VOL. 5 (197|), 197-202.

A finite set covering theorem
 Alan Brace and D.E. Daykin

Abstract

Let n, s, t be integers with $s>t>1$ and $n>(t+2) 2^{s-t-1}$. We prove that if n subsets of a set S with s elements have union S then some t of them have union S. The result is best possible.

1. Introduction

Small letters denote non-negative integers and large letters denote sets. In particular 0 is the empty set, and $[i, j]$ denotes the set $\{i, i+1, i+2, \ldots, j\}$. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are subsets of the set $S=[1, s]$ which cover (have union) S. We are here concerned with determining the smallest number of X_{i} which will cover S. Of course s of the X_{i} will cover S, just take a suitable X_{i} for each element of S. However can we be sure that t of the X_{i} will cover S if $t<s$? At the other extreme we could have all the $2^{s}-1$ proper subsets of S with no $t=1$ of them equal to S. So we assume $s>t>1$, and then an important example is

$$
E=\{X ; X=P \cup Q, P \subset[1, t+1],|P| \leq 1, Q \subset S \backslash P\}
$$

Since no set X in E contains two elements of [1, $t+1]$ it is clear that no t sets of E have union S, and the number e of sets in E is

$$
e=e(s, t)=(t+2) 2^{s-t-1}
$$

We can now state our

THEOREM. Let n, s, t be integers with $s>t>1$ and let $N=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be n different subsets X_{i} of $S=[1, s]$ with union S. Suppose also that no t of the X_{i} have wion S. Then
(i) $n \leq e$, and
(ii) if $3 \leq t$ and $n=e$ we can obtain N from E by permuting the elements of S.

When $t=2$ we can attain the value e in many ways beside E, for instance

$$
F=\{X ; X=[1] \text { or } X \subset[2, s], X \neq[2, s]\}
$$

or

$$
G=\{X ; X=[1] \cup Y \text { or } X=[2] \cup Y \text { or } X \subset[3, s], Y \subset[4, s]\}
$$

and so on. If in an application of the theorem one knew that the X_{i} have non-empty intersection T one could improve the result by restriction to $S \backslash T$.

2. Proof of (i)

Without loss of generality we strengthen the hypothesis of the theorem by assuming that n is as large as possible. This implies that if X is in N then all subsets of X are in N. When $t=2$ we can't have a subset X of S and its complement both in N so $n \leq \frac{1}{2} 2^{s}=e(s, 2)$ and (i) holds. When $t=s-1$ no set X of N can have more than one element, so $n \leq s+l=e(s, s-1)$ and again (i) holds. We now use double induction on s, t. We suppose $3 \leq t \leq s-2$ and that (i) holds in the two cases $s-l, t$ and $s-l, t-1$. Then we deduce that (i) holds for the case s, t. Clearly some set of N has more than one element so we assume $[1,2]$ is contained in some set in N.

To define a partition of N, for brevity we write 1,2 and 1 u 2 for the sets [1], [2] and [1, 2], and put

$$
B=\{X ; X \cup 1 \cup 2 \notin N, X \cup 1 \backslash 2 \in N, X \cup 2 \backslash 1 \in N\} .
$$

Then the partition is

$$
N=A \cup B_{0} \cup B_{1} \cup B_{2} \cup C_{1} \cup C_{2} \cup D
$$

where

$$
\begin{aligned}
A & =\{X ; X \cup 1 \cup 2 \in N\} \\
B_{0} & =\{X ; X \in B, 1 \notin X, 2 \notin X\} \\
B_{1} & =\{X ; X \in B, 1 \in X\} \\
B_{2} & =\{X ; X \in B, 2 \in X\} \\
C_{1} & =\{X ; X \cup 1 \backslash 2 \in N, X \cup 2 \backslash 1 \notin N\} \\
C_{2} & =\{X ; X \cup 1 \backslash 2 \notin N, X \cup 2 \backslash 1 \in N\}
\end{aligned}
$$

and

$$
D=\{X ; X \cup 1 \backslash 2 \notin N, X \cup 2 \backslash 1 \notin N\}
$$

Let a, b_{0}, b_{1}, \ldots denote the number of elements in the sets
A, B_{0}, B_{1}, \ldots respectively, even though some of these sets may be empty. If X is in C_{1} then all subsets of X are in N so

$$
\begin{equation*}
X \cup 1, X \backslash 1 \in C_{1} \text { for all } X \in C_{1} \tag{1}
\end{equation*}
$$

By similar reasoning we see that

$$
B_{1}=\left\{Y ; Y=X \cup 1, X \in B_{0}\right\} \text { and } B_{2}=\left\{Y ; Y=X \cup 2, X \in B_{0}\right\}
$$

and hence $b_{0}=b_{1}=b_{2}$.
Case 1. $b_{0} \leq d$. In this case we put

$$
\begin{aligned}
& C_{2}^{\prime}=\left\{X ; X \in C_{2}, 2 \notin X\right\} \cup\left\{Y ; Y=X \cup 1 \backslash 2, X \in C_{2}, 2 \in X\right\} \\
& D^{\prime}=\{Y ; Y=X \cup 1, X \in D\}
\end{aligned}
$$

and

$$
N^{\prime}=A \cup B_{0} \cup B_{1} \cup D^{\prime} \cup C_{1} \cup C_{2}^{\prime} \cup D .
$$

We have chosen N^{\prime} in such a way that, like in (1), we have

$$
\begin{equation*}
X \cup 1, X \backslash 1 \in N^{\prime} \text { for all } X \in N^{\prime} . \tag{2}
\end{equation*}
$$

Since $c_{2}^{\prime}=c_{2}$ and $d^{\prime}=d$ the number of sets in N^{\prime} is $n^{\prime}=n-b_{0}+d$. Roughly speaking the sets of N and N^{\prime} differ only with respect to the elements 1 and 2 . As [1, 2] is in A it is clear that N^{\prime} covers S.

Since (2) holds we can let $Y_{1}, Y_{2}, \ldots, Y_{\frac{1}{2} n}$, be the sets of the form
$\left\{Y ; Y \in N^{\prime}, l \notin Y\right\}$. These sets cover $[2, s]$ but we, claim that no t of them do so. For suppose $Y_{1}, Y_{2}, \ldots, Y_{t}$ cover $[2, s]$. Then the element 2 is in one of the sets, Y_{1} say, and so Y_{1} is in A, because 2 is only in the sets A of N^{\prime}. Moreover $Y_{1} \cup 1 \cup 2$ is also in A. For $2 \leq k \leq t$ there is a set $X_{i_{k}}$ of N which differs from Y_{k} only with respect to the elements 1 and 2 , so in N we have

$$
S=\left\{y_{1} \cup 1 \cup 2\right\} \cup x_{i_{2}} \cup x_{i_{3}} \cup \ldots \cup x_{i_{t}}
$$

a contradiction. By our induction hypothesis $\frac{1}{2} n^{\prime} \leq e(s-1, t)$, so

$$
n \leq n-b_{0}+d=n^{\prime} \leq 2 e(s-1, t)=e(s, t),
$$

and (i) holds in this case.
Case 2. $b_{0}>d$. We show that this case never arises. We put

$$
\begin{aligned}
B_{3} & =\left\{Y ; Y=X \cup 1 \cup 2, X \in B_{0}\right\} \\
M & =A \cup B_{0} \cup B_{1} \cup B_{2} \cup C_{1} \cup C_{2} \cup B_{3} \\
L & =\{[i] ; i \nmid M, i \in S\}
\end{aligned}
$$

and

$$
N^{\prime \prime}=L \cup M .
$$

If the sets in M cover S then L is empty, but if L is not empty then $L \subset D$ because N covers S. Also $n^{\prime \prime}=n+b_{0}-d+\mathcal{L}>n$, so because the X_{i} were chosen with n as large as possible, there are t sets $z_{1}, z_{2}, \ldots, z_{t}$ in $N^{\prime \prime}$ which cover S. If $L \neq 0$, every set [i] in L is a z_{k}, for otherwise the element i would not be covered. We claim that no z_{k} is in A. For otherwise for $1 \leq k \leq t$ we act as follows:
(α) if $z_{k} \in A$ let $X_{i_{k}}=z_{k} \cup 1 \cup 2 \in A$,
(β) if $z_{k} \in B_{3}$ let $X_{i_{k}}=z_{k} \backslash(1 \cup 2) \in B_{0}$, and
(γ) in all other cases let $X_{i_{k}}=z_{k}$.

Then we have the contradiction that $X_{i_{1}}, X_{i_{2}}, \cdots, X_{i_{t}}$ cover S in N. Next we claim that no two of the Z_{k} lie in

$$
H=B_{0} \cup B_{1} \cup B_{2} \cup B_{3} \cup C_{1} \cup C_{2} .
$$

Elements 1 and 2 must be covered by sets in H because they are not covered by sets in L. So suppose Z_{1}, Z_{2} are in H and cover l and 2. If $Z_{1}, Z_{2} \nmid\left(B_{0} \cup B_{3}\right)$ they are in N and we let $X_{i_{1}}, X_{i_{2}}$ be them. If $Z_{1}, Z_{2} \in\left(B_{0} \cup B_{3}\right)$ we put $X_{i_{1}}=Z_{1} \cup 1,2 \in B_{1} \subset N$ and $X_{i_{2}}=Z_{2} \cup 2 \backslash 1 \in B_{2} \subset N$. Finally if Z_{1} is not in $B_{0} \cup B_{3}$ but Z_{2} is in, we put $X_{i_{1}}=z_{1} \in N$ and $X_{i_{2}}=\left(Z_{2} \backslash[1,2]\right) \cup j \in N$, where j is that one of the elements 1,2 which is not in Z_{1}. Then for $3 \leq k \leq t$ we act as in (β) and (γ) above to obtain t sets in N which cover S, a contradiction.

Thus we conclude that $Z_{1}, Z_{2}, \ldots, Z_{t}$ consist of one set in B_{3} and $t-1$ sets in L, so $Z=t-1$. Without loss of generality assume these $t-1$ sets to be $[s-t+2],[s-t+3], \ldots,[s]$. We now observe that firstly, no set in N contains more than one element of $[s-t+2, s]$, and secondly, no set in N contains 1 or 2 together with an element of $[s-t+2, s]$. Otherwise we easily get t sets of N which cover S. Hence sets in N containing the element s must be of the form $W \cup s$ with $W \subset[3, s-t+1]$. The set $[3, s-t+1] u s$ itself cannot be in N or again we would get t sets of N covering S.

It now follows that the element s is in less than 2^{s-t-l} sets of N. No $t-1$ of the remaining sets cover [1, s-1] so the number of these, by our induction hypothesis, is not greater than $e(s-1, t-1)$. Therefore $n<2^{s-t-1}+e(s-1, t-1)=e(s, t)$ and this is fewer sets than we get with example E, contradicting our assumption that n was maximal. Thus this case is impossible, and (i) holds by induction.

3. Proof of (ii)

If $t=s-1$ then N has no set with 2 elements, so N is E, and (ii) holds in this case. We now use induction on s. In Section 2
we showed that no t of the sets $V=\left\{y_{1}, Y_{2}, \ldots, y_{\frac{1}{2} n},\right\}$ cover $[2, s]$, and we now have $n^{\prime}=e$. Thus by our induction hypothesis V is of the same form as example E, and it is important to know whether or not the element 2 is in the set corresponding to P. Before discussing the cases we observe that if $2<i<j \leq s$ and no set in V contains both i and j then no set in N contains both i and j.

Case 1. By permuting $[3, s]$ in S we get

$$
V=\{Y ; Y=P \cup Q, P \subset[s-t, s],|P| \leq 1, Q \subset[2, s] \backslash P\}, 2 \nmid P .
$$

Then after the permutation, no set in N contains two elements of [s-t, s], and since N has e sets, we must have

$$
N=\{X ; X=P \cup Q, P \subset[s-t, s],|P| \leq 1, Q \subset S \backslash P\} .
$$

Case 2. By permuting $[3, s]$ in S we get

$$
V=\{Y ; Y=P \cup Q, P \subset[2, t+2],|P| \leq 1, Q \subset[2, s] \backslash P\}, 2 \in P .
$$

Consider any two elements of $[3, t+2]$, say 3 and 4 . Now for $5 \leq k \leq t+2$ there is a set X_{k}, say, in N which contains the set $k \cup[t+3, s]$ of V. We claim that there are not two sets X_{3}, X_{4}, say, in N with $1,3 \in X_{3}$ and $2,4 \in X_{4}$. Otherwise the t sets $X_{3}, X_{4}, \ldots, X_{t+2}$ cover S in N. Hence, because the elements 3,4 were chosen arbitrarily, either

$$
N=\{X ; X=P \cup Q, P \subset[1] \cup[3, t+2],|P| \leq 1, Q \subset S \backslash P\}
$$

or

$$
N=\{X ; X=P \cup Q, P \subset[2, t+2],|P| \leq 1, Q \subset S \backslash P\},
$$

and the theorem follows inductively.

University of Western Australia, Nedlands, Western Australia;

University of Reading, Reading, England.

