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Abstract

Introduction: In clinical and translational research, data science is often and fortuitously
integrated with data collection. This contrasts to the typical position of data scientists in other
settings, where they are isolated from data collectors. Because of this, effective use of data
science techniques to resolve translational questions requires innovation in the organization
and management of these data. Methods: We propose an operational framework that respects
this important difference in how research teams are organized. To maximize the accuracy and
speed of the clinical and translational data science enterprise under this framework, we define a
set of eight best practices for data management. Results: In our own work at the University of
Rochester, we have strived to utilize these practices in a customized version of the open
source LabKey platform for integrated data management and collaboration. We have applied
this platform to cohorts that longitudinally track multidomain data from over 3000 subjects.
Conclusions:We argue that this hasmade analytical datasets more readily available and lowered
the bar to interdisciplinary collaboration, enabling a team-based data science that is unique to
the clinical and translational setting.

Introduction

Data science has appeared only recently as a distinct discipline [1]. Although it is often
understood to mean the art and science of curating and analyzing data, another reading of
the phrase is the use of pre-existing data to conduct science, as opposed to conducting
experiments, or deriving theory. This latter reading directly implicates translational and clinical
science as core domains of data science, as empirical disciplines that must heavily use observa-
tional data. Another hallmark of translational and clinical science is the diversity of expertise
required, which has been deemed “team science.” Here we focus on how both the appropriate
use of databases and human resources to administer them facilitates what we are calling Team
Data Science.

Prospective, observational studies on human cohorts shed light on mechanisms of disease
by generating novel hypotheses in ways that animal models cannot. For instance, despite
improvements in survival for preterm, and low-birthweight babies, they remain at risk for
multiple complications. Over 50% of them will be discharged with ongoing postnatal growth
failure [2], whereas infants born before 27 weeks gestational age have a 1.5-fold increased risk
of hospitalization for asthma later in life [3] compared with those born closer to term. Recent
studies suggest that the infant gut and nasal microbiomes, potentially interacting with the
immune system, directly impact growth and respiratory health [4]. However, these systems
produce complex and high-dimensional data, such as that from sequencing or flow cytometry.
Inevitably, predictive, and perhaps only phenomenological models will need to be developed
before the mechanisms that generate the associations between microbiotic state, growth, and
respiratory health are fully understood.

Data science and the “algorithmic modeling culture” have excelled at finding accurate
predictive models, as well as providing techniques to organize complex data sets [1]. They have
been contrasted to the “data modeling culture” of statistics that seeks or assumes knowledge
of a data-generating process [5]. To effectively use data science techniques to resolve these
translational questions requires innovation in the organization and management of these data.
For over a decade the informatics team of the University of Rochester Clinical and Translational
Science Institute’s Research Data Integration and Analytics group has been developing
comprehensive data management workflows for laboratory assays, specimen inventories, and
study-specific data using the open-source LabKey platform [6–10]. Early funding for this effort
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came from several NIAID grants that recognized the need to
develop a system to manage and integrate high-throughput
genomics and related data from human subjects.

As clinical and translational researchers our primary goal is to
derive knowledge that canmake useful predictions in other settings
and secondarily, do this efficiently. Over time, the LabKey
platform, our innovative customization of it, and our processes
have matured. The data management system has become more
than solely a database and data archive: it functions additionally
as a central study and lab portal, aiming to improve data collection
and reporting, analysis transparency, and rigor. These serve to
increase the accuracy and velocity of clinical and translational
science.

Methods

A Schematic for Team Data Science

In their book “R for Data Science” Wickham and Grolemund [11]
introduce a schematic representing the workflow of a data scientist,
with a data scientist-centric view. The data scientist, which we
will refer interchangably as the data analyst, is someone skilled in
collection, processing, visualization, modeling, and interpretation
of large quantities of heterogeneous data, including both data at
hand and data they acquire through ingenuity. They can be trained
in different quantitative disciplines including statistics, epidemiol-
ogy, computer science, and bioinformatics [1]. The analyst workflow
begins with importing and “tidying” the data. Then the analyst
iterates between transforming, visualizing, and modeling the data,
until they communicate final results to stakeholders.

In the translational and clinical setting, data science follows a
similar schematic but with some important modifications
(Fig. 1a). First, the process will be rooted with the creation and
collection of the data by a principal investigator launching a study,

hiring study coordinators, and finally recruiting study participants.
Because grantmonies have limited time horizons, for observational
studies, the analysis of the data often must begin while data collec-
tion is ongoing. Therefore the former two roles must be actively
involved throughout data analysis.

We also add to Wickham and Grolemund’s diagram several
other connections between steps they described. Since the data
evolves as more study participants are recruited and data quality
is evaluated, the import–tidy–transform steps now form an itera-
tive cycle. This has implications for staffing and the technical
frameworks used by analysts and data engineers. We define this
latter role as encompassing both developing databases and pipe-
lines as well as continual oversight of the quality of data sets.
Data engineers must have clear lines of communication with both
analysts and principal investigators to include useful transforma-
tions upstream for reuse. And since the data is evolving, it needs to
be automatically ingestible by the platform and versioned and
traceable by the analysts. This sort of cyclic evolution has been
sometimes called the slowly changing dimensions (SCDs) of a data
warehouse [12], with a particular set of methodologies to accom-
modate current and historical reporting and analysis.

We also include communication as part of the “transform–
visualize–model” loop. In any domain of data science, business
or scientific expertise must inform visualization and modeling.
In the Team Data Science regime, it is expected that as scientific
investigators parse results of a model, and their understanding
of the science evolves, modifications to the transformation,
modeling, and visualization will be made. After discussion with
the study coordinator, the data scientist may end up dramatically
altering a model, such as to make it better reflect causes of missing
data or eliminate variables that are suspected to suffer from high
levels of measurement error.

Finally, the ultimate goal of Team Data Science is to advance
scientific knowledge. Therefore the data and interim research
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Fig. 1. A data science workflow in clinical and translational teams. The lifecycle of a Team Data Science project begins with data collection and proceeds in a nonlinear and
iterative fashion until conclusions are communicated and data andmodels are available for reuse (1a). Study personnel will interact in varying degreeswith different aspects of the
data science lifecycle (1b), while a data scientist visits all phases. Bolded interactions highlight a primary use of a role, while dashed lines indicate ancillary uses.
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products must be reusable both within and across institutions.
Wilkerson et al. [13] described this by stating that data must
be FAIR: Findable, Accessible, Interoperable, and Reusable.
Throughout the collecting and importing processes, modifications
must be made to accommodate the requirements of FAIR data.
However, interoperability and reuse seem to be best understood
along a continuum. Data standards for interoperability are domain
specific and frequently evolving, and the exact implementation is
beyond the scope of any single article.

Wickham and Grolemund’s schematic is addressed to data
analysts, who may be orphaned from the provenance of the data.
However, as translational and clinical researchers, we rely on the
effort of many different teammembers to accomplish our scientific
goals (Fig. 1b). Besides the principal investigator, study coordina-
tors, and data engineers described above, other personnel include
lab technicians, clinicians, statisticians, and bioinformaticians,
each of whom play lead roles (shown in bold in Fig. 1b) in various
steps in the data analysis workflow. Moreover, these players also
often end up using subsets of the Wickham and Grolemund
diagram (shown in dashed lines) to accomplish their own discrete
objectives. For instance, although a lab technician is primarily
involved in collecting data, they may also need to import, tidy,
and visualize their data in order to calibrate lab equipment or
understand if positive and negative controls have behaved
properly. These import–tidy–visualize steps could occur on an
ad hoc basis or better yet, be explicitly included in the import–tidy
workflow that a data engineer uses.

Eight Practices to Implement Team Data Science

Policies, procedures and technical decisions about how data
are stored and represented are required to concretely execute a
theoretical framework such as that described in Fig. 1. In
Table 1, we propose eight policies and procedures that help
operationalize Team Data Science projects. We believe adopting
these practices increases the speed and accuracy of data science
on translational and clinical studies and describe how we have
applied them to our own projects in the Results.

These practices recognize the presence of benefits and guard
against some pitfalls that are central and perhaps unique to data
science. Data science places value on rapid prototyping to test
hypotheses and models. Secondly, it is expected that the data,
which are costly and precious, should be used maximally in models
and visualizations. This can be surprisingly challenging in practice,

when disparate experiments and domains are being integrated.
Having defined schema, changing data capture processes, continu-
ous data quality control and defined data export reduce these
problems.

Reuse of data and analysis also implies that findings must be
internally reproducible: recomputable given the dataset and data
analysis pipeline. However, findings should also be externally
replicable such that an “independent experiment targeting the
same scientific question will produce a consistent result” [14]. The
iterative processes detailed in Fig. 1a tend to work in favor of
reproducibility. It is only possible to run them efficiently in
automated format, hence reproducible pipelines. However,
without care, the iteration of the “model–visualize–transform”
loop will damage external replicability. Iterative modeling and
communicating introduce many “researcher degrees of freedom”
[15], whereas the high-dimensional characteristics of the data
mean that in the absence precautions, overfitting the data is inevi-
table. Fortunately, a potent remedy exists for this in data science by
utilizing procedures that hold out portions of the data from the
“transform–model–communicate” loop, via cross-validation and
related techniques, in order to provide unbiased validation of
accuracy and effect size.

Results

We implemented the practices in Table 1 to collect and manage
data for two large observational, prospective studies following
397 infants from birth to assess prematurity and respiratory out-
comes: Prematurity and Respiratory Outcomes Program (PROP)
[16] and the Prematurity, Respiratory outcomes, Immune System,
and Microbiome Study (PRISM) [17]. The PROP Study was a
multi-center study, with data managed locally for the 146 infants
enrolled at the University of Rochester and followed for 1 year of
life with frequent sampling during hospitalization and after
discharge. The PRISM enrolled 267 infants whowere followed with
daily clinical respiratory, weekly sampling during hospitalization,
monthly after discharge until 12 months corrected gestational age,
and during respiratory illnesses in the first 2 years of life.
The Research Subjects Review Board approved the studies and
all parents provided informed consent (RSRB00037933 and
RSRB00045470).

Over 1900 clinical and assay data fields were managed on these
subjects, including up to 190 repeated measures per subject. Our
data ranged from respiratory and nutritional data collected daily

Table 1. Eight practices to implement team data science

Practice Example

1. Active collaboration Data engineers and analysts meet regularly with data collectors and domain experts

2. Consistent schema, field names, and identifiers Data engineers introduce appropriate names and formats for study variables

3. Continuous quality control Data evaluated for internal and external consistency and quality continually and automatically

4. Versioning, access control, and auditing Users have differential privileges to read and change data. Changes are tracked and can be
replayed.

5. User-driven data exploration Charting tools are provided for quick and independent exploration of data

6. Import-derived variables Variables derived by team members are published in central database

7. Defined data export format and programming
interfaces

Data are available easily and scriptably in open formats

8. Online documentation Documentation for data and pipelines is placed near to the means to access them
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during the NICU hospitalization, to over 76,000 biospecimen vials
which were managed in specimen inventory software. Multiple
high-throughput and high-dimensional assays also generated
data. These assays included flow cytometry, rt-PCR, Luminex,
sequencing of mRNA, the 16S rRNA microbiome, virome, and
exome, and respiratory inductive plethysmography.

We set up a central study portal which provided nightly
automated data ingestion from the disparate data sources using
our Bio-Lab Informatics System (BLIS) (Fig. 2). BLIS is a custom-
ized instance of the open-source LabKey [6–10], an application
developed to integrate, analyze, and share biomedical research
data, including flow cytometry, proteomics, Luminex, ELISpot,
ELISA, Nab, rt-PCR, other plate-based assay data, as well as
specimen inventory and clinical subject data (Fig. 2). The BLIS
platform provides a secure relational database and web-based tools
for interactive querying, visualizing, and sharing data across a
range of data sources. We implemented pipeline modules to collect
and parse assay data and scripts to validate and process experimen-
tal data and generate custom reporting. REDCap [18] was used to
collect clinical and environmental exposure data by the clinic staff,
and the sample-processing technicians entered specimen informa-
tion into a third-party inventory application. Experimentalists and
lab technicians uploaded raw instrument data output files and
derived assay results into BLIS-developed assay modules.

Next, we describe some of the considerations and anecdotes we
discovered in attempting to implement best practices for Team
Data Science (Table 1). We believe addressing these practices
was instrumental in the publication of 12 papers from these studies
[4,17,19–27]. It also enabled us to easily adopt subsets of the data
for use in class projects in courses we have taught.

First, data engineers and scientists should have active collabo-
ration (practice no. 1) with data generators at all stages of a
translational data science project. This ensures that the database
is designed to appropriately capture the breadth of raw, intermedi-
ate, and final data products and their metadata to sufficiently
enable downstream discovery, modeling, and reuse.

We find this ultimately is a question of resources, priorities, and
study infrastructure. We include at least 50% full-time equivalent
funding for data engineering for the study duration to provide
ample time to attend study team meetings and develop study-
and lab-specific data collection modules and reporting. This
collaboration also extends in the other direction, with domain
experts actively participating in data analysis plans, derivation of
additional variables, and interpreting modeling outputs.

In BLIS, we further facilitate active collaboration using the
wiki-style web pages, file sharing, and task tracking functions.
In particular, the file sharing and wikis have been used to
communicate study protocols and laboratory standard operating
procedures, track decisions made around database design and
changes, as well as plan and execute various data analyses. For
the PROP and PRISM studies, we were able to harmonize the
activities and communication of the 40 clinical, lab, and analyst
team members.

Second, the database schemas, field names, and identifiers
should be used consistently (practice no. 2) across database tables
and table views. The schemas describe which fields belong to the
tables, their data types or bounds, key types, and uniqueness con-
straints. The field names are the user-visible and internal names
for various variables (columns) in the database. Put simply, these
principles insure that tables in the database contain “tidy data”:
each variable is a column, each observation is a row, and each
type of observational unit is a table [28]. They are a prerequisite
to any modeling or visualization that joins tables, therefore
experiments or data modalities. Besides the analytic benefits,
semantic consistency and uniqueness of identifiers provide a
shared language between data collectors, engineers, and analysts.
Data collectors will have their own preferred formats for collecting
data, but consistency of identifiers is still possible and highly
desirable.

In the PROP and PRISM studies, our primary identifiers were
participant ID, visit number, and date. For each participant, a
defined sequence of study events (clinical visits, sample collection,

Fig. 2. A high-level overview of how study personnel interact with the BLIS data management platform. Clinicians, technicians, and experimentalists generate data for different
aspects of the study. Data engineers implement the centralized study portal using the BLIS datamanagement platform, with responsibility to connect all elements of the workflow
and interact continuously with all study team members.
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etc.) was to occur on various dates after their birth. Visit number
indexed this sequence, tracking compliance with the protocol. For
each visit date, BLIS computed the relative day of life (DOL) and
the corrected gestational age (DOLþ gestational age at birth). The
protocol did provide several weeks of flexibility between partici-
pant DOL and visit number, so DOL was a foreign key for most
tables, as well as a covariate for various analyses. DOL supported
analyses on the effect of postnatal exposures, while the corrected
gestational age was useful to examine effects of prematurity.
Thus, every repeated-measure covariate and biospecimen (itself
uniquely keyed) had the participant ID, visit number, date, DOL,
and corrected gestational age associated with it.

The PROP and PRISM studies examined risk factors for growth
failure and persistent respiratory disease, both chronic conditions
that require longitudinal data to even diagnose them. To join data
across domains in this longitudinal setting, such microbiome and
clinical measurements, patient-reported outcomes, or immuno-
logical assays required fastidious attention to schema and
identifiers. However, once this work was complete, we integrated
microbiome measurements from multiple body sites, flow
cytometry-base T cell assays, and clinical data often by simply
joining on visit number and participant ID, sometimes in
conjunction with simple data imputation techniques for data
sampled on an irregular grid, such as last-observation-carried-
forward. This analyses revealed evidence for microbial interaction
between body sites, predictive in cross-validation, even after
stringent control for the effect of host development [26], as well
as a subset of T cells that were associated with inflammatory
insults that occurred as early as birth [29].

The database schemas implied a number of invariant relation-
ships between variables. We can catch many data errors and
omissions by verifying these relationships using continuous quality
control (no. 3). Ideally, automated methods connect laboratory or
clinical data collection workflows to the database. This ensures that
continuous quality control of the data occurs as data are generated,
so that problems can be documented and resolved by the labora-
tory or clinical staff in a timely manner.

In BLIS, we automatically imported clinical data every night
from REDCap [18] and specimen processing and inventory from
a lab informationmanagement system. After integrating these data
sources, their consistency was verified using the participant ID,
visit number, date and clinical sample collection metadata. Data
discrepancies, including data entry errors, would be reported
out automatically.

For molecular and device results from the lab, we used a
semi-automatic import and parsing of assay results, and instru-
ment-generated data files were implemented in BLIS. Labs entered
the biospecimen ID in assay software to ensure the resulting data
files streamed from the instrument are uniquely identified. For
instance, flow cytometry FCS file keywords and sequencing
BAM file headers contained biospecimen ID, while for other results
it was encoded in the file name. The biospecimen ID in the assay
data was then crosschecked with the inventory of physical vials to
verify that the vial did previously exist and had been consumed.

Shared team access to the cycles in Fig. 1a means that data
and analyses should be access controlled, audited, and versioned
(no. 4). Ideally, this allows those involved in a cycle to access
and import data as necessary to repeat historical analysis, so
that the implications of changes to the tables can be understood
and errors bisected. Since the schema and fields can change as
data are collected, quality evaluated, and clinical and laboratory
workflows evolve, all data, original and derived, should be

audited and versioned using appropriate change data capture
methodologies.

In BLIS, we utilized the security and access controls and
auditing capabilities built into the LabKey platform. In particular,
datatable and access are designed with the principle of least
privilege, meaning users have only enough access to do their job.
Thus, lab technicians performing experiments do not have access
to clinical data. Conversely, study coordinators do not have access
to assay results while data collection is ongoing. Data engineers
implement versioning procedures directly in the schema through
versioning fields (applying slowly changing dimensions methodol-
ogy Type 2), missing data codes, and frozen snapshots of individual
tables or multiple subsets for specific analyses and historical
reporting (slowly changing dimensions methodology Type 4).
For the PROP and PRISM studies, flow cytometry experiments
had up to four distinct versions, corresponding to various manual
gating strategies or unsupervised clustering algorithms under
evaluation. Our version control practices and the use of the
wiki features increased transparency and clarified provenance to
facilitate data reuse and team collaboration. Our servers were pro-
fessionally managed and audited annually under our Information
Technology Security Plan.

User-driven data exploration (no. 5) lowers the bar for
interacting with the database, aiding in accelerating the research
and knowledge exchange. Most members of a clinical or transla-
tional project are not computer programmers but still need to
be able to query data. Data exploration can be used by the
clinical and laboratory staff and analysts for quality control of
clinical and assay data to generate counts of available data and
samples for assay planning and logistics or for initial hypothesis
generation.

In BLIS, we exploited LabKey’s spreadsheet-like operations of
simple visualizations, distributional statistics, and boolean filtering
which all can be exposed to the user. We also built custom reports
and visualizations in either R and javascript and ran them as
plugins in the system. Regardless of the data exploration method
used, all visualizations can be saved and shared with other team
members. These capabilities accelerated the research and knowl-
edge exchange including [21]. These findings also spawned several
successful grant applications, trainee funding, as well as pilot data
used outside of the study labs for funding.

Derived variables should be imported (no. 6) and integrated
into the schema. Modeling often depends on summarization, nor-
malization, or other computation on collected data that generate
new variables. Systematically importing these derived variables
makes them centrally available, where they can be included in
the “visualize–communicate–reuse” path. This promotes collabo-
ration, increases efficiency, reproducibility, and traceability.

In BLIS, we exploited this in both simple and more complicated
ways. We derived and imported temporal variables relative to a
subject’s birth, by calculating the day of life and corrected gesta-
tional age when an event occurred. Besides saving users from
implementing their own date calculus, which is notoriously
difficult, exact event dates could be suppressed for most users,
eliminating some risks of subject reidentification. More
complicated variables, such as exposure indicators and respiratory
outcomes, were calculated by algorithms we implemented. For
high-throughput assays, important results from the computational
pipelines that process these assays were included. These included
sequencing quality reports, flow cytometry gating hierarchies, 16S
operational taxonomic unit (OTU) count tables, and alpha and
beta diversity scores.
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Since team members are iterating between importation and
transformation of study data, the transform–model–visualize–
communicate loop should be able to access data in stable formats
and programming interfaces (no. 7). Minimally, users and scripts
should be able to manually query the database and have results
returned to them in an open format. Ideally, updates to the data-
base will automatically propagate to downstream analyses. BLIS
makes provisions for this by exposing the LabKey Application
Programming Interfaces and their associated libraries. Bindings
exist in R, SAS, Java, and Python. In addition, using the BLIS
web interface, version-stamped data can be exported in open for-
mats such as comma and tab separated files.

Lastly, it is imperative in a TeamData Science project to provide
online documentation (no. 8) that is current and easily located. At
a granular level, BLIS provides a data dictionary for all data fields
available in the schema, and descriptions of specific tables can be
attached to each table and field to document how the data was
collected or generated. In addition, the study portal contains analy-
sis-specific pages that document analysis plans. They can include
direct links to the versioned, frozen sources of data used in each
analysis, as well as external dependencies like git repositories or
references to methods. The BLIS study portal also contains links
to institutional file servers for protocol versions, standard operat-
ing procedures, and background publications.

Discussion

In this article, we propose an idealized workflow for Team
Data Science. It modifies established workflows that consider data
scientists in isolation, by adding connections between steps that
respect the active and interdisciplinary nature of clinical and trans-
lational research. It addresses what we believe is the ultimate goal of
this research: to improve human health by enabling reuse of
data and models by the scientific community. Our workflow also
recognizes that studymembers tend to interact centrally with some
phases of the workflow, but often need to access other phases to do
their jobs. Enabling good habits for even indirect use of the data
science workflow is beneficial.

To maximize the speed and accuracy of applications of data
science to clinical and translational projects, we describe eight
principles and practices. Many of these are technical engineering
decisions made when designing and implementing the database.
Yet others, such as active collaboration, make demands on the
overall management and provisioning of the study. However, even
practices that seem essentially internal to database design are
motivated by having it serve not just data scientists and engineers,
but all study personnel. These practices include user-driven
exploration, import of derived variables, and online documenta-
tion. We illustrate how we have applied these eight practices in
BLIS, our management system for managing the data from several
complex longitudinal studies run at the University of Rochester.

As both principal investigators and data scientists can attest, it is
difficult to manage and coordinate the decentralized and interdis-
ciplinary teams that large studies entail. It can be a challenge to
answer even basic questions, such as “where are the data from
my experiment?,” “what’s the latest version?” or “how can I link
data between assays from the same subject?” Studies have often
relied on “data shamans” to be the keeper of this knowledge.
This is inefficient, since knowledge remains siloed, as well as
fragile, since the knowledge can disappear with staff turnover.
A remedy is to increase data stewardshipmaturity [30]. Put simply,
this means replacing ad hoc approaches with systematic processes.

The eight practices we describe represent some steps a study can
take toward more systematic and mature data stewardship.

It should be acknowledged that the BLIS management system
began as a dedicated Data Management and Biostatistics core as
part of several NIAID-funded centers including the Center for
Biodefense Immune Modeling, the New York Influenza Center
of Excellence, and the Respiratory Pathogens Research Center,
which provided a well-defined governance structure and crucially,
initial funding for this informatics infrastructure. The BLIS man-
agement core leadership ultimately reported to the Research
Center principal investigators but otherwise had flexibility in
technical decision-making.

In this work, we focused on the data management for use by the
initiating studies. We acknowledge that broader reuse of research
data is critically important. To that end, we are continually depos-
iting data in the NIH data repositories dbGaP and SRA under the
accession numbers phs001297 and phs001347. As the complexity
of data collected continues to evolve, the systems to capture and
integrate these data must as well. We continue to seek efficiencies
in the iterative import–tidy–transform phases by enabling integra-
tion of additional sources of clinical information and their associ-
ated data standards, vocabularies, and ontologies (e.g., ICD-10,
RXNorm, LOINC). In our view, the greatest value in adopting
common data models comes from the potential to harmonize
multiple studies after completion [31]. Ideally, these standards will
be introduced when the study is conceived and study coordinators
and principal investigators can be coached to align their native
vocabularies and representations with the common standard.
However, it is also important to recognize that common models
do not always faithfully represent all facts and relationships present
in a particular study. In that case, multiple representations would
need to be maintained, increasing costs and complexity. We sug-
gest focusing on the data models and representations that have will
have the largest scientific return on investment to a given study.

Data science has encouraged rapid prototyping of scientific
hypotheses using advanced methods from statistics and machine
learning. These have yielded impressive benefits to many areas.
However, it is important to recognize and mitigate against the
downsides of these techniques, which can be especially acute in
observational studies. Rapid prototyping and reusability can lead
to more overfitting of models and fishing for statistical signifi-
cance. More generically, selection biases and unmeasured con-
founding will be present in all observational studies. Even if
causal interpretations are not explicitly sought, it is still important
to consider how selection bias and confounding impacts conclu-
sions. Overall, we believe the solution to these pitfalls is not less
usability, but more use of unbiased validation, and especially, more
active collaboration between domain experts, data engineers, tech-
nicians, statisticians, and data scientists.
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