
THE NUMBER OF COLOURED GRAPHS 
L. CARLITZ 

1. Let Fn(k) denote the total number of fe-coloured graphs on n labelled 
nodes and let Mn (k) denote the number of graphs on n nodes that are coloured 
in at most k colours ; also let fn (k) denote the number of connected k coloured 
graphs on n nodes. Read (3) has proved the following formulas: 

oo n l oo s J A; 

(1.1) E 2 r V * ( * ) J ï - < 5 : 2 r * , ï î } , 
n = l '*•• \ s = l ^ • ' 

oo n i oo s J A; 

(1.2) yE2^Mn{k)^ = \Z2-isiX-}, 
n-=0 W! V 5 = =o SlJ 

oo n | oo / y n f 

(1.3) 1 + Z 2~WUk) zi = e*Pl Z /-(*) h\ • 
n - 1 W! I n = = i n\) 

In a recent paper (4) Wright has proved some asymptotic formulas for 
Fn(k),Mn(k)Jn(k). 

In the present paper we discuss some arithmetic properties of these num
bers. We shall show that if p is an odd prime and w is a positive integer such 
that pe~l(p - 1) | w, then 

(1.4) £, (~iy-s (r) Fn+sw(k) zz 0 (modp'™*'1), 
5=0 \S/ 

(1.5) t, (-I)7-' ([) MK+Sw(k) = 0 (mod pr<°-1)+"), 
5=o vs/ 

(i.6) i : ( - ir* (0/•<-(*)-° (mod/>Ke-i)+ri), 
5=0 W 

where in (1.4) and (1.5) n > re, in (1.6) n > re and fi is the greatest integer 
< (r + l ) /2 . Some additional properties of Fn(k) and /»(&) are described in 
Theorems 4 and 5 below. 

The results just quoted do not hold for p = 2. However in this case we 
have some auxiliary congruences described in Theorem 6. In particular we 
find that 

Mn(k) s k (mod 2") (w > 2), 

from which it follows that Mn(k) is odd if and only if k is odd. 

2. A series of the type 

(2.1) Z«. 
n=0 ft. 
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COLOURED GRAPHS 305 

where an are rational integers, is called a Hurwitz series, or briefly an H-
series. It is easily verified that the sum, difference, and product of two iî-series 
are again iJ-series; also the derivative and integral of il-series are iï-series. 
If a0 = ± 1 , the reciprocal of (2.1) is also an i7-series. 

If 

is a second ^-series, the statement 
oo n oo n 

Z) an ~, = Z) bn —, (mod m) 
n=o n\ n=0 n\ 

means 
an = bn (mod m) (n = 0, 1, 2 , . . .)• 

If a0 = 0 we have the useful property 

(2.2) ( Ê ^n~j ^ 0 (mod*!), 

where k is an arbitrary positive integer. 
If 

(2.3) £ ( - 1 ) " ([) aran+s(p^ B 0 ( m o d / ) 

for all n > r > 0, where £ is a prime, we say that (2.1) satisfies Kummer's 
congruence. In some cases we have in place of (2.3) the weaker congruence 

(2.4) Z ( - l ) r - s r ) Û T V . ( P - I ) ^ 0 (mod £ r i) (n > r), 

where 

(2.5) rx = [(r + l ) /2] . 

If we put 
oo n j 

it is evident that (2.3) is equivalent to 

(Dp - apD)f(x) = 0 (mod pr), 

while (2.4) is equivalent to 

(Dp - apD)f(x) s 0 (mod £r i)-

We shall require the following preliminary results. 

THEOREM A. If the sequence {an} satisfies (2.4) and the sequence {bn} satisfies 

(2.6) E ( - l ) r - s ( j r V , ( P - i ) ^ 0 ( m o d / 1 ) ( n > r ) 
5=0 V / 
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and ap = bv (mod p), then the sequence {cn}, where 

(2.7) cn = YL ( ) aA-«, 

(2.8) £ ( - l ) r " s ( f j *M^+ . (p- i ) ^ 0 (mod £ r i) (n > r), 

(2.9) k = ap = 6P (mod£). 

For the proof of this theorem see (1). 
As a corollary we have 

THEOREM B. Let {an} satisfy (2.4) and define the sequence {an
(]c)} by means 

of 

(2.10) {^o-nif - 2 Û . W | Î . 

w&ere k is an integer > 1. Then {an
(A:)} satisfies 

(2.11) £ ( - I ) ' " 5 ( f ) a T ' a & o - i ) = 0 (mod pn) 
5=0 W 

for n > r. 

THEOREM C. Le/ ao = 1 aw<i define the sequence {bn} by means of 

± (")»».-.={i (;;Z 
Then if \an] satisfies (2.4) it follows that {b„\ satisfies 

(2.13) Ê ( - I ) ' " 8 r ) O T V . O P - 1 ) - 0 (mod />") (n > r). 
s=0 \S/ 

We shall also require 

THEOREM D. Let {an} satisfy (2.4) and let {bn\ satisfy a similar condition. 
Then we have 

/ -j \r-s I r 

s=0 

for n > r. 

To prove this theorem put 

(2.14) E ( - i r j W W D W D ^ 0 (mod p r i ) 

Aran = £ ( - 1 ) r \ J f l î saw+s(P_i), 
s=0 \ S / 

s=0 \S/ 
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Then it is easily verified that 

S=0 \o/ ;=0 \J / 

Since 

A ^ s O (mod£ [°+1) /2 ]) ( » > j ) , 

A r ~ W w - 0 (mod £ [ ( r-'+1) /2] ) (n > r - j), 

and 

[(j + l)/2] + [(r - j + l)/2] > [(r + l ) /2] , 

(2.14) follows at once. 

3. In order to apply the above results we require the following lemma. 

LEMMA. If p is an odd prime, then 

(3.1) £ ( - l ) ^ ( r ) 2 - " ( n + ^ - 1 ) ) 2 = 0 (mod£ n ) 
s=0 \S/ 

for all n > 0. 

Proof. Put 

(3.2) /(*)= £ ( - D - f j ^ , 
s=0 V / 

where a, b are non-negative integers. We shall show that 

(3.3) f(x) = ( * - l ) r ^ ( * ) f 

where g(x) is a polynomial with integral coefficients. Consider the jth deriva
tive 

D'f(\) = È (-Dr_s (') f t (as + bs* - i). 
s=0 \S/ i=o 

We may put 
j - \ 

FI (<« + fo2 - *') = Ao + Axs + A2s(s - 1) 

+ ... + A2js(s- l)mm.(s-2j+ 1), 

where the A t- are integers. Then we have 

D'fQ) = £ ( - l ) r " s ( j Z ' M * - 1) . . . (s - * + 1) 
5=0 V>/ z=0 

= i : ^sr(r _ i ) . . . (r _ ,•+1) x: (-iy-°(r -*), 

so that 
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(3.4) D>f(l) = 0 (0 < 2/ < r). 

Clearly (3.4) implies (3.3). 
In the next place we have 

y^ / iy-s (r\ 2-§(rc+s(p-D)2
 = 2~^2 V ( — i)r~s (r) 2~ns^-l)-^s2^-1)2 

5=0 \S/ 5=0 \S/ 

= 2~Wf(21-p), 

with a = n, b = (p - l ) /2 . Thus by (3.3) 

2 ( - l ) r - 5 ( r ) 2-i(B+s(!'-1)>2 = 2-e"2(21-" - l ) " f (*) = 0 (mod pT1). 
5=0 V / 

This completes the proof of the lemma. 

4. We now make use of (1.1), (3.1), and Theorem B. The fact that the 
summation in the right member of (1.1) begins at n = 1 causes no difficulty. 
We get 

(4.1) ± (-1)'" (r) 2-*("+5(p-1))27vs(p_1)(*) = 0 (mod pn) 
5=0 \S/ 

for n > r > 1. Similarly it follows from (1.2) that 

(4.2) ± (-I)'-* ([) 2-*("+s(*-1))VB+8(p_1)(*) es 0 (mod pn) 
5=0 \S/ 

for all n > r > 1. 
The factor 2~2(7H"s(p-1))2 occurring in (4.1) and (4.2) is removed by means 

of Theorem D together with 

(4.3) £ ( ~ l ) r ~ T ) 2>(*+5(p-1))2 EE 0 (mod£ n ) . 
5=0 V / 

The proof of (4.3) is exactly like the proof of (3.1). We may therefore state 
the following congruences: 

(4.4) i : ( - i r s y) F^^m - o (mod*/1) o» > o, 
5=0 V / 

(4.5) £ ( - 1 ) M J ¥ r t l M ( l ) = 0 (modp n ) ( » > r ) . 
5=0 W 

These results may be stated in a more general form by making use of the 
following theorem (cf. 2, § 3). 

THEOREM E. Let {an) satisfy (2.4) and let pe~l(p — 1) | w. Then we have 

(4.6) E ( - l ) M ( f ) o i M ) " / < ^ 1 W » ^ 0 (mod£ K e - 1 ) + n ) 
5=0 VV 

for ?z > re. 
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Applying Theorem E to (4.4) and (4.5) we obtain the following results. 

THEOREM 1. Let p be an odd prime and let w be a positive integer such that 

(4.7) p-*{p - 1) | w. 

Then we have 

(4.8) £ (-I)7-* ([) Fn+SK(k) = 0 (modpTie-1)+T1), 
5=0 \S/ 

where rx = [(r + l) /2] , n > re, k > 1. 

THEOREM 2. With the hypotheses of Theorem 1 we have 

(4.9) É (-iy~° ([) Mn+sw(k) = 0 (modpHe-1)+T1) 
5=0 \S/ 

for n > re, k > 1. 

We remark that (4.8) holds for negative k also. 

5. Turning next to fn(k), we make use of (1.3). As remarked in (4) the 
series occurring in (1.3) are divergent; however, the formal identity is sufficient 
for our purpose. It follows from (1.3) by logarithmic differentiation that 

(5.1) Ë fn+i(k) £ = £ Fn+1(k) £ / (l + £ Fn(k) £ ) . 

If we put 

V + S ^ l i l - SG-<*>ii-
it follows from (4.4) and Theorem B that 

(5.2) É ( - i r r ) G ^ 8 ( f c ) = 0 (mod^1) 

for w > r. Therefore by (5.1), (5.2), and Theorem A we get 

(5.3) i (-irs([)fn+siP-im^0 (modpn) 
5=0 \S/ 

for n > r. Now applying Theorem E we get the following theorem. 

THEOREM 3. With the hypotheses of Theorem 1 we have 

(5.4) E (-iy-s(r)fn+sw(k)^0 (mod/ 
5=0 \ S / 

/<?r n > re, k > 1. 

. r(e-l)+rix 

6. The results obtained above hold for all k > 1 and arbitrary primes 
p > 3. If we make use of the fact that 
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(6.1) Fn(k) = 0 (1 < n < k), 

which is implied by (1.1), we get some additional congruences. 
In (4.8) take r = 1, w = tpe~l{p - 1), so that 

(6.2) Fn+W(k) = Fn(k) (modpe) 

for n > e. If 1 < n < k, it therefore follows from (6.1) that 

(6.3) Fn+w(k)=0 (modpe). 

Changing the notation slightly, we may state the following theorem. 

THEOREM 4. If p is an odd prime and 

(6.4) n = m + tpe~l(p - 1) (e < m < k), 

then we have 

(6.5) Fn(k) = 0 (modpe). 

In this connection it should be recalled that by a general property of 
Hurwitz series without a constant term (see (2.2) above) 

(6.6) Fn(k)^0 (mod£') , 

where pv is the highest power of p that divides k\. This congruence holds 
for all n > 1. 

¥ov fn{k) we have the following theorem. 

THEOREM 5. If p is an odd prime and 

(6.7) n = m + tpe~x{p - 1) (e < m < k), 

then 

(6.8) / » ( * ) = 0 (modp*). 

7. The case p = 2 requires special treatment. To begin with we take the 
formula (3, 4) 

where the summation is over all non-negative st such that 

(7.2) 5l + . . . + sk = n 

and r (» ) = 2n. Clearly 

£ = - n2 — - X) ^i2 = 23 si*2 > 0. 

Indeed the minimum value is attained when 

$! = . . . = S;t_i = 0 , 5* = W, 
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and for any permutation of these values. Moreover for all other choices of s< 
satisfying (7.2) we have 

(7.3) E > n - 1. 

This second minimum occurs when 

$! = . . . = Sk-2 = 0 , Sk-! = 1, Sk = U — 1, 

and of course for all permutations of these values; for n > 2 the number of 
permutations is k(k — 1). 

To prove the assertion concerning (7.3) suppose that the st are numbered 
so that 

Si > 1, . . . , Sr > 1, 5 r + i = . . . = Sk = 0 . 

Then we have 

E = 22 SiSj X (si + s3 ~ 1) 
l<i<j<r KKKr 

= £ (r - *>< + £ (j - 1)5, - £ 1 
t=l ;/=2 K K K r 

= £ (' - l)«i - *r(r - 1) = (r - l)n - §r(r - 1) 
1 = 1 

= i ( f - l ) ( 2 n - r ) . 

Thus if r > 1 it follows that 

£ > | ( r - 1)(2» - r) > | ( r - 1 + 2w - r - 1) = « - 1. 

Moreover, since | ( r — 1)(2« — r) = w — 1 implies 

(r - 2)(2» - r - 1) = 0 

and n > r, we conclude that r = 2 and the statement made about (7.3) 
follows at once. 

As a consequence of this and of the fact that k(k — 1) is even we have 

(7.4) Mn(k) ss k (mod 2n) (n > 2). 

We remark that 

Mi(ife) = &, if2(&) = 2£2 - jfe. 

In the next place we take 

(7.5) '.»)-S^.,-lÇ1,
,)1 

where the summation is over all positive st that satisfy (7.2). Then in the 
present instance 

E = 2 > i * 2 > J ( * - 1)(2» - *); 

the minimum is attained when 
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Si = . . . = sk-i = 1, sk = n — ft + 1. 

The proof is exactly as before. 
The second minimum occurs when 

si = . . . = sk-2 = 1, s*_i = 2, Sk = n — k, 

provided n > ft + 2. 
The proof is a slight refinement of the previous proof. We have for the 

second minimum 

£ > f (ft - 2)(ft - 3) + (ft - 2)(» - ft + 2) + 2(» - ft); 

the difference between the minima is equal to n — ft — 1. As before, the 
number of permutations associated with the second minimum is ft (ft — 1), 
provided n > ft + 2. We have therefore 

(7.6) Fn(k) = 2*<*-»<*-*>/V(*), 

where Fn
r(k) is an integer such that 

(7.7) Fn'{k) = k (mod 2*-*) (» > ft + 2). 

When » = ft + 2, this holds at least (mod 2n~k~1). 
By making use of (7.6) and the formula (3) 

Fn(k) = E (" I J) Fn-r(k)fT(k) +/„(*), 

it is easy to show that 

(7.8) fn (ft) ^ 0 (mod2^- 1 >) . 

It is not clear whether a congruence similar to (7.7) can be found for /„(ft). 
We may now state the following theorem. 

THEOREM 6. The number Mn(k) satisfies 

Mn(k) = ft (mod 2") (n > 2). 

In particular Mn{k) is even if and only if ft is even. The number Fn(k) satisfies 
(7.6) and (7.7). The number fn{k) satisfies (7.8). 
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