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Abstract

In this paper we study the transcendence degree of fields generated over Q by the numbers
associated with values of one-parameter subgroups of commutative algebraic groups. We show
that in many instances these fields have a large transcendence degree when measured in terms
of the available data.

Our method deals with points which are "well distributed" (in a sense which is made precise)
among certain algebraic subgroups of the algebraic group under consideration. We verify that
these results apply in many classical situations.

1991 Mathematics subject classification (Amer. Math. Soc.) 11 J 99.

The purpose of this paper is to study fields of large transcendence degree,
over Q, which are generated by numbers associated with one-parameter sub-
groups of commutative algebraic groups. This is not the first such investiga-
tion. Our goal here is to both generalize and improve several results which
have appeared in recent years. Specifically we apply some ideas from the
work of G. Diaz [6] and some of the present author [15], [16] to study al-
gebraic independence in this general setting, which was introduced by M.
Waldschmidtin[17].

We begin with a description of the basic objects in our study. Let K be an
arbitrary subfield of C and suppose that G is a commutative algebraic group
defined over K of dimension d. Moreover, letting Ga denote the additive
group of complex numbers and Gm the multiplicative group of complex
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[2] Large transcendence degree 401

numbers, we assume that G has a decomposition

with G2 a commutative algebraic group, necessarily denned over K, of di-
mension d2.

Let (j>: C —> G(C) be an analytic homomorphism whose image is Zariski
dense in G(C). We assume that yx,... ,y{ are Q-linearly independent
complex numbers with </>(y() e G{K) for i = 1 , . . . , / .

Our goal is to provide a lower bound on the transcendence degree of K
which is given in terms of d0, dx, d2 and / . To accomplish this we must
make some assumptions on the points yx,... ,y{ and on the distribution of
the points <l>{slyl H h sy^, s, e Z , among certain algebraic subgroups of
G. This will be the manifestation of the so-called "technical hypothesis" of
earlier papers (for example, [17], [6], [15]) in the present context.

MAIN THEOREM. Suppose that <f>, G, yx, . . . , yt, and K are as above.
Suppose that for all S sufficiently large, if max; = 1 , |^.| < S, then

(1) bVi "• h.fy.S/1 > exp(-SlogS ' ) .

Put

d
and assume that S > 2 if d2 / 0 and Condition 1 below holds. If I > S,
then

trans degQ^>|J

where |[x]| denotes the integer part of x.

In Section 3 below we will show how inequalities of the type (1) imply
that Condition 1 holds in many interesting applications, such as for values
of the unusual exponential function of Weierstrass elliptic functions. Similar
applications have already been studied by the present author in [15]. The
main theorem above appears to be at the limit of the present method and
Condition 1 below is indispensable for the application of modern algebraic
independence criteria.

1. The technical hypothesis

We begin by prescribing an embedding of G into multiprojective space.

Let G2 -̂ -> Pjy be the embedding of G2 into projective iV-space as described
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402 Robert Tubbs [3]

by J-P. Serre in [13]. Then G has the natural embedding into multiprojective
space

In the interest of minimizing our notation we take </>(z) to denote the original
analytic homomorphism <f> : C —» G(C) composed with this embedding.
Then <f>(z) may be represented as

(2) 4>(z) = (1, a^z : l , / ' z , . . . , efi«z : hQ(z), . . . ,hN{z)),

where ad , flx,... , fid are complex numbers and

ho{z), . . . ,hN(z)

are entire functions of order of growth at most two. Of course if d0 = 0
then the coordinates corresponding to Pd are missing in the description of
<f>(z) above. Similarly if dx — 0 or d2 = 0 the corresponding coordinates
are deleted.

Let 6X,... , 6r be a set of generators for K over Q , with 6{,... ,6t,
t < r, a transcendence basis for K over Q and suppose that ,/ is the ideal
of all polynomials in C[JC, , ... , xr] vanishing at 6 = (8{, ... , 8r). So the
dimension of f is t. Furthermore, as each <f>{yt) € G(K) c Pd xfd xPN(K)
we have multiprojective coordinates for <f>{yt) given by
(3)

where a0 , - , . . . , gN , are polynomials in 1\XX, ... , Xr] of size at most
c , . (The lower case constants cx, c2,... which appear throughout this pa-
per depend at most on G, f, 4>, y{, ... , yt, and our choice of generators

PROPOSITION 1. There exists a Zariski open set ficc' such that for all

with (8j 8 , )Cfl , all of the following hold.
(a) There exists a commutative algebraic group,

with G2 of dimension d2 which is defined over

(b) For each i, \ < i < I, let Pi denote the point obtained from Pf by
replacing 6 by 6 in each coordinate of Pt when it is represented as in (3).

https://doi.org/10.1017/S1446788700034571 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034571


[4] Large transcendence degree 403

Let f = P,Z -\ h P{L where P is deleted from the list of generators f if

Pi £ Vd xfd xPjy, Then f is a finitely generated subgroup of G(K).

(c) Let & denote the set of points among Px, ... , Pl for which Pi e ¥d x

Pd x P N . Then the mapping Y,pz&> mi^i *"* X)/>Ĝ > mi^i ' 5 a homomorphism

from F to f.

PROOF. Let R denote the ring Z[0, , ... , 6r]. By Proposition 5 of [7]
there exists a e R such that for any homomorphism y/ : R -> C with
y/(a) ^ 0, there exists an algebraic group Gv , of dimension d2, which is
defined over the field of fractions of Z[^(0j), . . . , w(@r)] (which we denote
by Kv). Hence we only need to verify that we can find such a homomorphism
taking 0(. to 0,. for 1 < / < r.

Recall that we have assumed that 6{, ... , 6t is a transcendence basis for
K over Q. Hence there exist non-zero polynomials

such that Rj(8j) = 0. Additionally since a mentioned above lies in

Z [ 0 ( , . . . , 8r] there exists a non-zero polynomial q = v0H hvd Xd° with

vt G Z[0, , ... ,6t] such that q(a) = 0. For 0 = (0 , , . . . . 0,), with no
0, = 0, at which none of uQ •, ud (t + I < j < r) nor v0, vd vanishes,

the mapping iff : R -* C defined by y/{6t) = 6t, 1 < / < r , is a homomor-
phism with iff (a) ^ 0 . This establishes part (a) of the proposition where the
Zariski open set is the complement of vQvd I~I;=f+i Mo jud Il!=i *, = 0 •

Parts (b) and (c) then follow directly from part (2) of [7, Proposition 5].

The set O. depends effectively on G, 0 , and / . Thus, as (0 , , . . . , 0,) e
Q, there exists rQ > 0 (effectively computable in terms of G, 0, and / )
such that {z : z e C', |z - ( 0 , , . . . , 0,)| < r0} c Q . We will also use the
notation

B(0,R) = {z:zeCr, \z-0\<R}.

To state our hypothesis we need an additional bit of notation. When
V.,...,V are subvarieties of PN , ... ,PN respectively, let

c x %> u\ > ••• > u
p) - p=i ( d i m yt)l U.

where deg Vt denotes the degree of V., that is, the number of points of inter-
section of Vi with dim Vi generic hyperplanes. H(VX x • • • x Vp; Dx, . . . , Dp)
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is the homogeneous polynomial equal to dim(Fj x---xVp)\ times the homo-
geneous part of degree dim(F, x • • • x V) of the Hilbert-Samuel polynomial
of V x-xVp.

/p
Let p — do/d. Then for any real number 5 > 1 define real numbers

Lo, L , ,Z) , I , A, and A, by

(4) ciGf^ilogS)" = I = L0(logS) = LXS = DS2,Sl\ogS = A, = As/2,

where

We also let Z(S) = {n : 0 < n < S} and put f (S) = P^S) + • • • + P,Z(S).
Recall that a subgroup H of an algebraic subgroup G is incompletely defined
in G by equations of multidegree (Do, D{, D2) if the ideal of H is generated
modulo the ideal of G by polynomials of multidegree at most {Do, Dx, D2).

We can now state our "technical hypothesis."

CONDITION 1. There exists So > 0 such that for all S > So the following
holds. For all but finitely many $ e B(6, exp(-A)) n 1(f), as well as for
6 = 6 and for all connected algebraic subgroups G of G with dim G' <
dimG, which are incompletely defined in G by equations of multidegree at
most (Lo, Lx, 2D), we have

c a r d
H{G';LO,LX,D)'

As indicated above, we verify in Section 3 below that Condition 1 holds
under rather mild assumptions in several classical cases.

2. Proof of the main theorem

The outline of our proof is straightforward. Suppose that G is defined
over Q(0, , ... ,6r) and let 6 be the k = r + (d0 + dx+ N)l-tuplc.

a^y,, efi'y' « V ' , ho{yt),..., hN(y,)).

Under the assumption that our theorem is false we construct an ideal 1(5")
in Z[Xj, ... , xk] of dimension t, which vanishes at 6 e Ck. We then
augment 1(5') so that it no longer vanishes at 6 or at any points in a small
neighborhood of 6 , but such that the new ideal is small at 6 (that is, its
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generators have a small modulus when evaluated at 6). To guarantee the
non-vanishing of l(S) near (and at) 0 we invoke the technical condition
(Condition 1) and a multiplicity estimate for algebraic groups. We repeat
this process and construct a sequence of such ideals I(S)}S>5, , which by
a criterion for algebraic independence due to P. Philippon [10] implies the
algebraic independence result we desire.

To begin, we need explicit multiprojective coordinates for the points

*P = (f>(slyl + ••• + s , y , ) ,

for s = ( j j , . . . , fy) € Z , in terms of the multiprojective coordinates for
Pi = <f>{yt) > 1 < * ' < / • This was done in [15] but we include these details here
for clarity. The group laws on Ga and Gm are explicit and on G2 the group
law can at least be described. Recalling the representation of Pt given by (3),
we note that {aQ i(6),siad ((0)) are Ga° -coordinates for (̂svy,-) • Since the
group law on Ga is given by {xx, y{) + (x2, y2) - {xxx2, xxy2 + x2yx) one
establishes by induction that Ga°-coordinates of Ps may be given as

where

and

'=1 ;¥i

The group law on G ĵ is even easier to describe. Again recalling the
representation (3) for the points Pt, I < i < I, one sees that

(MOs(d),...,Mdijd)),

with

are Ĝ J coordinates for Ps.^J
Finally we must exhibit G2-coordinates for Ps. Let X, denote the set

of homogeneous variables Xt , ... , X, for 0 < / < / . In [14, Proposi-
•'0 JN

tion 2.2], we established that for s € l!(S) there exist multihomogeneous
22polynomials Fk S(X,, . . . , X;) 0 < k < N, of degree at most c2S
2 , with

22coefficients in Z[0] having size at most c^S2 , such that
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are projective coordinates for the projection of Ps onto G2 . Rewriting each
hjiy^ as an element of Z[0] we see that for each k, 0 < k < n, and for

each s e Z (5) there exist polynomials Ak s e Z[X] of size at most c452,
such that the projective coordinates for the projection of Ps onto G2 are
given by

(A0J6),...,ANJd)).
Thus

(5) ( U 0 J 0 ) , Udg>a(0): M o J d ) ,...,Md< J B ) : A 0 s ( d ) , . . . , A N a ( d ) )

are multiprojective coordinates for Ps.
Failing to have lower bounds for the coordinates \Ak JB)\, which we need

at a later stage, we now employ an idea from [16]. If for some s e z'(S) we
have

(6)

put

(7) I(S) = (AOs(x),...,ANJx)).

Then 6 is not a zero of I(S) since (AQ s (0 ) , ... , AN s(0)) is a point in
projective space. Similarly, if B e B(B, exp(-A)) is a zero of I(S) then the
projection of the point

P* = 5 ^ , +--- + S,?,

onto G2 does not lie in projective space. However, Condition 1 insures that
for all but finitely many such 6's,

card(f (S)) > c'l(G)Ld
0°LfDd2 > S1.

Thus P( lies in G2(K) for 1 < i < I and P* is therefore an element of
projective space. As before we deduce that I(S) has only finitely many zeros
in B($, exp(-A)).

Henceforth we assume that (6) does not hold. Let Z , Y and X de-
note the families of homogeneous variables {Zo, Zd } , {YQ, ... , Yd } and
{Xo,... , XN} . Let {jtj: i e /} be a set of multihomogeneous monomials,
which are homogeneous of degree Lo in Z , homogeneous of degree L, in
Y, homogeneous of degree D in X and such that this set is a maximal with
respect to the property that its elements are linearly independent modulo the
ideal defining G in multiprojective space. Put

, _ card(7)
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[8] Large transcendence degree 407

LEMMA 1. Let So = (c*/2k~l)1/lS. There exist polynomials q{ e Z[x] for
i = (e, f, g) e / , not all zero, of degree at most £ and of logarithmic height
at most c5l such that for s e z'(S0)

IK:,
r=0

N

S«IK>
k=0

is identically zero.

PROOF. This is a direct application of Siegel's lemma (the box princi-
ple). View the coefficients of the polynomials #.(x) as unknowns, there are
card(/)(l+Z)/c of these. For each s6Z ' (5 0 ) rewrite the equation Qs(x) = 0
as a system of at most (1 + 2Z) equations by setting the coefficient of each
monomial in JC, , . . . , xk equal to zero. This yields a system of Sl

0(l + TL)k

equations. By our choice of parameters Lo, L , , D this system has a non-
trivial solution with coefficients lying in Z.

We now use an idea attributed to G. Chudnovsky to alter the coefficient
polynomials qi, i 6 / , so that they have no common zero in B(6, exp(-Aj)).
For j = 0\ , . . . , jk) denote the differential operator dJl+"+Jk/dx{1 • • • dx{k

by dj. For a point 6 eCk there exists j with maxl<j<kji < c6l such that
not all of q{ . = (l/j\\ • ••jk\)d

iqi, i e / , vanish at 0 .

Choose j(0) e Nk with ||j(0)|| = jx H V j k minimal such there exists

i e / with q. ^ 0 and <9W4j(0) ^ 0. (Hence for j e Nk with | | j | | <
||j(0)||, 0J(0) = 0 for all i e / . ) Put JA = {j(0): 0 e B{6 , e x p ^ ) ) } .

For s e z'(5,) with 5, = c7S, c7 > 1 and j e JA put

LEMMA 2. 77ie /rfea/ ^ ' ( 5 , ) Aas only finitely many zeros in the ball
5(0 , exp(-A,)) c Ck and does not vanish at 0 .

PROOF. Suppose 0 e B(d, exp(-A,)) is a zero of the ideal f'(Sx). Con-
sider the multihomogeneous polynomial
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408 Robert Tubbs [9]

where we recall the monomials ^ , i e / , from above. By our choice of j(6>)
this is not the zero polynomial. Since 6 is a zero of ^'(SJ, (?,,«$) (0) = 0

for s € Zl(S{). Thus the polynomial ^(^(Z, Y, X) vanishes along <f>{z) on

f (Sx) =J5lP! + • • • + s,?,: 0 < 5,. < SJ .
Let G denote the algebraic group which is associated with 0 by Proposi-

tion 1. We now apply the zeros estimate of P. Philippon, [11, Theoreme 2.1],
to conclude that there exists a connected algebraic subgroup G' of G, which
is incompletely defined by multihomogeneous equations of multidegree at
most (Lo, L j , ID), such that

(8) JnSll+&\<H(G}L0,Ll,2D)^
V G ) - H{G';L0,L{,D)

If we let L'o, L\ and D1 be the real numbers associated with S, by the
relation (4) then

H(G;LO,LX, 2D) H(G; L'o, L\, 2D1)

H(&;L0,LltD) H(G';L'0,L[,D')'

which together with (8) contradicts Condition 1 unless 6 belongs to the finite
set of zeros allowed by Condition 1. This establishes Lemma 2.

We next estimate |Qsj(0)| for s e z't-S1,) and j e JA. Here we follow the
outline of a similar estimate given by G. Diaz [6] in the case of the ordinary
exponential function. For each i e / put

*i w=ft *&(*) n < s w n Aik» •
t=0 r=0 k=0

Then for s e Zl(S{) and j e JA,

ie/

Therefore, if we put

and

16/

where 6 is such that j = j(0), then

(9) \Q
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[10] Large transcendence degree 409

The estimate of Msj(0)| is the more straightforward of the two. Using the
estimate

provided S is sufficiently large, we obtain

(10) \A4(0)\ < card(i>~c'A' max|Af;.(0)| <

again provided S is sufficiently large. We note that this estimate holds for
s eZ (S{) possibly with a different constant.

We estimate \Bsi($)\ by taking

where

and

ie/

We recall that by Lemma 1 we have (2S(
X) = 0 > hence for j e Nk also

dJQs is identically zero. But

ie/ j ' 6 N *
j"€N*
J'+J"=J

By our choice of j = j(0) we have

5J'«i(x)lx=d = 0 if llj'H < IIJII
and therefore

16/

Thus Cs.(6) = 0.
To estimate |£>sj(0)| we begin with

\M{(6) - M.(d)\ < exp(-A1 + cn(LQlogS + L,5 + DS2))

and from \q^(d)\ < exp(c12(L0log5' + L^ + DS2)) we deduce that

|JDsj(e)|<exp(-c13A1),

provided 5 is sufficiently large, for all s e l!{S). Putting together the above
results establishes our estimate for |QSj(0)|.

We must provide such an estimate when s lies in the larger set l!{S{).
For this we need the following interpolation lemma.
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LEMMA 3. Let R and Rx be two real numbers with 2 < /?, < R/4.
Suppose that f is a function which is analytic in the disc \z\ < R. Suppose
that Xj, . . . , xl are complex numbers and suppose that the numbers

n,*,+ •• • + «,*„ «,eZ(iV.),

are pairwise distinct. Call the set of all those values X and put

H = m i n ( l , |«,Xj H 1- ntxt\ , nt e Z(JV. - 1)).

Then for all pairs of nonnegative integers (r, t),

-N,( 33/?, V * - " ' - '

x max
xex r!

where i= 1 if the points of X are colinear and i = 2 otherwise.

PROOF. Apply the estimate of [5, Lemma 6] in the proof of [12, Lemma
4.5].

We now apply this result to the function

ie/

where </>.(z) denotes the monomial J?K composed with </>(z) when repre-
sented as in (2). F(z) is an entire function, which is not identically zero.
We also let

We first show that for s e z ' (50) ,

(11)

This comes from re-examining the polynomials (L(0) . Recalling the rep-
resentation of (f>(z) given in (2) we know that </)(slyl H H^y^ has multi-
projective coordinates as represented in (5). We focus on each of the Ga, Gm

and G2 coordinates for this point.
For G2 we have

A2(/z0(s • y ) , . . . , hN(s • y)) = (A0J0),..., AN>t($))
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[12] Large transcendence degree 411

for A2 € C \ {0} . By the theory of the theta functions we have e 15 <
maxi<k<N \^k(x' y)l - e 16 • Therefore, taking

and recalling our assumption that (6) does not hold, we have

-c1 7max{A,52} . . , cl9S
2

s2

having employed the upper bound, \Ak s(d)\ < c20e
 21 .

On Ga and G the analogous estimates are more straightforward. For

with ka = C/o s (0) and therefore |Aa| < c22 . For

with cminJ ' < IA l < cmaxs'wim c23 s |Am| s c23

However we then have

and therefore (11) holds.
But for all z, \F(z)\ < \F(z) - F(z)\ + \F(z)\ and therefore

We apply the above lemma to F{z) with r = 0, t = 1, xt = y., Nt -
S,Rl=Sl and R = S\+c, for a positive e < \{l - d) and

/i > exp(-5'1log5').

That this lower bound on fi holds follows from our assumption (1). Then
we obtain

But
IFI^ < card(/) max | ^ (d ) | max 1 ^ < exp(c29DR2)

and therefore by the estimate above for /z,

<-c30S
llog(S).
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Hence for J 6 Z ' ( 5 , ) ,

(12) |5S.(0)|< e x p o s ' l o g S ) .

Putting together (9) with the estimates (10) and (12) we have

(13) K2sj(©)|<exp(-c325'/logS)

for sez'iSJ and j e /A .
Thus if (6) holds for infinitely many choices of S define a sequence of

ideals 7(5) as in (7). Otherwise, for all S sufficiently large let I(S) —

S\sx).
In the former case we rename our parameters if necessary to obtain a

sequence of ideals I(N), N > No, with generators of size at most c4N
2

and of moduli at 6 of at most exp(-A^2/^(logAr)1^2<5), with no zeros within
exp(-N2l/d(logN)l/2d) of 6. Then by [10, Theoreme 2.11] there exists a
constant C (depending only on G, y{, ... , yt, </>) such that

from which it follows that t >
In the latter case we obtain a sequence of ideals I(N), N > Nx, with gen-

erators of size at most c33Z(iV) and of moduli at most exp(-c32V(logA^)) at
6 . Moreover, /(N) has at most finitely many zeros in B(8, exp(-Ar'(logiV)).
Thus by [10, Theoreme 2.11],

C32N
1 logiV < CZr+1 = c3X( '+ 1 ) ( logA0' ( ' + 1 ) .

We first focus on the power of log ./V on both sides of this inequality. If
p{t+\) > 1 then by our choice of p, we must have d0 = 1 and t > d > [l/d]
which was to be shown. Otherwise, the main term exponents must satisfy
the strict inequality S(t + 1) > / , hence, t > [l/d].

Thus we have established the main theorem.

3. Applications

In this section we explore several applications of our main theorem. Here
we will study the algebraic independence of numbers associated with the
usual exponential function, a Weierstrass elliptic function and points on a
1-dimensional analytic subgroup of an abelian variety.

Our first application is for the usual exponential function where we recover
[6, Theorems 1 and 2] with marginally stronger hypotheses.
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[14] Large transcendence degree 413

THEOREM 1. Let { « , , . . . , um} and {v]f ... , vn} be two sets of complex
numbers which are Q-linearly independent.

(a) Let S = {m + n)/(n + 1). Suppose that there exists a real number
SQ > 0 such that for all s, e Z(S) , \ < i <m and tj e Z(S) , 1 < j < n,
with S >S0 one has

and

>exp(-min(51og5')5''1

> exp(-Sm/(3<S-2K

If m>8 then trans degjjQtw,., eu'v> : l<i<m,l<j<n)> [m/d].
(b) If the hypotheses of part (a) hold with 5 = (m + n)/n then m > 8

implies

trans degQ Q(e"'l); : 1 < i < m, 1 < j < n) > [ y

We do not deduce this result from the main theorem but instead we refer
the interested reader to [15] wherein a version of Theorem 1 demonstrating
that the field under study has transcendence degree at least three (Corollary
1) is established. In fact Theorem 1, as stated above, does not follow from
our main theorem but from the main theorem with the ball B(6 , exp(-A))
in Condition 1 replaced with the ball B(6, exp(-A,)). From the proof in

Section 2 it follows that if our algebraic group is of the form G = Gd
a° x G ĵ

then the considerations we gave concerning the general group law on G2

are not necessary and the main theorem holds with the (slightly) weakened
Condition 1.

In the elliptic case our applications are new results. Let E be an elliptic
curve defined over Q with associated Weierstrass function p(z) and let a{z)
denote its associated Weierstrass sigma function. Put px(z) = o3(z), p2(z) =
t;3(z)p(z) and p3(z) = ai{z)p\z). Then

p : C -> E(C)

given by p(z) = (px{z), p2{z), p3(z)) gives a parameterization of the com-
plex points on E. We recall that the ring of endomorphisms & c C of
E is either Z or an order in an imaginary quadratic field. If col and a>2

denote generators for the lattice of periods of p{z) then in the latter case
ff = Z + pi, where p is an algebraic integer in Q(T) , x = (o2/col. In this
case let (f(S) = Z(S) + pZ(S).
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THEOREM 2. Suppose that E is an elliptic curve defined over Q with endo-
morphism ring if CC Let {Mt, . . . , um) and {vl, . . . , vn} be (f-linearly
independent sets of complex numbers.

(a) Put S = (m + 2n)/(n + 1). Suppose that there exists S0>0 such that
for st € &(S), 1 < / < m, and tj e if(S), 1 <j <n, with S > So one has

(14)

and

exp(-min(51og5, S
m/S{3S+2)))

(15) tlv1 > exp(-52m/<?(<5-2)).

If m> d then

trans degQQ(M., p(«,.v;.): 1 < i < m, 1 < j < n)* > J y J ,

where * indicates that we delete p(utv.) from the generators of this field if it
is undefined.

(b) If the hypotheses of part (a) hold with d = (m + 2n)/n and n> m > S
then

transdegQQ(p(M,wy): 1 < i < m, 1 < j < n)* > y I .

(c) Suppose (f •£ 2,. If the hypotheses of part (a) hold with 8 =
(2m + 2n)/(n + 1) and the right-hand side o/( 14) (respectively (15)) replaced
by

exp(- min(5logS, S
2m/S{iS+2)) (respectively exp(-S2m/<J(3l5"4)))

then 2m > d implies that

transdegQQ(M,., p(uiVj): 1 < / <m, 1 < ; <n)* > J ^ J .

(d) Suppose & ± Z . If the lower bounds described in part (c) hold with
5 = (2m + 2n)/n and 2m > d then

transdegQ Q(p(uivj): 1 < / < m, 1 < ;' < «)* > | - ^

REMARKS. 1. As a corollary of Theorem 2 we obtain [15, Corollary 3].
2. Theorem 2 implies stronger versions of Corollaire 13.1 (when n = 1)

and of Corollaire 13.3 (when n = 1) of [17]. It also improves the main result
of [3] and of [4].

Moreover we have the following result concerning the elliptic Gelfond-
Schneider Conjecture which improves the one due to Waldschmidt [17].
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COROLLARY. Suppose fi is algebraic of degree d > 3 over the field of
fractions of & and let u be a complex number such that p(z) is defined at
u, fiu,... , pd~xu with p(u) algebraic.

At least t of the values

are algebraically independent.

To deduce Theorem 2 from the main theorem we need a description of
algebraic subgroups of En in terms of the vanishing of linear forms in the
tangent space. A crucial point is that we need to have bounds on the coeffi-
cients of these linear forms in terms of the degree of the algebraic subgroup.
When E does not have complex multiplication such a result was established
by Masser and Wiistholz in [9]; when E has complex multiplication the
present author gave such a result in [15], (Lemma 2). However to deduce
Theorem 2 with the above explicit lower bounds on the modulus of linear
forms in u{, ... , um or vl,... , vn we need the following result.

PROPOSITION 2. Let E be an elliptic curve defined over C. Suppose that W
is a subgroup of C" and that P{, ... , Pm are multihomogeneous polynomials
of degree at most D such that Z(PX, ... , Pm) n En is a connected algebraic
subgroup of dimension n-r. Suppose further that for all w = (wx, ... ,wn) e
W,

P , ( p ( w , ) , . . . , p ( u ; B ) ) = 0 , \ < j < m .

Then there exists $-linearly independent non-zero vectors

tU) e <?±(c35D
r/2{r+l-j))

for j = I,..., r, such that

tU)

PROOF. This is a special case of [2,Theorem 2].
We now establish Theorem 2. To convince the reader that the hypothe-

ses on ux,... ,um and vx,... , vn are necessary we focus on the complex
multiplication case and deduce Theorem 2 part (c) from the main theorem.

To establish Theorem 2 we consider the algebraic group G = Ga xE" , with
the one-parameter subgroup 4>{z) = (z, p(vlz), ... , j>(vnz)), at the points
yt = Uj and yi+m = xut. Then to deduce this result from our main theorem
we show that the hypothesis of Theorem 2 imply those of the main theorem.
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Without loss of generality assume that all of piupj) are defined and put

0 = (g2, g 3 , y i , ••• > > % ' P ( * W > p ' ( v i y i ) , . . . , p ( v 2 m ) , p ' ( v 2 m ) ) .

Recall that ^f is the ideal of polynomials over C which vanish at 6 . We
show that the hypotheses of Theorem 2 imply that Condition 1 holds for all

If not, there exists an infinite sequence of real numbers {5,} such that for
each i there exists 6>( e B(6, exp(-A)) n Z(^) and a connected algebraic
subgroup G[ of Gt (which is incompletely defined modulo Gt by polyno-
mials of multidegree at most (Lo, L{, D), where we have not displayed the
dependence of each of A, LQ, JLj, and D on St) such that

If we take S( to be sufficiently large then g2 = g2 and g3 = g3. Therefore
Gi-G-GaxE". Also, in the situation of Theorem 2 we have L, = 0 and
thus (16) reduces to

card

Recalling that Lo = S*(logSi)
p~1 and D = 5f"2(log5/)'' with

(2m + 2n)l(n + 1) an (easy) calculation shows that if G\ = En~r then

provided we take S( to be sufficiently large.

Thus there exists y e T(St) D G\ which is non-trivial. If we recall the
points Pi which are obtained from P. above, (3), by replacing 6 by 6 we
deduce that there exist yt, wn,... , win , 1 < i < 2m, in C such that

(17) /*=0>|.,p(t»J.1),...,p(ti>/l,)), l<i<2m,

projecting onto Ga yields
2m

Replacing yt by yf we obtain

2m

< w5exp(-c39A).
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This last inequality contradicts the measure of linear independence for ul,
... ,um over &. Hence we must have G'( - Ga X E"~r.

We then deduce that

\ <?, ) \Sf ifr>2,
provided we take 5, to be sufficiently large.

Suppose r > 2. Then by the above estimates there exists a non-trivial y e
f(S) n G\'.., y = s • (P,, . . . , Plm), with Pt represented above. As r > 2 there
exist ^"-linearly independent vectors t(1) e <^(c?40Z)1/2) and t(2) e ^(c41Z))
such that with w = (o>j , . . . , d>m.) we have

t{k) • (s • » , , . . . , s • » „ ) = {m{k) k=\,2,

where x = co2/coi. There exists a e Z with |a| < c42 such that ax
therefore we obtain

( 8 • , . . . , 8-

with \t'{k)\ < c4J\t
{k)\ and CT(/C)S • « € < ? . We then eliminate the common

occurrence of cu, from these two equations to obtain

with t e <f±(c44D
3^2S). Replacing G); by y(Vj for each i,j we obtain

Yt.v.
' •• j J

2m

Ys.y. 3 / 2 5 2<c 4 5 J D 3 / 2 5 2 exp(-c 4 6 A) .

This contradicts our lower bound for the ^-l inear independence of either
{ « , , . . . , uj or { « , , . . . , « „ } .

Therefore we must have r = 1. But then (18) together with an application
of [8, Lemma 3] implies that there exist three Z-linearly independent vectors
s(1), s ( 2 ) , s(3) G Z2

t
m(c47S) such that

y{k) = s { k ) - ( P 1 , . . . , P 2 m ) e G ' i , k = l , 2 , 3 .

As r = 1, Proposition 2 implies that there exists a nonzero vector t e
^(c48Z)1/2) such that

Hence we perform eliminations over Z to obtain

t- (s-a»!, . . . ,sutn) = 0
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,3/2 C4
with s e Z f ( c 4 9 Z ) ' T ) . Replacing <y,; by yivj we obtain

Yt.v.
2m

Tsy <c50D S exp(-c15A),

which for S( sufficiently large contradicts our measures of ^-linear indepen-
dence for either { « , , . . . , um} or {v{, ... , vn) .

This establishes Theorem 2 part (c).

Theorems 1 and 2 have abelian analogues wherein one investigates the
algebraic independence of coordinates of points given as values of abelian
functions. We give here only one such result.

Suppose that A is a principally polarized simple abelian variety of dimen-
sion g which is denned over Q. Assume that / , , . . . , fg are the abelian
functions associated with A, that is, they are meromorphic functions on C*
which are algebraically independent; moreover, if 2? c C* denotes the pe-
riod lattice for these functions then A = C8IS?. Let || • || denote a norm on
C*.

THEOREM 3. Suppose that A has no complex multiplications, that is,
End (A) = Z. Let u{, ... , um be Z-linearly complex numbers and \{, ... ,vn

be Z-linearly elements of C8. Let S — (m + 2ng)/ng. Assume that there
exists So > 0 such that for all s e Zm(S) and all t e Z"(S), with S>S0,

> exp(-imn(SlogS, S ))

and
n

E t;V;Ev-y > exp(-5,ml2S(d-\)ig3n
) •

If mn > 2m + 2ng, then at least ftm/SJ of the numbers

are defined and are algebraically independent.

This improves an earlier result of Waldschmidt's ([17, Corollaire 15.2]).
Our proof is based on the following Proposition due to Bertrand ([2, Theorem
2])-

PROPOSITION 3. Suppose that A is a simple abelian variety of dimension
g which is defined over Q and for which End (A) = Z. Suppose that B is
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an abelian subvariety of An which is incompletely defined modulo the ideal
defining A" in multiprojective space by polynomials of multidegree at most
D. Assume moreover that B is isogeneous to Am .

Then there exist Z-linearly independent vectors

tU) e Zg(c52D
n-m/28{r-m+j-l)), \<j<n-m,

such that for all (y,, . . . , yn) e (C*)" with e x p r (y) e B,

1=1

We now establish Theorem 3.
PROOF OF THEOREM 3. The algebraic group under consideration is G =

A"; we suppose that A is defined over Q(£) c Q. There exists a func-
tion h(z) algebraically dependent over Q on fx{z), ... , f(z) such that
C(/( , ... , fg,h) contains all functions which are abelian with respect to
the lattice of periods S? of fr, ... , fg. Moreover, there exists an entire
function 0(z), a theta function with respect to Sf, such that

z) = (dfl(z),...,dfg(z),dh(z)).

We take as our one-parameter subgroup of A" the function

To simplify our deduction we assume that each of ^(V^-M,-) is denned. We
then let

Suppose that there exist infinitely many real numbers St such that for
each / there exists 6 with \6 - 6\ < exp(-A1) and a connected algebraic
subgroup G\ of Gt, of codimension r such that

As before, if 5, is sufficiently large then Gt = G. We consider two
cases. If 1 < r < 2g then the inequality c54D

r < S™~2g for mn >
2m - 2ng, provided 5, is sufficiently large, implies that there exist 2g + 1
vectors s(t) e Zm(5) which are Z-linearly independent vectors such that
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We note that this is exactly the point where we need the inequality mn>
2m + 2ng rather than the weaker one m > 8. Choose <&,.. e C* with
HV-M,- - w, || < exp(-A) such that

( e x p ^ ( a > . , ) , . . . , expA(&in)) = Pt, \<i<m.

By Proposition 3 above, there exists a non-trivial vector t = (t{, . . . , tn) e
Zn{c55D

i/2g) such that

Since the Z-rank of J ? is 2g, there exists a Z-linear combination

and by Siegel's lemma we can take

max \L\<c.f, max \W.\2g.

Yet we have max | Wk\ < c51D^2g • S and therefore

max\lk\ < c58DS2g.

Then

EEUX)+-+'.(EEU%,)-O.
k=\ i=l J \fc=l (=1 /

Replacing <&.. by v • ui (l<i<m,l<j<n) and rewriting we deduce
that

E VJ I ( E ( E '**ik) ) «/) < C59 exp(-c60A).

This inequality violates our hypotheses on {u{,... , um} or { v , , . . . , vn}
above.

We now consider the case r > 2g + 1. Then there exists s e Zm(S) such
that s • (Px, . . . , Pm) e G\. Also, by Proposition 3 above there exist vectors

I < f c < 2 * + 1 ,

such that if we choose a>(; as above then

for 1 < k < 2g + 1. Again we apply Siegel's lemma to find / t e Z with

max
1<*<2*+1

max \lk\<c62D
r/r+2gS2g
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such that YlliV lkwk = °- Therefore

k=\ \j=l \i=l

Replacing <wi; by v jui we deduce that

( "if'v, few
=i /t=i / \i=i

<c63exp(-c64A),

which contradicts the hypotheses of the Theorem. Thus Condition 1 holds
and Theorem 3 may be deduced from the Main Theorem.

Finally we remark that other applications are possible and in particular we
obtain an improvement of [17, Corollaire 15.2].
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