Ha is increased and, for intermediate parameter values, corresponds to an oblique wave.
Such a trend is in complete agreement with the behaviour of LOPs reported by Krasnov
et al. (2008) (see their figure 7). On a technical level, the critical perturbations computed
from (2.22) are independent of any target time, which makes their description simpler.

It is useful to recall the main teachings of the quest for LOPs in simple
configurations, namely the purely hydrodynamic channel flow with streamwise periodicity.
Two-dimensional computations (assuming no spanwise dependence of the flow) have
highlighted the Orr mechanism as the most efficient way to extract energy from the
base flow (Farrell 1988). The Orr mechanism consists of a progressive shearing of the
perturbations in the direction associated with the base flow. The corresponding optimal
perturbations are easily recognized by the tilting of spanwise vortices against the shear.
Three-dimensional computations of LOPs have highlighted a much more efficient energy
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Figure 10. Isosurfaces of ux for the leading eigenmodes at Ha = 0, γ = 1 and streamwise wavenumbers
(a) α = 0.6, (b) α = 1.2 and (c) α = 2.4. The streamwise period displayed in each case is the period for

α = 1.2.
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Figure 11. Contours of ux in the planes z = 0 (a–c) and y = 1/2 (d–f ) for the leading eigenmodes at Ha = 0
for the same parameters as figure 10.

growth mechanism, linked to the lift-up mechanism (Brandt 2014) that actively exploits the
spanwise dependence of the disturbance. The associated optimal perturbations look like
long tubular streamwise vortices evolving rapidly into streamwise streaks, characterized by
a well-defined spanwise spacing. These optimal disturbances are often two dimensional
(Butler & Farrell 1992), now in the sense that they do not depend on the streamwise
coordinate, and even when they are three dimensional, the tilting of the vortices against
the shear is not pronounced.

5.2. Duct visualization for Ha = 0
We begin by visualizing the eigenmodes of the eigenproblem (2.22) in the non-MHD
case when Ha = 0. Starting with the least stable modes and focusing on the square duct
(γ = 1), figure 10(a–c) shows three-dimensional rendering of the isosurfaces of ux for
three values of α from low to high, respectively α = 0.6, 1.2 and 2.4. The tilting against
the shear typical of Orr modes is found visually in figure 10. This tilting is confirmed by
looking at the perturbations both in the xy and xz planes, as shown in figure 11 for the same
values of α.

For a better visualization of the flow in a cross-section, we chose to display in figure 12
only the real part of the velocity field associated with ux, and chose (before normalization)
the cross-section where the amplitude of Re(ux) is maximal. This representation makes
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Figure 12. Eigenmodes by ascending ReE from (a–d) for Ha = 0, γ = 1 and α = 0.3 visualized by the real
part of ux. Here ux is normalized such that its maximum is equal to unity. These modes correspond to type I
(b), type II (d), type III (c) and type IV (a).

the symmetries of the different modes easier to interpret. In particular, figure 12 shows the
four least stable modes. We can adopt the nomenclature introduced in the linear stability
analyses of Tatsumi & Yoshimura (1990) (for hydrodynamic duct flow) and Priede et al.
(2010) (for the Hunt’s flow that admits the same symmetry classification), which is based
on listing whether the symmetry of ux with respect to the z axis (respectively the y axis) is
odd or even. It can be checked that this classification remains unaffected by the presence
of the Lorentz force in the governing equations. This gives way to the respective symmetry
types I (odd in y, even in z), II (odd in y and z), III (even in y and z) and IV (even in y, odd
in z). The modes listed in figure 12 are (a) type IV, (b) type I, (c) type III and (d) type II.

The values of ReE corresponding to each of these four modes are, for a more efficient
representation, plotted versus their corresponding optimal wavenumber α in figure 13. It
is clear that the two modes with symmetry types I and IV are equivalent for γ = 1 and the
optimal structure for all values of α. Modes II and III cross near α = 2.

For Ha = 0, the structure and symmetry type of the lowest mode can change with
the aspect ratio γ . This was already noted in connection with figure 6(a). The plots of
cross-sections of ux for γ = 2 and γ = 4 are shown in figure 14. These modes have
symmetry II. At γ = 4, the number of structures along the y direction is twice that for
γ = 2.
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Figure 13. Plot of ReE vs α for different modes computed for Ha = 0, γ = 1.
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Figure 14. Lowest eigenmodes (type II) for Ha = 0, α = 0 and (a) γ = 2, (b) γ = 4 visualized by ux. Here
ux is normalized such that its maximum is equal to unity.

5.3. Duct visualization for Ha /= 0
We move next to the visualization of the eigenmodes of the eigenproblem (2.22) in the
MHD case. Figure 15 shows three-dimensional visualizations of the least stable modes
found in square duct (γ = 1) at Ha = 20 for α = 1/2, 1, 2 and 4. Again, long modes
with small or vanishing α are associated at higher Re with the lift-up mechanism while
the Orr mechanism is present in shorter-wavelength structures. A clear difference is that
the structures are more localized near the sidewalls since the central part of the velocity
distribution has low shear. As for Ha = 0, the streamwise velocity has also been plotted in
the xy plane where variations along y are important (see figure 16), whereas in the xz plane
the perturbations show a more uniform dependence on z. The tilting against the shear,
clearly visible in the Shercliff layers, is noted for α = 1, 2 as well as for α = 4 where the
lowest value of ReE is achieved for γ = 1. For smaller α = 1/2, the streaky perturbations
are found in the Shercliff layers only and are less elongated along z than for the higher α
values. Isosurfaces of the corresponding streamwise vorticity ωx are shown in figure 17.
Their position inside the Shercliff layers is consistent with the emergence of streamwise
streaks via the lift-up mechanism.

For the least stable modes found for γ = 1, this leads to the figure 18 where ReE for
a given mode is plotted versus the corresponding wavenumber α. A clear departure from
the Ha = 0 case is observed. This is mainly due to the fact that α = 0 perturbations are
much more damped than non-zero ones. In particular, the value for ReE starts from 470
for α = 0 (to be compared with a value of less than 100 for Ha = 0), then it decreases
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Figure 15. Isosurfaces of ux for the leading eigenmodes at Ha = 20, γ = 1 and streamwise wavenumbers
(a) α = 1/2, (b) α = 1, (c) α = 2 and (d) α = 4. The streamwise period displayed in each case corresponds to
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Figure 16. Contours of ux in the plane z = 0 for the same parameters as figure 15.
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Figure 17. Isosurfaces of ωx for the leading eigenmode at Ha = 20, γ = 1 and streamwise wavenumber
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Figure 18. Plot of ReE vs α for different modes computed for Ha = 20, γ = 1.

rapidly to values closer to 250–300 in the range 3 � α � 4, only to start rising beyond
that. Almost identical values of ReE are obtained for the symmetry types III and I as well
as IV and II, i.e. with either even or odd symmetry in z. The lateral symmetry, therefore,
does not matter except for small α. Cross-sections of the real part of the ux modes are again
shown in figures 19, 20 and 21. For both α = 1/2 (figure 19) and α = 2 (figure 20), the
perturbations are clearly located in the Shercliff layers with symmetries type I (19a and
20a), III (19b and 20b), II (19c and 20c) and IV (19d and 20d). It is again apparent that the
structures become more elongated along z for the higher α in figure 20.

Not all eigenmodes found in this study are located in the Shercliff layers, although those
that minimize the value of ReE generally are. The existence of modes localized inside the
Hartmann layers, already mentioned in § 4.4, is demonstrated in figure 21. These different
modes are of type I, II, III and IV, respectively (modes 9–12). The corresponding values
of ReE are all close to 530, which is roughly twice the global minimizing value of ReE
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Figure 19. Eigenmodes by ascending ReE from (a–d) for Ha = 20, γ = 1 and α = 1/2 visualized by the real
part of ux. Here ux is normalized such that its maximum is equal to unity. These modes correspond to type I
(a), type II (c), type III (b) and type IV (d).

for these parameters. Owing to the wide separation between the Hartmann layers, the
symmetry with respect to z has little influence on the value of ReE. The symmetry with
respect to y hardly affects the eigenvalues either.

6. Summary and conclusions

In this computational study, energy stability theory was applied to the case of
hydrodynamic and MHD duct flow, in the situation where the flow is electrically
conducting, the walls electrically insulating and the applied magnetic field is transverse.
The duct is assumed periodic in the streamwise direction. The values of the energy
Reynolds number ReE were reported in a parametric study accounting for variable
streamwise wavenumber α, variable cross-sectional aspect ratio γ and variable Hartmann
number (which is proportional to the intensity of the applied magnetic field). By going
to the γ � 1 limit, the results for spanwise-periodic channel flow were recovered. For
γ 
 1, they also match with the Q2D computations performed in Pothérat (2007) for
short streamwise wavelengths. The related perturbations are found along the sidewalls
(e.g. inside the Shercliff layers). The special case of streamwise-independent perturbations
shows a different scaling than in the Q2D case, which agrees with the arguments developed
in Krasnov et al. (2010). The visualization of the critical structures, interpreted as
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Figure 20. Eigenmodes by ascending ReE from (a–d) for Ha = 20, γ = 1 and α = 2 visualized by the real
part of ux. Here ux is normalized such that its maximum is equal to unity. These modes correspond to type I
(a), type II (c), type III (b) and type IV (d).

precursors of the popular LOPs, allows one to identify the mechanisms at play at ReE,
namely the Orr and the lift-up mechanism. All these optimal structures are found to be
robustly located in the Shercliff layer. This result is nicely consistent with the localization
of the linear optimal modes reported in Cassells et al. (2019). Note that the Shercliff layer
is also the part of the cross-section where turbulence remains last in the spatio-temporally
intermittent regime, as Ha is increased (Krasnov et al. 2013). This robust property highly
suggests, by extrapolating the system to yet higher Re and to the fully nonlinear regime,
that transition to turbulence in this geometry starts generically with the destabilization of
the Shercliff layer. Such conclusions need to be supported by nonlinear computations that
are currently underway (Brynjell-Rahkola et al. 2022).
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Figure 21. Selection of eigenmodes for Ha = 20, γ = 1 and α = 0 visualized by ux. (a) Mode 9 with
ReE = 530.16, (b) mode 10 with ReE = 530.27, (c) mode 11 with ReE = 530.32, (d) mode 12 with
ReE = 530.33. Here ux is normalized such that its maximum is equal to unity.

Appendix. Construction of matrices in the eigenvalue problem (2.40)

In order to describe how the matrices are assembled we focus on the case with non-zero
streamwise wavenumber, i.e. on the discretization of (2.25)–(2.29). The case of zero
streamwise wavenumber can be treated similarly except that the relevant equations are
(2.34)–(2.37). They are discretized by the same approach, which should be apparent from
the following discussion.

Since the vorticity components ω̂y, ω̂z are given by the Laplacians of ψ̂y and ψ̂z, φ̂
(cf. (2.27), (2.28), (2.29)), we chose a larger set of basis functions for these quantities. We
use (Ny + 1)× (Nz + 1) Chebyshev polynomials for the two vorticity components and
(Ny + 3)× (Nz + 3) Chebyshev polynomials for the vector streamfunction components
and the electric potential.

We write these two sets {gm} and {hm} using a combined single index rather than double
indices. The definitions are

gk+1+l(Ny+3)( y, z) = Tk( y/Ly)Tl(z/Lz), 0 � k � Ny + 2, 0 � l � Nz + 2, (A1)

and

hk+1+l(Ny+1)( y, z) = Tk( y/Ly)Tl(z/Lz), 0 � k � Ny, 0 � l � Nz. (A2)
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The expansion for ω̂y then reads

ω̂y =
Nmax,1∑
m=1

Ω( y)
m hm( y, z), Nmax,1 = (Ny + 1)(Nz + 1). (A3a,b)

Analogously, the expansion for ψ̂y is

ψ̂y =
Nmax,2∑
m=1

Ψ ( y)
m gm( y, z), Nmax,2 = (Ny + 3)(Nz + 3). (A4a,b)

For the discretization of the Poisson equation (2.27), we demand that the partial differential
equation holds at the interior collocation points

( yk, zl) =
(

Ly cos
(

kπ
Ny + 2

)
, Lz cos

(
lπ

Nz + 2

))
. (A5)

To wit,

Nmax,2∑
m=1

Ψ ( y)
m

(
∂2gm

∂y2

∣∣∣∣
( yk,zl)

+ ∂2gm

∂z2

∣∣∣∣
( yk,zl)

− α2gm( yl, zk)

)
︸ ︷︷ ︸

=Qi,m

=
Nmax,1∑
m=1

Ω( y)
m hm( yk, zl)︸ ︷︷ ︸

=Ri,m

,

(A6)

where i = k + (l − 1)(Ny + 1), 1 � k � Ny + 1, 1 � l � Nz + 1. For i � Nmax,1, the
matrix elements Ri,m with m > Nmax,1 are set to zero.

The remaining equations for Nmax,1 � i � Nmax,2 are obtained from the boundary
conditions, which are imposed on the collocation points on the boundary. On the line
z = Lz the value of ψ̂y is prescribed, e.g.

Nmax,2∑
m=1

Ψ ( y)
m gm( yl, Lz)︸ ︷︷ ︸

=Qi,m

= vi, (A7)

where vi denotes the boundary value and i = Nmax,1 + l + 1 with 0 � l � Ny + 2. This
equation implies that R has only diagonal entries for i > Nmax,1, which can be set to
unity. The remaining boundaries z = −Lz, y = ±Ly are treated in a similar way. The set of
boundary values vi complements the set of known values Ω( y)

m . For simplicity, we define
them as si = Ω

( y)
i for i � Nmax,1 and si = vi = 0 for Nmax,1 < i � Nmax,2. In summary,

one obtains a linear system

Nmax,2∑
m=1

Qi,mΨ
( y)
m =

Nmax,2∑
m=1

Ri,msm (A8)

with full-rank matrices Q and R. One can therefore compute C( y) = Q−1R and represent
the vector Ψ ( y)

m by

Ψ
( y)
i =

Nmax,2∑
m=1

C( y)
i,msm. (A9)
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Since the boundary values vi are all zero, this reduces to

Ψ
( y)
i =

Nmax,1∑
m=1

C( y)
i,mΩ

( y)
m , 1 � i � Nmax,2. (A10)

The expansion coefficients Ψ (z)
i and Φi are obtained in an analogous way from (2.28) and

(2.29). Since boundary values are again zero, we have

Ψ
(z)
i =

Nmax,1∑
m=1

C(z)i,mΩ
(z)
m , 1 � i � Nmax,2, (A11)

and

Φi =
Nmax,1∑
m=1

C(φ)i,mΩ
(z)
m , 1 � i � Nmax,2. (A12)

For the discretization of (2.25), (2.26), we use the smaller set of (Ny − 1)× (Nz − 1)
interior collocation points corresponding to the set {hm}, namely

( yk, zl) =
(

Ly cos
(

kπ
Ny

)
, Lz cos

(
lπ
Nz

))
. (A13)

Most elements of matrices A and B are obtained by demanding that (2.25) and (2.26) hold
at these collocation points. The remaining ones are obtained from the boundary conditions
applied to the collocation points on the boundary.

It is straightforward but tedious to evaluate the contributions from the different terms
appearing in (2.25), (2.26). The Laplacian on the left-hand side of (2.25) yields

Nmax,1∑
m=1

Ω( y)
m

(
∂2hm

∂y2

∣∣∣∣
( yk,zl)

+ ∂2hm

∂z2

∣∣∣∣
( yk,zl)

− α2hm( yl, zk)

)
, (A14)

where the term multiplying Ω( y)
m adds to the entry Ai,m, where i = k + (l − 1)(Ny − 1).

The contribution from the second term is

− Ha2
Nmax,2∑
m=1

Φm
∂2gm

∂y∂z

∣∣∣∣
( yk,zl)

=
Nmax,1∑
n=1

Ω(z)
n

⎛
⎝Nmax,2∑

m=1

−Ha2C(φ)m,n
∂2gm

∂y∂z

∣∣∣∣
( yk,zl)

⎞
⎠ . (A15)

We see that both Ω( y)
m and Ω(z)

m appear in the discretization of (2.25). It is therefore
necessary to combineΩ( y)

m andΩ(z)
m into a single vector Y of size 2Nmax,1 with Ym = Ω

( y)
m

and Ym+Nmax,1 = Ω
(z)
m for 1 � m � Nmax,1. The matrices A and B are then also of size

2Nmax,1 × 2Nmax,1. The term multiplying Ω(z)
n on the right-hand side of (A15) adds to the

matrix element Ai,n+Nmax,1 . The treatment of the other terms contributing to A and B at the
interior collocation points (A13) is analogous.

The boundary conditions on ω̂y and ω̂z are implemented on the remaining rows of
matrix A, i.e. for index values 2(Ny − 1)(Nz − 1) < i � 2Nmax,1 as explained above for the
computation of ψ̂y from ω̂y. Since the boundary conditions do not contain the eigenvalue
Re, the corresponding rows of matrix B are filled with zeros.
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