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Note on Partial Fractions and Determinants.

By Professor H. W. TtrBNBBXL.

(Received 22nd December 1926. Read 4th February 1927.)

INTRODUCTION.

In looking for a compact way of writing down the partial
fraction formula in general, with repeated factors, I noticed how the
expansion of a determinant by its top or bottom row suggested a
method. The following gives a formula perfectly easy to write down
in any given case where the factors of the denominator of the fraction
are known. Incidentally it gives, as a determinant, the integral of a
rational fraction f(x)IQ(x) where f(x) and Q(x) are polynomials, Q(x)
having higher order.

Most probably the results are not new, but they cannot readily
be traced. I find hints of allied things in Sir Thomas Muir's History
of Determinants, Vol. I p. 339, Jacobi (1841); II 175, 181, 183;
III 133, 144, 152, 154.

The method seems fruitful, and the matter might be pursued
further, for instance in dealing with complex roots of Q(x) — 0, and
in deriving algebraic identities as in § 2 for the case of repeated
factors.

§ 1. If we expand by the method of partial fractions when a, b, c
are unequal we find

(b — c) (c — a) (a — b) _c — h a — c b — a

whence
(x — a) (x — b) (x — c) x — a x — b x — c '

1

(x — a) (x — b)(x — c)

1

a

1

x — a x-b X — C

1 1 1

a b c

a2 b2 c*

Further if b = a + h and h -> 0, a * c, we obtain

1
(x-a)2{x-c)

= lim 1
a
1

1
a• + h

1

x — a x — a —h x — c

1
c
1

1
a
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+ h
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c
c2
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Subtract the first column from the second in each determinant, and
divide each by h; then the limit is

1
a

1

0
1

1

1
c

1

1
a
a2

0
1

2a

1
c
c

x — a (x — a ) 2 x — c

On expanding the first determinant by its last row, we have the
partial fractions of the left hand expression. This simple device is
perfectly general, leading at once to a compact formula for partial
fractions of

fix) ^ f{x)
Q(x) (x — ax) (x - a2) . . . (x - an)

where f(x) is a polynomial in x of degree less than n, having no
common factor with Q(x).

The general formula is

/(*)
Q(x)

l

« i

«!«"*

/(«i

a; — (

1
a2

a2
%

a/'"2

) / (a , )
jj a; — a2

. . . 1

. . . ar,

• • • a » 2

. . . a,-8

/(On)

a; — a

. . . 1

. . . an

«! a2 . . . aK

. . . a
n - l

(1)

So the theory of partial fractions is closely related to that of alter-
nants, the name given to determinants like this second one A, which
is readily seen to have \n (n — 1) linear factors. In fact

A = (a2- aj) (a3- a^ . . . (an_i— aj (an— ax)

X (a3— a2) . . . (an_!— a2) (an— a2)

X (a B . 1 -a n _ 2 ) (a n —a n _ 2 )

X (aB—oB_i).

(2)

For A vanishes if Oj= o,-, (i * j) because two columns are then equal;
the dimensions agree; and the coefficient of the chief term

n n 2 n n - ]

a 2 a 3 . . . a , ,

is unity in both the determinant and the product.
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The proof of (1) is now immediate by the method of partial
fractions. Thus if the left side of (1) is written

2
then

i (x - a,-)

Ai= (at— Oj) (a — a2) . . . (a — a;_i) (a,— a i + 1 ) . . . (ai— a,,).

In particular An = (an— ax) . . . (a,,—a,,^) which is precisely the

quotient of A divided by the cofactor of
— an

in the other deter-

minant, since this cofactor is the alternant of the first n — 1
quantities a l ; a2, a3 . . . . Symmetry shews that all the coefficients
will agree in the same way.

fix)
COROLLARY. We immediately integrate -——•- and obtain

f(x)dx
x- ax) (x ~ a2) . . . (x — an)

1
an

a*

fflj"-2 , art"-2

(ax) log (a; — ax), . . . , /(«„) log (x — an)

where A is the al ternant ! 1 a2 a3
2 . . . a,,""1 I . •

HOMOGENEOUS PRODUCTS.

§ 2. If in (1) we take x = — a n d / ( x ) = 1, and then expand both
y

sides in ascending powers of y, we obtain on the left

-, = 2 nHpy
n + *>

y) P=o
where nHp is the sum of homogeneous products of a1( a2> • • • an °f
degree p. But on the right of (1) the coefficient of yn + p in the last
row gives

This leads to the well known result1

1 . . . 1 ^ 1 . . . 1
i . . . cin

1 History, I, p. 339. Jacobi (1841).
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For
1
a
a2

a5

1
b
b2

b*

example
1
c
c2

c5

1
d
d2

d*

-r-
1 1

a b

a 2 b2

a3 b3

1

c
c2

c3

1
d
d2

d3

= a2 + b2 + c2 + d2

+a6 + cc + ad + 6c + +

REPEATED FACTORS IN Q (X).

§ 3. The method of limits yields a result immediately. Thus, as
in the case first explained, we should have, if f(x) is a cubic in x,

(x-a)2(x-b)(x-c)
1

a

a 2

0

1

2a

x a'

1
b
62

f(b)
x — a/ ' x

/ f(a)
Here —-'-

\x — a
d e n o t e s —• ^ v ;

da x — a i.e.
f'(a)
x — a

•b' x

f(a)

1

a

a 2

a 3 3a2 fc3 c3

0
1
2a

( x - a ) 2

If now b = a + h and A -> 0 we obtain, in each third column, linear
multiples of the previous columns. So h2 is the first power of h in
the resulting development of both determinants in ascending powers

of h. If ( A )" denotes —^ we therefore obtain
d1

(x — a)3(x — c)

8a2

1
a
a2

f(a) t
x — a \x — i

0
1
2a

/(a)

0
0
1

1

c

c2

/(c)
X — C

1
a
a2

a3

0
1
2a
3a2

0
0
1
3a

1
c
c*
c»

Manifestly the same argument, assumed for A — 1 repetitions of
(x — a), will apply for k, by making the next factor tend to equality
with x — a. Thus the &th entry in the last row will be

_ f(a + h) _ f(a)
x — b x — a — h x — a

, A
x — a

In both determinants the fctb column will then involve linear multiples
of all preceding columns. So these may be discarded. After
cancelling hk and then making h = 0 we obtain a definite result. So
the theorem is true by induction. It can then be extended to cover
cases when several sets of repeated factors occur.
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If in the above example we multiply each third column by 2! we
obtain a pair of determinants easier to form but not quite so easy to
compute. It gives the rule: if (x — a) is a factor occurring k times in
Q (x), but not k + 1 times, form k columns of each determinant by k — 1
successive differentiations of the normal column as found when k = 1.

Since

\x = rw ,x-a (x-a)*'

- a
,

3/" (a) , 6/'i 3!/(4,,etc.
x-a ' (x-a)2 (x-a)3 (x - af

We can easily derive the usual partial fractions by picking out the
necessary terms from the determinants. One further example is
appended:—

/(*)
(x — a)3(x — b)2{x —

0
1
2a
3a2

4a3

gives

0
0
1
3a
6a2

1
b

b2

bs

b*

0

1

2b

3b*

4b3

cz

c3

f(a) Vx — a' \x — a) ' 2! \x — a/ ' x — V \x — bJ ' x — c

0
1
2a
3a2

4a3

5a*

0
0
1
3a
6a2

10a3

1
b
b2

b3

b*

0
1
26
3b2

463

564

These determinants, and all such, simplify by replacing row, by

fq-V
r o w , - (q — l)a r o w , _ a2 r o w , _ 2— . . . — ( — )q aq ~ ] r o w ,

where in the upper determinant q = 4, 3, 2 in succession, and in the
lower, q — 5, 4, 3, 2. Then the denominator becomes 1

1 Cf. Muir. Historg IV, p. 178. Schendel appears first to have discussed this
type of determinant.
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The first five rows of the numerator become

1 0 0 1 0 1
0 1 0 (ft -a) 1 (c-a)
0 0 1 (ft - a ) 2 2 (b - a ) (c-a)2

0 0 0 ( f t - a ) 3 3(b -a)2 (c-a)3

0 0 0 (ft - a)4 4 (b - a)3 (c - a)4.

If for example the partial fraction involving (x — a) ~2 is required we
have at once A2!(x — a)2, where

At= 1 . . 1 . 1
. 1 . (f t-a) 1 (c-a)
. . 1 (ft-a)2 2 (ft-a) (c-a)2

. . . (ft - a)3 3 (ft - a)2 (c - a)3

. . . ( f t - a ) 4 4 (ft - a ) 3 (c-a)*
I • f(a) /'(a) .
/(a) (3a-f t - 2c) f'(a)

' 7ft"-a)3 (c-a)2 + (ft-a)*(e-a)"

A'
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