
BULL. AUSTRAL. MATH. SOC. 30C10, 12EO5

VOL. 50 (1994) [327-335]

POWER ROOTS OF POLYNOMIALS OVER ARBITRARY FIELDS

VlNCENZO ACCIARO

Let F be an arbitrary field, and f(x) a polynomial in one variable over F of degree
^ 1. Given a polynomial g(x) ^ 0 over F and an integer m > 1 we give necessary
and sufficient conditions for the existence of a polynomial z(x) € F[x] such that
z(x)m = g(x) (mod f(x)). We show how our results can be specialised to R, C
and to finite fields. Since our proofs are constructive it is possible to translate
them into an effective algorithm when F is a computable field (for example, a
finite field or an algebraic number field).

1. INTRODUCTION

Let F be an arbitrary field, of characteristic char(F), f(x) a polynomial in one

variable over F of degree ^ 1, g(x) a nonzero polynomial over F and m > 1 an

integer.

In [3] Miller gave some sufficient conditions for the existence of a polynomial z[x) £

F[x] such that z(x)m = g(x) (mod f{x)), when F is K or C - it is explicitly stated

in his paper that the conditions given are not necessary.

In our paper we extend Miller's results by giving necessary and sufficient conditions

for the existence of an mth root in F[x]/(f(x)), when F is any field, not necessarily C

or R. While the methods used by Miller in [3] are analytical, ours are purely algebraic.

Moreover, since all the proofs given here are constructive, it is possible to translate

them into an effective algorithm when F is a computable field (for example, an algebraic

number field or a finite field).

When char(F)J(m, we can summarise the results of this paper in the following

theorem:

THEOREM 1 . Let F be a Held, and m > 1 a positive integer, char(F)J(m if

char(F) > 0. Let g(x),f(x) be polynomials over F, with g(x) ^ 0 and deg/(z) ^ 1.

In F[x] the congruence

(1) z(x)m=g(x) (mod/(x))
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admits a solution if and only if for every irreducible factor p(x) of f(x): if I ^ 0
denotes the highest exponent to which p(x) divides g(x) and k ^ 1 denotes the highest
exponent to which p[x) divides f(x), then either

(i) k^l,or
(ii) m \ I and y{x)m = g(x)/p(x) (mod p(x)) is solvable for y(x).

When char(F) \ m the conditions for the solvability of the congruences Zi(x)m =

g(x) fmodpj(x) *J are more involved - we shall consider the case char(F) \ m in

Section 2.2.
What this paper essentially shows is that we can reduce the problem of solving (1)

to the problem of solving simpler equations, of the form z(m)m = g[x) (modp(aj)),
with p(x) irreducible over F. But, as we shall show in Section 2, solving these simpler
congruences is equivalent to extracting mth roots in some algebraic extension of F.

We shall prove Theorem 1 in Section 2. In Sections 3, 4 and 5 we shall show how
to specialise Theorem 1 to C, R and to finite fields.

2. THE METHOD

We can assume without loss of generality that f[x) is monic, since if z{x)m = g(x)
(mod /(x)) holds, then z(x)m = g(x) (mod cf(x)) holds for any c G F. The method
discussed in this paper can be summarised as follows:

(i) Factor f(x) into monic irreducibles obtaining /(x) = Pi(x) x .. .pn(x) "
where the pi{x) are distinct irreducibles and each A;,- ^ 1;

(ii) Solve each of the congruences Zi(x)m = g{x) (mod Pi(x)) for Z{(x), i £
{ l , . . . , n } ;

(iii) Lift the solutions obtained in the previous step from -F[E]/(PJ(X)) to

(iv) Combine the solutions of the previous step using the Chinese Remainder
Theorem to obtain a solution of the original congruence.

Step (iv) does not present any technical difficulty, since it relies on the well known
isomorphism [4, p.95]:

F[x]/(f(x)) - Fixyfaix)"*) x ... x F[x]/

When p(x) is a monic irreducible polynomial .F[:c]/(p(:e)) = F(a) where a is any
root of p(x): the actual isomorphism is given by k{x) + (p(x)) >-* k(a). It follows that
Step (ii), that is the extraction of an mih root of g{x) modulo p(x), is equivalent to
the extraction of an mth root of g(a) in F(a).
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Therefore, most of the rest of this section will be devoted to explaining how Step
(iii), that is, the lifting process, can be accomplished.

Fundamental to the entire process is the concept of the p(x)-adic expansion of a
polynomial / ( x ) [4, p.189]. Given / (x) ,p(x) e F[x], with degp(x) ^ 1, there exist
unique polynomials go(x),gi(x),... ,<7t(x) G F[x] such that deggi(x) < degp(x) and
/ (* ) = 9o(x) + 9i(x)p(x) + g2(x)p{xf + ...+ ff«(x)p(x)*. The polynomials ^(a;) can
be computed recursively as follows:

• go(x) := f(x) mod p(x)

. gi+1(x) := (7(x) - ± gk(x)p(x)k)/p{x)i+1 modp(x).
\ *=o /

The lifting method is based on the following lemma, freely adapted from the proof of

Hensel's lemma in [2, p.16].

LEMMA 1. Let p(x) be an irreducible element of F[x]. Let G(y) be a poly-

nomial with coefficients in F[x]. Assume that there is an element /o(x) G F[x],

with deg/0(x) < degp(x), such that G(fo(x)) = 0 (mod p(x)) and G'(/0(x)) ^ 0

(mod p(x)). Given any positive integer k there is a unique polynomial /*_i(x) € F[x]

of degree less than degp(x) such that G(fk-i(x)) = 0 (mod p(x) J and /t_i(x) =

/o(x) (modp(x)).

PROOF: We show how to construct a sequence of polynomials / i (x) , . . . /t_i(x) 6

F[x] such that for all n E {1 , . . . ,k - 1}:

(i) G(/n(x)) = 0 (modp(x)n+1)

(ii) /„(*) = /„_!(*) (modp(x)")
(iii) deg/n(x)<degp(x)' l+1.

We prove that the sequence (fn(x)) exists and is unique by induction on n. If fi{*)

satisfies (ii) and (iii) then it must be of the form fo(x) + &i(x)p(x), with degii(x) <
degp(x). When we expand G(/i(x)) we obtain

G(A(x)) = G(/0(x) + 6x(x)p(x)) = G(/0(x)) + G'(/0(x))61(x)p(x) + w{x)

where io(x) is a polynomial divisible by p(x) .

Since p(x) | G(fo(x)) by assumption, we can write G(/o(x)) = ao(x)p(x)

fmod p(x)2J where degao(z) < degp(x). So, in order to get G(/i(x)) = 0 (mod p(x)2J

we must have oo(x)p(x) + G'(/0(x))6i(x)p(x) = 0 fmodp(x)2J, that is, ao(x) +

G'(/0(x))6i(x) = 0 (modp(z)). The last congruence has a unique solution (mod

p(x)) for bi(x) since by hypothesis G'(/0(z)) ^ 0 (modp(x)). Then /i(z) =

/o(x) + 6i(x)p(x) is the unique polynomial satisfying (i), (ii) and (iii) with n = 1.
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Next, assume that fi{x),fz(x),... ,fn-i(x) are known, and we want to find fn{x).
By (ii) and (iii) we need fn(x) = fn-i(x) +bn{x)p(x)n with degin (z) < degp(x). We
expand G(fn(x)) obtaining

G(fn(x)) = G(/«-i(*) + bn(x)p(x)n)

= G(fn-t(x)) + GU-i (*) )M*)p(*) n (mod p(

Since G(/n_i(a:)) = 0 (mod p(x)n) by the inductive hypothesis, we obtain

<?(/„_!(*)) = o . . , ^ * ) 1 1 (mod p(z)n+1)

and the condition G(fn(x)) = 0 Imodp(is) J becomes

an_1(a;)p(a;)
n + G'(fn-1(x))bn(x)p{x)n = 0 (mod p(x)n + 1),

that is
an^(x) + G'(/n_1(a;))6n(x) = 0 (mod p{x)).

Since /n_i(x) = fo(x) (mod p(x)) it follows that

G'(/B_i(*)) = G\Mx)) £ 0 (mod p(x))

and so the previous congruence has a unique solution (mod p(x)) for bn(x). Then
fn(x) = fn-i(x) + bn(x)p(x)n is the unique polynomial satisfying (i), (ii) and (iii). D

Our objective is to solve the congruence:

(2) y(x)m = g(x) (mod p(x)k)

where p(x) is a monic irreducible factor of f(x).

Let 3/0(3) be a solution of y(x)m = g(x) (modp( i ) ) ; clearly if such an element
yo(x) does not exist (2) cannot admit any solution.

If Tnyo(*)m ^ 0 (mod p(x)) we can use the construction given in Lemma 1 with
G(y) := y(x)m — g(x) to obtain a sequence of polynomials y\(x), yi(x), ... such that
yi(x)m = g(x) fmod p(x)t+1 J . A solution of (2) is then given by yk-i(x), and this

solution is unique, modulo p(x) .

If myo(x)m~1 = 0 (mod p(x)) the Ufting argument can not be applied, although

(2) may still have a solution.

Let us assume therefore that myo(x)m~ = 0 (modp(z)) . Since F[x]/(p(x)) is a
field this may happen only in two cases: if yo(x) = 0 (mod p(z)) or if char(F) \ m.

We discuss the first case in Section 2.1 and the second case in Section 2.2.
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REMARK. Let Si denote the number of solutions of the congruence Zi{x) = g(x)

(mod Pi(x) ' J . It is easy to see that the number of solution of (1) is given by HJLjii.

In the case when GCD(f(x),g(x)) — 1 and char(F)J(m, Lemma 1 shows that the

lifting process is unique and so s, is also the number of mth roots of g[x) (mod Pi(x)) •

2.1 LIFTING OF ZERO.

It is easy to see that the zero polynomial is a solution of y(x)m = g(x) (mod p(x))

if and only if p(x) \ g(x). The following lemma deals with this case.

LEMMA 2 . Assume that p(x) \ g(x). Let I be the highest exponent to which p(x)

divides g(x). If k ^ I the zero polynomial is a solution of (2). If k > I then (2) admits

a solution if and only if m \ I and

(3) y(xr=g(x)/p(x)1 (mod ?(*)*"')

admits a solution. In this case if y(x) denotes a solution of (3) then y\x)p(x) 'm is a

solution of (2).

PROOF: If k ^ I the zero polynomial is obviously a solution of (2), so we shall
suppose that k > I.

Assume that y\x)m = g(x)/p(x) (mod p(x) ~ J . This is equivalent to p[x) \

y(x)mp(x) — g{x). Thus, if m \ I we can write the last relation as p{x) \
y(x)mp(x) 'm'm — ^(a;) j and so y[x)p{x) 'm is a solution of (2).

On the other hand, suppose that k > I and (2) admits a solution. Let the p(x)-
adic expansion of g(x) be a,i(x)p(x) +O2(x)p(z) + . . . , with ai(x) ^ 0. Let y~{x) =
bi(x)p(x)T + ... be a solution of (2), with 6i(z) ^ 0. Then the p(a;)-adic expansion of
y{x)m is (b!{x)m modp{x))p{x)rm+....

Since &i(z) ^ 0 and deg6i(z) < degp(a;) it follows that 6i(x) ̂  0 (mod p(z))

and therefore 6i(x)m ^ 0 (modp(x)), since p(x) is prime. Now y(x)m = g(x)

(mod p(x)fc) if and only if (bi(x)m mod p(x))p(x)rm + ... and oi(z)p(i)' + . . . coin-

cide up to the term in p(x)k~1. Since ai(x) ̂  0 and bi(x)m modp(z) ^ 0 it follows

that I = rm and so TO | 2 as asserted. u

COROLLARY 1. Under the assumptions of the previous lemma, if char(F) / m
and k > I then (2) admits a solution if and only if m \ I and y(x)m = g[x)/p(x)
(mod p(x)) admits a solution.

PROOF: The Corollary follows immediately from Lemma 2 since the right hand
side of (3) is not divisible by p{x). D

Note that if p(x) | g{x) and at the same time char(F) | m, we can use Lemma 2
to reduce this case to the case p(x)J[g{x) and char(F) \ m, which is handled in the
next section.
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2.2 T H E EXPONENT m IS A MULTIPLE OF char(F).
In this section we shall assume that p(x))(g(x). When q = char(F) > 0 the map

o w o' is always an endomorphism of F. It follows that if a(x) = ao+aiX + ...+ anx
n

is a polynomial over F then a(x)9 = ag + a\xq + ... + a«xn«. We shall use this fact
frequently in this section.

LEMMA 3 . Let q — char(F), q ^ 0. Assume that m = q* for some positive
integer t, and m ^ k. If (2) admits a solution, then every solution of y(x)m = g(x)
(mod p(x)) is a solution of (2).

PROOF: Let us assume that (2) admits a solution yi(x). Let yo(x) be a solution of
y(x)m = g{x) (mod p{x)). Then (yo(x) -yi(x))m = yo(x)m-Vl{x)m = 0 (mod p(*)).
Since p{x) is prime and k ^ m it follows that p(x) | (jfo(x) — yi(x))m and therefore
yo(x)m = yi(x)m (mod p(x)k) , that is, yo(x)m = g(x) (mod p{x)k) . D

NOTE. Therefore, when m = g* and m ^ A, to test if (2) is solvable, it is enough to
find any solution of y(x)m = g(x) (mod p[x)) and check if it satisfies (2). Clearly if
y(x)m = g{x) (mod p{x)) does not admit any solution then (2) does not admit any
solution.

LEMMA 4 . Let q = char(F), q ^ 0. Assume that m = q1 for some positive
integer t.

If m\k then (2) admits a solution if and only if g(x) (mod p(x) ) is a polynomial

in xm and all its coefficients Aave an mth root in F.

If m)(k let w := \k/m\, let a := fcmodm, let z(x) := g(x) modp(x)mto and
r(x) :— (g(x) — z(x))/(p(x)mw) mod p{x)'. Then (2) admits a solution if and only if
z(x) is a polynomial in xm, all its coefficients have an mth root in F and j{x)m = r{x)
(mod p(x)') admits a solution.

PROOF: Let go{x) + 9i(x)p(x)m + ... be the p(x)m-adic expansion of g(x).

If y(x) is an mth root of g(x) modulo p{x) and yo(x) + yi(x)p(x) + ... is its
p(x)-adic expansion then y(x)m = yo(x)m + yi(x)mp[x)m + ... and this expression
must coincide with the p(x)m-adic expansion of y[x)m.

Let us assume first that m \ k. It can be seen that in this case (2) is satisfied if
and only if

y o ( * ) m + yi(x)mp(*)m + •••+ Vk/m-! ( ^ P f

= <7o(s) + 9r(x)p

Therefore gi(x) must be the mth power of yt(x), for t = 0, . . . ,k/m — 1. But then
g(x) mod p(x) is the mth power of a polynomial y(x), that is, it must be a polynomial
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in xm and each of its coefficients must have an mih root in F — it is easy at this point

to find the actual polynomial y{x).

Assume next that mj(k. The argument used above tells us that gi(x) = yi(x)m

for i = 0 , . . . , |_AS/T7»J — 1, and gi(x) = yi(x)m (mod p(x)') for i = L^/mJ > a s asserted.

Since 8 < m , the last congruence can be handled using Lemma 3. D

Note that Lemma 3 and Lemma 4 are valid for any field of characteristic q > 0.
When the map a H-> a* is an automorphism of F (that is, if F is a perfect field) we
can say much more, as the next theorem shows.

THEOREM 2 . Let F be a perfect field of characteristic q. Assume that m = q*

for some integer t. Then (2) admits a solution for any k ^ 1.

PROOF: When F is perfect the map a *-* a* is an automorphism of any finite
extension of F, and so is the map a i—» a m since m is a power of q.

Let A be the .F-algebra F[x]/ (p(x) J . This algebra is clearly finite dimensional

over F.

As a consequence of Nakayama's lemma (see [6, Section 4.2]) the endomorphism
a >—• a m of A is onto if and only if the induced endomorphism of A/rad(A) given by
a + rad(A) •-> am + rad(A) is onto.

But A/rad(A) = F[x]/(p(x)) and by what we have just said the induced map

a + (p(aj)) *-* am + {p(x)) is surjective.

Therefore (2) admits a solution for any k ^ 1. D

REMARK. When q \ m but m is not a power of q, write m as q*r, with qj(r. Write

(2) as (y{x/y = g(x) (mod p(x)*) .

Set z(x) := y9 and solve z(x)T = g[x) f mod p{x) 1 for z(x). Finally solve

y(x)9 = z(x) (mod p{x) J for y(x) to obtain a solution of (2).

3. THE COMPLEX CASE

In C[a;] an irreducible polynomial p(x) can have only degree 1, and therefore we
can take p(z) = x — a, with a G C. We recall here that C[x]/(x — a) = C under the
isomorphism g[x) + (as — a) i—> g(a).

If p(x))(g{x), the congruence y[x)m = g{x) (mod p(x)) always admits a (nonzero)
solution, since C = C[x]/p(x) is algebraically closed, and this solution can be lifted to
a solution modulo p(x) , since m doesn't divide the characteristic of C

If g(x) = 0 (mod p(z)) then (2) admits a solution if and only if the conditions
imposed by Lemma 2 are satisfied. We summarise our results in the following theorem:
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THEOREM 3 . In C[x] the congruence (1) admits a solution if and only if for every
common root a of f(x) and g(x) either the multiplicity of a in g(x) is greater than or
equal to the multiplicity of a in f(x) or else m divides the multiplicity of a in g(x).

4. THE REAL CASE

In R[x] an irreducible polynomial p(x) can have only degree 1 or 2. Assume first
that p(x)J(g(x).

If degp(x) = 1, then we can take p(x) = x-a, with a £ R; then R[x]/(p(x)) = R
under the isomorphism g{x) + (p(x)) •-» g{ct). Then y(x)m = g(x) (mod p(x)) admits
a solution unless g(oc) < 0 and m is even. Moreover this solution can always be lifted
to a solution modulo p(x) .

If degp(s) = 2, then R[x]/(p(x)) * C. In this case y(x)m = g(x) (modp(i))
admits a nonzero solution and this solution can be lifted to a solution modulo p(x) .

Assume next that p(x) \ g(x). If degp(x) is 1 or 2 then (2) admits a solution if
and only if the conditions imposed by Lemma 2 are satisfied. We summarise our results
in the following theorem:

THEOREM 4 . Li R[z] t ie congruence (1) admits a solution if and only if the
following holds for every (real or complex) root a of f(x): if I denotes the multiplicity
of a in g(x) and k the multiplicity of a in f(x), then either

(i) k ^ I, or
(ii) m | I, and whenever a is real either (ff/p')(a) > 0 or else m is odd.

5. FINITE FIELDS

When if is a finite field there is an easy criterion to decide if an element a has an
m*h root in it, namely let e := (\K\ — l)/(m, \K\ — 1) and test if oe is equal to 1 or
not: in the first case a has exactly (m, |iif| — 1) roots in the field, in the second case it
has no roots. We summarise our results in the following theorem:

THEOREM 5 . Let F be a Unite field of characteristic q. Write m as qlr with
qj(r. In F[x] the congruence (1) admits a solution if and only if the following holds for
every irreducible factor p(x) of f(x): if d:= degp(x), e := (\F\d - l ) / ( r , \F\d - l) ,
I is equal to the highest exponent to which p(x) divides g{x) and k is equal to the
highest exponent to which p(x) divides f(x), then either

(i) k ^ I, or
(ii) m\l and (g(x)/p(x)lY = 1 (modp(x)).

We would like to add the fact that when F is a finite field there are very effi-
cient algorithms for factoring polynomials over F [1, 5], for computing the roots of
polynomials over F [7, 5] and for taking mth roots of elements of F [8].
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