J. Austral. Math. Soc. 20 (Series A) (1975), 332-347.

CHANGING THE SCALAR MULTIPLICATION ON A VECTOR LATTICE

PAUL CONRAD

(Received 13 June 1974)

Communicated by E. Strzelecki

Introduction

Throughout this paper only abelian *l*-groups will be considered and G will denote an abelian *l*-group. G is *large* in the *l*-group H or H is an essential extension of G if G is an *l*-subgroup of H and for each *l*-ideal $L \neq 0$ of H we have $L \cap G \neq 0$. A v-hull of G is a minimal vector lattice that contains G and is an essential extension of G. Each G admits a v-hull (Conrad (1970)). We shall be interested in the following properties of G.

I. G admits a scalar multiplication so that it is a vector lattice.

II. Any two scalar multiplications of G are connected by an *l*-automorphism of G.

III. G admits a unique v-hull.

Suppose that G satisfies I and let \cdot be a scalar multiplication for G. Then each *l*-automorphism ϕ determines a new scalar multiplication Φ .

 $r\Phi g = (r \cdot (g\phi))\phi^{-1}$ for each $r \in R$ and $g \in G$.

Note that ϕ is a linear *l*-isomorphism of (G, Φ) onto (G, \cdot) and so connects the two scalar multiplications. Thus if G satisfies II then G admits essentially only one scalar multiplication.

Two *l*-automorphisms α and β of G determine the same scalar multiplication.

if and only if $(r \cdot (g\alpha))\alpha^{-1}\beta = r \cdot (g\beta)$ for all $r \in R$ and $g \in G$ if and only if $(r \cdot h)\alpha^{-1}\beta = r \cdot (h\alpha^{-1}\beta)$ for all $r \in R$ and $h \in G$ if and only if $\alpha^{-1}\beta$ is linear with respect to \cdot .

Now let \mathscr{L} be the group of all *l*-automorphisms of G and let $\mathscr{L} = \{\alpha \in \mathscr{L} \mid \alpha \text{ is linear with respect to } \}$. If G satisfies II then there exists a one to one map of the set of all scalar multiplications of G onto the set of all left cosets of \mathscr{L} in \mathscr{L} .

We shall show that II is satisfied by a large class of vector lattices and that each *l*-group can be embedded in a vector lattice that satisfies II. Whether or not each *l*-group satisfies II remains an open and very difficult question, even for totally ordered vector lattices.

If G is a vector lattice with respect to two scalar multiplications, then the *l*-ideals of G are subspaces under both multiplications. In the unordered case there is no such preassigned set of subspaces and Example 5.1 shows that if $U \neq 0$ is an unordered real vector space then II is not satisfied.

An endomorphism α of an *l*-group G is a *p*-endomorphism (or a polar preserving endomorphism) if

$$x, y \in G$$
 and $x \land y = 0$ imply $x \alpha \land y = 0$.

The set S of all p-endomorphisms of G is a semiring. Thus the subring $\mathscr{P}(G)$ of the endomorphism ring of G that is generated by S is a directed po-ring with positive cone S. $\mathscr{P}(G)$ is called the ring of polar preserving endomorphisms of G. If G is archimedean then $\mathscr{P}(G)$ is an archimedean f-ring (see Bigard and Keimel (1969) or Conrad and Diem (1971)). A subring of $\mathscr{P}(G)$ that contains the identity e and is o-isomorphic to R will be called a real subfield of $\mathscr{P}(G)$.

PROPOSITION. There is a natural one to one correspondence between the real subfields of $\mathcal{P}(G)$ and the scalar multiplications on G. In particular, G satisfies I if and only if $\mathcal{P}(G)$ is a po real vector space.

PROOF. If (G, \cdot) is a vector lattice and $a \in R$ then define $a \in \mathscr{P}(G)$

$$(\cdot a)g = a \cdot g$$
 for all $g \in G$.

The map $a \to a$ is an o-isomorphism of R onto a real subfield of $\mathscr{P}(G)$. Since the only automorphism of the field R is the identity, distinct scalar multiplications of G map onto distinct real subfields of $\mathscr{P}(G)$. Thus the map η of \cdot onto the real subfield $\cdot R$ is one to one.

Now let D be a real subfield of $\mathscr{P}(G)$ and let π be the *o*-isomorphism of R onto D. For each $r \in R$ and $g \in G$ define

$$r \cdot g = (\pi r)g.$$

Then (G, \cdot) is a vector lattice and R = D. Thus η is a one to one map of the scalar multiplication of G onto the real subfields of $\mathcal{P}(G)$.

Finally each real subfield of $\mathscr{P}(G)$ determines a scalar multiplication of $\mathscr{P}(G)$ so that it is a poreal vector space. Thus G satisfies I if and only if $\mathscr{P}(G)$ contains a real subfield if and only if $\mathscr{P}(G)$ is a poreal vector space.

Let (G, \cdot) and (G, *) be vector lattices and let α be a group automorphism of G.

COROLLARY. α is a linear map of (G, \cdot) onto (G, *) if and only if $\alpha \cdot R\alpha^{-1} = *R$.

PROOF. (\rightarrow) For each $a \in R$ and $g \in G$

$$(\alpha \cdot a)g = \alpha(\cdot ag) = \alpha(a \cdot g) = a * (\alpha g) = *a(\alpha g) = (*a\alpha)g.$$

Thus $\alpha \cdot a = *a\alpha$ and hence $\alpha \cdot a\alpha^{-1} = *a$. Therefore $\alpha \cdot R\alpha^{-1} = *R$.

 (\leftarrow) The map $\cdot a \stackrel{\tau}{\to} \alpha \cdot a\alpha^{-1}$ is an isomorphism of $\cdot R$ onto *R, and since R admits only one automorphism, τ is the *o*-isomorphism $\cdot a \to *a$. Thus

 $\alpha \cdot a \alpha^{-1} = *a$ or $\alpha \cdot a = *a \alpha$ for all $a \in R$.

Thus for $a \in R$ and $g \in G$

$$\alpha(a \cdot g) = \alpha(\cdot ag) = (\alpha \cdot a)g = (\ast a\alpha)g = \ast a(\alpha g) = a \ast (\alpha g).$$

Therefore any results we obtain about I or II for G have applications to $\mathcal{P}(G)$ and conversely.

1. Archimedean *l*-Groups

Throughout this section let G be an archimedean *l*-group. In Conrad (1970), it is shown that G admits a unique v-hull G^v , and Bleier (1971) proves that G^v is the smallest archimedean vector lattice that contains G. Thus G satisfies III. Also G satisfies II since it admits at most one scalar multiplication. For if (G, \cdot) and (G, *) are vector lattices then the identity automorphism of G is linear (see Conrad (1970)).

Iwasawa (1943) showed that if G is divisible and complete then G satisfies I. Thus if G is essentially closed then it satisfies I. If G has a basis and is laterally complete then G is a cardinal product ΠT_{α} of archimedean o-groups T_{α} and hence G satisfies I if and only if each convex o-subgroup is o-isomorphic to R. If G is a subdirect sum of integers then the Dedekind-MacNeille completion G^{\uparrow} of G is a vector lattice if and only if each $0 < g \in G$ is unbounded (see Conrad (1970)).

PROPOSITION 1.1. G satisfies I if and only if each principal l-ideal G(g) satisfies I.

PROOF. If G satisfies I each *l*-ideal is a subspace. Now $G \subseteq G^{\nu}$. Thus since G^{ν} is archimedean each G(g) is a subspace of G^{ν} (see Conrad (1970)) and hence $G = \bigcup_{e \in G_{q}} G(g)$ is a subspace of G^{ν} .

Now $\mathscr{P}(G)$ is an archimedean *f*-ring and hence squares are positive. Thus a subring K of $\mathscr{P}(G)$ that is isomorphic to R is a totally ordered subring of $\mathscr{P}(G)$ and hence a real subfield provided that $e \in K$.

PROPOSITION 1.2. If S is an archimedean f-ring with identity e then there

exists a largest o-subring of S that contains e. In particular, S contains at most one real subfield.

PROOF. By Bernau's embedding theorem (Bernau (1965)) we may assume that S is an *l*-subring of the ring D(X) of almost finite continuous functions on a Stone space X and e is the identity for D(X). Let F be an o-subring of S that contains e. Then F consists of constant functions—for otherwise there exists $f \in F$ such that $0 < f(x) < f(y) < \infty$ for some pair $x, y \in X$. Thus there are positive integers m and n such that

$$nf(x) < me < nf(y)$$
.

Therefore nf and me are not comparable, a contradiction.

COROLLARY. An archimedean l-group G satisfies I if and only if the largest o-subring of $\mathcal{P}(G)$ that contains e is a real subfield. Since $\mathcal{P}(G)$ contains at most one real subfield, G admits at most one scalar multiplication.

THEOREM 1.3. An archimedean l-group G contains a largest l-subgroup H that is a vector lattice. H is the largest subspace of G^{ν} contained in G and H is an l-characteristic subgroup of G.

PROOF. If A and B are *l*-subgroups of G and vector lattices then they are subspaces of G^{ν} (Conrad (1970)). We show that the *l*-subgroup C of G generated by A and B is also a subspace of G^{ν} and hence a vector lattice.

The group A + B is a subspace of G^{v} and if $c \in C$ then

$$c = \bigvee_{X} \wedge_{Y} t_{xy}$$

where the t_{xy} belong to A + B and X and Y are finite. Thus for $r \in R$

$$rc = r(\vee \wedge t_{xy}) = \vee \wedge (rt_{xy}) \in C.$$

Thus G contains a largest *l*-subgroup H that is a vector lattice and H is a subspace of G^{ν} . The above argument shows that if D is a subspace of G^{ν} contained in G then the *l*-subgroup of G generated by D is also a subspace of G^{ν} . Thus H is the largest subspace of G^{ν} contained in G.

Finally suppose that α is an *l*-automorphism of *G*, then $H\alpha$ is an *l*-subgroup of *G* and a vector lattice (any *l*-homomorphism of a vector lattice into G^{ν} is necessarily linear). Therefore $H\alpha \subseteq H$.

REMARK. If G is an arbitrary *l*-group and an *l*-subgroup of a vector lattice K then the above proof shows that G contains a largest *l*-subgroup H that is also a subvector lattice of K, and H is the largest subspace of K contained in G. Example 5.9 shows that even if G is a vector lattice in its own right it need not equal H.

THEOREM 1.4. For an archimedean l-group G the following are equivalent.

1) G satisfies I.

2) Each principal l-ideal G(g) satisfies I.

3) $\mathcal{P}(G)$ satisfies I.

4) The largest o-subring of $\mathcal{P}(G)$ is a real subfield.

5) G is divisible and each cut in Q^+e contains an element of $\mathcal{P}(G)$, where e is the identity for $\mathcal{P}(G)$.

6) G is divisible and for an arbitrary $0 < g \in G$ each cut in Q^+g contains an element of G.

PROOF. We have shown 1), 2), 3), 4) are equivalent and clearly if G satisfies I then it is divisible. So we shall assume that G and hence $\mathcal{P}(G)$ are divisible.

If $0 < g \in G$ then a cut in Q^+g contains at most one element from G. For suppose that $a, b \in G$ belong to the cut. Then $a, b \in G(g)$. Let M be a maximal *l*-ideal of G(g). Modulo M a and b determine the same cut in Q^+g and so $a \equiv b \mod M$ for all such M. Thus a = b.

 $(4 \rightarrow 5)$. $Q^+e \subseteq F \cong R$, where F is the real o-subfield of $\mathscr{P}(G)$. Thus each cut in Q^+e contains an element of F.

 $(5 \to 6)$. Let (L, U) be a cut in Q^+g . Then the corresponding cut (\bar{L}, \bar{U}) in Q^+e contain a unique element α from $\mathscr{P}(G)$. Thus $g\alpha$ is contained in (L, U).

 $(6 \rightarrow 1)$. Let *a* be the element in *R* determined by the cut (L, U) in Q^+ and let *h* be the element in *G* contained in the corresponding cut (\bar{L}, \bar{U}) in Q^+g . Define ag = h. This determines a scalar multiplication on *G* so that it is a vector lattice.

PROPOSITION 1.5. For a vector lattice H the following are equivalent.

1) H is archimedean.

2) The scalar multiplication on each l-subspace S of H is unique.

PROOF. $(1 \rightarrow 2)$. If S is a vector lattice then it must be a subspace of H (Conrad (1970)).

 $(2 \rightarrow 1)$. If H is not archimedean then there exists $0 < b \leq a$ in H. The subspace $Ra \oplus Rb$ of H is totally ordered and hence an *l*-subspace of H. Let f be a homomorphism of Ra into Rb that is not linear and define

$$(r_1a + r_2b)\tau = r_1a + f(r_1a) + r_2b.$$

This is an *o*-automorphism of $Ra \oplus Rb$ that is not linear and so can be used to define a new scalar multiplication on $Ra \oplus Rb$, but this contradicts (2).

It is an open question whether or not (1) is equivalent to:

3) The scalar multiplication on H is unique. If H is totally ordered then a slight generalization of the above proof shows that (3) implies (1).

2. The *l*-Group $V(\Gamma, R)$

Let Γ be a po-set such that no incomparable elements have a lower bound usually called a root system. Let $V = V(\Gamma, R)$ be the set of all functions from Γ into the reals whose support satisfies the ACC. A component v_{γ} of $v \in V$ is maximal if $v_{\gamma} \neq 0$ and $v_{\alpha} = 0$ for all $\gamma < \alpha \in \Gamma$. Define $v \in V$ to be positive if each maximal component is positive. Then V is a vector lattice with respect to the natural addition and scalar multiplication (Conrad, Harvey and Holland (1963)).

Let A be an l-subgroup of V. A v-isomorphism τ of A into V is an l-isomorphism such that for each $a \in A$, a_{α} is a maximal component of a if and only if $(a\tau)_{\alpha}$ is a maximal component of $a\tau$.

LEMMA 2.1. Each v-isomorphism τ of V into itself is epimorphic.

PROOF. Consider $\theta < v \in V$ with a maximal component v_{α} . There is an element $u \in V$ with support α for which $(u\tau)_{\alpha} = v_{\alpha}$ since any *o*-isomorphism of *R* into *R* must be a multiplication by a positive real and hence an epimorphism.

Thus $V\tau$ is order dense in V and so τ preserves all infinite joins and intersections that exist in V (Bernau (1966)). Now $V\tau$ is laterally complete (i.e. each disjoint subset of V has a least upper bound) and so the join w of all the $u\tau$ (one for each maximal component of v) belongs to $V\tau$ and is a-equivalent to v ($mw \ge v$ and $nv \ge w$ for some positive integers m and n). Thus V is an a-extension of the a-closed l-group $V\tau$ and so $V = V\tau$. For a proof that V and hence $V\tau$ is a-closed see Conrad (1966).

LEMMA 2.2. If A is an l-subgroup of V and (A, *) is a vector lattice then the scalar multiplication * can be extended to V so that (V, *) is also a vector lattice.

PROOF. There exists a linear v-isomorphism τ of (A, *) into V that can be extended to a v-isomorphism α of V into V. For a proof of this see Conrad (1970) (τ is determined by a Banaschewski map for real subspaces but they are also rational subspaces and so we get α). Now by Lemma 2.1 α is epimorphic. For $r \in R$ and $v \in V$ define

$$r \not = v = (r(v\alpha))\alpha^{-1}.$$

This is a scalar multiplication for V and for $a \in A$ we have

$$r \neq a = (r(a\tau))\alpha^{-1} = ((r*a)\tau)\alpha^{-1} = ((r*a)\alpha)\alpha^{-1} = r*a$$

so # extends *.

REMARK. Example 5.4 shows that A need not be a subspace of V.

An *n*-automorphism of V is a v-automorphism that induces the identity on each V^{γ}/V_{γ} where

$$V^{\gamma} = \{ v \in V \mid v_{\alpha} = 0 \text{ for all } \alpha > \gamma \}, \text{ and}$$
$$V_{\gamma} = \{ v \in V \mid v_{\alpha} = 0 \text{ for all } \alpha \ge \gamma \}.$$

THEOREM 2.3. Each n-characteristic l-subgroup A of V satisfies II; in fact any two scalar multiplications on A are connected by an n-automorphism of V. A satisfies I if and only if A is a subspace of V.

PROOF. Let * be a scalar multiplication so that (A, *) is a vector lattice. By Lemma 2.2 * can be extended to V. Thus (see Conrad (1970)) there exists a linear v-isomorphism α of (V, *) into V and by Lemma 2.1 α is epimorphic. Now $V^{\gamma}\alpha = V^{\gamma}$ and $V_{\gamma}\alpha = V_{\gamma}$ so α induces an o-automorphism on each V^{γ}/V_{γ} . But $V^{\gamma}/V_{\gamma} \cong R$ and so these o-automorphisms are multiplications by positive reals. Let $\bar{\alpha}$ be the v-automorphisms of V determined by these multiplications. Then $\alpha \bar{\alpha}^{-1}$ is a linear n-automorphism of (V, *) onto V and since A is n-characteristic

$$(A,*)\alpha\bar{\alpha}^{-1}=A.$$

In particular, A is a subspace of V.

COROLLARY I. Each l-group can be embedded in a vector lattice that satisfies II.

PROOF. The main theorem in Conrad, Harvey and Holland (1963) asserts that each *l*-group can be embedded in a suitable $V(\Gamma, R)$.

COROLLARY II. Each l-ideal of V satisfies I and II.

PROOF. It suffices to show that if $\theta < v \in V$ then the principal *l*-ideal V(v) generated by v is *n*-characteristic. For each *l*-ideal of V is the join of a directed set of principal *l*-ideals and hence is *n*-characteristic.

Let τ be an *n*-automorphism of V. Then clearly v and $v\tau$ are *a*-equivalent and hence

$$V(v)\tau = V(v\tau) = V(v).$$

COROLLARY III. Let $\{A_{\lambda} | \lambda \in \Lambda\}$ be a set of a-closed o-groups (that is, Hahn groups). Then the cardinal sum $\sum A_{\lambda}$ and the cardinal product $\prod A_{\lambda}$ of the A_{λ} satisfy I and II.

PROOF. $\coprod A_{\lambda} = V(\Delta, R)$ when Δ is the join of the $\Gamma(A_{\lambda})$ and $\sum A_{\lambda}$ is an *l*-ideal of $\coprod A_{\lambda}$.

COROLLARY IV. If G is an n-characteristic l-subgroup of V then any two real subfields of $\mathcal{P}(G)$ are conjugate by a p-automorphism of G.

PROOF. This follows from the theory in the introduction and the fact that an n-automorphism of V is a p-automorphism.

Let N be the group of the *n*-automorphisms of V. If * is a scalar multiplication of V then Theorem 2.3 asserts that there exist $\alpha \in N$ such that

$$(rv)\alpha = r*(v\alpha)$$
 for all $r \in R$ and $v \in V$.

Thus each scalar multiplication of V is determined by an $\alpha \in N$ and the scalar multiplications of V determined by $\alpha, \beta \in N$ agree if and only if $\alpha \beta^{-1}$ is linear.

Let A be a vector lattice. Then we may assume that A is an *l*-subspace of $V = V(\Gamma, R)$ for a suitable Γ . Suppose that * is another scalar multiplication for A. Then we can extend * to V and there exists a linear *n*-automorphism τ of (V, *) onto V. In particular, A and A τ are subspace of V and $r^*a = (r(a\tau))\tau^{-1}$ for each $r \in R$ and $a \in A$. Conversely if τ is an *n*-automorphism of V and $A\tau$ is a subspace of V then for each $a \in A$ and $r \in R$ we define $r * a = (r(a\tau))\tau^{-1}$. Then (A, *) is a vector lattice and τ is a linear *l*-isomorphism of (A, *) onto A.

Therefore the scalar multiplications of A are determined by the n-automorphisms of V that map A onto a subspace of V.

3. The *l*-Group $\Sigma(\Gamma, R)$

Let
$$V = V(\Gamma, R)$$
 be the vector lattice investigated in the last section. Let

$$\Sigma = \Sigma(\Gamma, R) = \{v \in V | \text{support of } v \text{ is finite} \}$$

 $F = F(\Gamma, R) = \{ v \in V | \text{support of } v \text{ lies on a finite number of chains in } \Gamma \}$

A value of an element g of an *l*-group G is an *l*-ideal of G that is maximal without containing g. G is *finite valued* if each $g \in G$ has only a finite number of values. The set $\Gamma = \Gamma(G)$ of all the values of elements in G is a root system.

In Conrad (1974) it is shown that if A is a finite valued vector lattice with countable dimension then there exists a linear *l*-isomorphism of A onto $\Sigma(\Gamma, R)$, where Γ is the index set for the set of all the regular subgroups of the *l*-group A. In particular, A is completely determined by the root system Γ .

THEOREM 3.1. If A is a finite valued l-group then any two scalar multiplications of A for which the dimension of A is countable are connected by a v-automorphism of A.

PROOF. Let * and # be two such scalar multiplications. Then $(A, *) \cong \Sigma(\Gamma, R) \cong (A \#)$.

COROLLARY. Let Γ be a countable root system and let $\Sigma = \Sigma(\Gamma, R)$ with the natural scalar multiplication. If * is a new scalar multiplication for Σ then Σ and $(\Sigma, *)$ are connected by a v-automorphism if an only if $(\Sigma, *)$ has countable dimension.

THEOREM 3.2. Suppose that G is a finite valued l-group and $\Gamma(G)$ satisfies the DCC.

- 1) $\Sigma(\Gamma, R) = F(\Gamma, R)$ is the unique a-closure of G.
- 2) $\Sigma(\Gamma, R)$ is the unique a-extension of G that is a vector lattice.

3) $\Sigma(\Gamma, R)$ is the unique v-hull of G that is also an a-extension.

PROOF. Recall that H is an a-extension of G if H is an l-group, G is an l-subgroup if H and each $0 < h \in H$ is an a-equivalent to an element $0 < g \in G$ or equivalently $L \to L \cap G$ is a one to one mapping of the set of l-ideals of H onto the l-ideals of G. An a-closure of G is an a-extension of G that does not admit a proper a-extension. Each group admits an a-closure but usually not a unique one (Conrad (1966) or Wolfenstein).

We first show that each *a*-extension *H* of *G* is finite valued. Here we do not need the fact that Γ satisfies the DCC. For $0 < h \in H$ there is an element $0 < g \in G$ such that $\eta g > h$ and nh > g for some n > 0. Let $\{H_{\lambda} \mid \lambda \in \Lambda\}$ be the set of all values of *h* in *H*. Then they are also values of *g*. Thus $\{H_{\lambda} \cap G \mid \lambda \in \Lambda\}$ is a set of values of *g* in *G* and hence Λ is finite.

(1) Let K be an a-closure of G. Then since K is finite valued, divisible and $\Gamma(K)$ satisfies the DCC there is a value preserving *l*-isomorphism σ of K such that

$$K\sigma = \Sigma \left(\Gamma, K^{\gamma} / K_{\gamma} \right)$$

where K^{γ} is the intersection of all the *l*-ideals of K that properly contain K_{γ} (see Theorem 4.9 in Conrad (1970)). In particular, each K^{γ}/K_{γ} is *o*-isomorphic to a subgroup S_{γ} of R and so there exists an *l*-isomorphism τ of K so that

$$K\tau = \Sigma (\Gamma, S_{\gamma}) \subseteq \Sigma (\Gamma, R).$$

But clearly $\Sigma(\Gamma, R)$ is an *a*-extension of $\Sigma(\Gamma, S_{\gamma})$ and so since $K\tau$ is *a*-closed, $K\tau = \Sigma(\Gamma, R)$. Now $F(\Gamma, R)$ is always an *a*-closure of $\Sigma(\Gamma, R)$ (Conrad (1966) p. 147) and so in our case $F = \Sigma$.

(2) Suppose that K is an *a*-extension of G that is a vector lattice. Then each $K^{\gamma}/K_{\gamma} \cong R$ and so

$$K\tau = \Sigma (\Gamma, S_{\gamma}) = \Sigma (\Gamma, R).$$

(3) Since a v-hull of G is a vector lattice this is a special case of (2).

COROLLARY. For a root system Γ the following are equivalent.

- a) $\Sigma(\Gamma, R)$ is a-closed.
- b) $\Sigma(\Gamma, R) = F(\Gamma, R)$.
- c) Γ satisfies the DCC.

PROOF. We have shown c) \rightarrow a) \rightarrow b) and since F is always a-closed (b \rightarrow a).

 $(a \rightarrow c)$ If $\gamma_1 > \gamma_2 > \cdots$ is an inversely well ordered descending chain in Γ then let *a* be the element in $V(\Gamma, R)$ such that

$$a_{\gamma} = \begin{cases} 1 & \text{if } \gamma = \gamma_i & \text{for some } i \\ 0 & \text{otherwise.} \end{cases}$$

Then an easy computation shows that $[a] \oplus \Sigma$ is an *a*-extension of Σ and hence the chain must be finite.

REMARK. In Conrad (1970) it is shown that for a totally ordered group G of finite rank a v-hull need not be an a-extension so G need not have a unique v-hull. Example 5.5 shows that $\Sigma(\Gamma, R)$ need not be an n-characteristic subgroup of $V(\Gamma, R)$ so we cannot conclude from the theory in the last section that $\Sigma(\Gamma, R)$ satisfies II.

THEOREM 3.3. If G is a finite valued l-group and $\Gamma(G)$ satisfies the DCC then the following are equivalent.

- 1) G satisfies I.
- 2) Each G^{γ}/G_{γ} is o-isomorphic to R.
- 3) $G \cong \Sigma(\Gamma, R)$.
- 4) G is a-closed.
- If this is the case then G satisfies II.

PROOF. $1 \rightarrow 2$, and $3 \rightarrow 1$ and 2 are obvious. By Theorem 3.2 Σ is the unique *a*-closure of G and hence $3 \leftrightarrow 4$.

 $(2 \rightarrow 3)$. Since each G^{γ}/G_{γ} is divisible there exists a v-isomorphism σ such that

$$\Sigma(\Gamma, G^{\gamma}/G_{\gamma}) \subseteq G\sigma \subseteq V(\Gamma, G^{\gamma}/G_{\gamma})$$

(Conrad (1970)) and since $G^{\gamma}/G_{\gamma} \cong R$ for each $\gamma \in \Gamma$ we may assume

$$\Sigma(\Gamma, R) \subseteq G\sigma \subseteq V(\Gamma, R).$$

Now Γ satisfies the DCC and so by the proof of Theorem 4.9 in Conrad (1970) we have $\Sigma(\Gamma, R) = G\sigma$.

Now suppose that * is another scalar multiplication for Σ and for each $\gamma \in \Gamma$ define $e(\gamma)$

$$e(\gamma)_{\alpha} = \begin{cases} 1 & \text{if } \alpha = \gamma \\ 0 & \text{otherwise.} \end{cases}$$

Then $E = \{e(\gamma) \mid \gamma \in \Gamma\}$ is a basis for Σ and an independent subset of $(\Sigma, *)$ so the identity map on E can be lifted to linear v-isomorphism τ of Σ into $(\Sigma, *)$. Since Σ is *a*-closed and $(\Sigma, *)$ is an *a*-extension of $\Sigma\tau$, τ is epimorphic and hence G satisfies II. THEOREM 3.4. If G is an a-closed l-group that satisfies

(F) each bounded disjoint subset is finite,

Then G satisfies I and II.

PROOF. $F(\Gamma, R)$ is the unique *a*-closure of an *l*-group that satisfies (F) (see Conrad (1966)). Thus $G \cong F$ and so G satisfies I.

In Conrad (1966) it is shown that if G is a vector lattice that satisfies (F) then there exists a linear v-isomorphism τ such that $\Sigma(\Gamma, R) \subseteq G\tau \subseteq F(\Gamma, R)$ and hence F is an a-extension of $G\tau$. Thus if G is a-closed $G\tau = F$ and so II is satisfied.

REMARK. If G satisfies (F) then $F(\Gamma, R)$ is an *l*-ideal of $V(\Gamma, R)$ and so Theorem 3.4 follows immediately from Corollary II of Theorem 2.3. Byrd (1966) gives an example that shows that in general $F(\Gamma, R)$ need not be *n*-characteristic in $V(\Gamma, R)$.

Note that if $\Gamma(G)$ is finite then G satisfies the hypothesis of Theorem 3.2 and 3.3. Also if G satisfies these hypotheses then any two real subfields of $\mathscr{P}(G)$ are conjugate by a p-automorphism of G.

4. Totally Ordered Groups

Throughout this section G will denote a totally ordered group with Γ the index set for the set of components G^{γ}/G_{γ} of G. $V(\Gamma, R)$ is the unique a-closure of G (Hahn 1907)). Thus if G is a-closed then $G \cong V$ and so by Theorem 2.3 G satisfies I and II and so does each *l*-ideal of V. The next Proposition shows that this is all we can conclude from Theorem 2.3.

PROPOSITION 4.1. An n-characteristic subgroup L of V that is also a subspace is convex and conversely.

PROOF. We show that $V(g) \subseteq L$ for each $0 < g \in L$. Let g_{γ} be the maximal component of g and consider $0 < h \in V(g)$. If $V(h) \neq V(g)$ then $h \ll g$ and o there exists an *n*-automorphism of V that maps g onto g + h. Then $h = g + h - g \in L$. If V(h) = V(g) then there exists $r \in R$ such that $h_{\gamma} = rg_{\gamma}$ and so there exists an *n*-automorphism of V that maps rg onto h.

Note that we need the total order of G. For if $H = R \oplus R$ then $\{(x, x) | x \in R\}$ is an *n*-characteristic *l*-subgroup of H and a subspace but it is not an *l*-ideal.

Now suppose that Γ satisfies the DCC then $V = \Sigma(\Gamma, R)$ and by Theorems 3.1 and 3.2 we have:

V is the unique a-extension of G that is a vector lattice.

V is the unique v-hull of G that is also an a-extension.

Moreover the following are equivalent: G satisfies I; each $G^{\gamma}/G_{\gamma} \cong R$; $G \cong V$; G is *a*-closed.

PROPOSITION 4.2. For an o-group G the following are equivalent.
1) G satisfies I.
2) Each G(q) satisfies I.

PROOF. $(1 \rightarrow 2)$ Clear.

 $(2 \rightarrow 1)$ Let S be the collection of all pairs (L, *) where L is a convex subgroup of G and an ordered vector space with respect to the scalar multiplication *Define $(L, *) \leq (H, \#)$ if (L, *) is a subspace of (H, #). Then by Zorn's lemma there exists a maximal element (M, *) in S. We show M = G. Suppose by way of contradiction that $0 < g \in G \setminus M$. Then $G(g) \supset M$ and since M is divisible $G(g) = M \oplus D$ a lexicographic extension of M by the o-group D. Now by hypothesis G(g) admits a scalar multiplication # and since M is contained in G(g), (M, #) is a subspace. Thus $G(g)/M \cong D$ is also an ordered vector space say (D, \circ) . For $r \in R$ and $m + t \in M \oplus D$ define

$$r \cdot (m+d) = r * m + r \circ d.$$

Then $(G(g), \cdot)$ is an ordered vector space and (M, *) is a subspace, but this contradicts our choice of M and so M = G satisfies I.

5. Examples and open questions

EXAMPLE 5.1. A real non-ordered vector space U does not satisfy II. For let α be a group isomorphism of R onto the direct sum $\bigoplus_{\Lambda} R_{\lambda}$ and for r in the field R and x in the group R define

$$r \circ x = (r(x\alpha))\alpha^{-1}$$

where $r(x\alpha)$ is the natural scalar multiplication in $\bigoplus_{\Lambda} R_{\lambda}$. Then (R, \circ) is a real vector space of dimension $|\Lambda|$. Thus if $|\Lambda| > 1$ then (R, \circ) and (R, \cdot) are not connected by a group automorphism.

EXAMPLE 5.2. $R = D \oplus Q$ lexicographically ordered is a totally ordered group and a real vector space but it does not satisfy I. Also the cardinal sum $D \oplus Q$ is an archimedean *l*-group and a real vector space that does not satisfy I.

EXAMPLE 5.3. Let G be the subgroup of the cardinal product $\prod_{i=1}^{\infty} R_i$ generated by $\sum_{i=1}^{\infty} R_i$ and $(1, 1, 1, \cdots)$. Then G is an *l*-group and each $G^{\gamma}/G_{\gamma} \cong R$ except $G/\Sigma R_i$, but G does not satisfy I since it is not divisible.

If we totally order $\coprod R_i$ by defining (x_1, x_2, \cdots) to be positive if the first non-zero x_i is positive, then G is an o-group with each $G^{\gamma}/G_{\gamma} \cong R$ and G/C satisfies I for each non-zero convex subgroup C of G, but G does not satisfy I.

 $\coprod_{i=1}^{\infty} R_i.$ One should be able to show that if we impose the above total order on Hthen H does not satisfy I. If H does satisfy I then it follows from Lemma 2.2 and Theorem 2.3 that there exists an *n*-automorphism τ of $\coprod R_i$ such that $H\tau$ is a subspace.

EXAMPLE 5.4. Let $V = \prod_{i=0}^{\infty} R_i$ be totally ordered as in the last example. Let μ be a group isomorphism of R onto $\prod_{i=1}^{\infty} Q_i$

$$a \rightarrow (\mu_1(a), \mu_2(a), \cdots).$$

Define τ

$$(a_0, a_1, a_2, \cdots)\tau = (a_0, \mu_1(a_0) + a_1, \mu_2(a_0) + a_2, \cdots).$$

Then τ is an *n*-automorphism of *V*. Now $A = (\sum_{i=0}^{\infty} R_i)\tau$ is *o*-isomorphic to $\sum_{i=0}^{\infty} R_i$ and so it admits a scalar multiplication but it is not a subspace of *V*. For pick the $a \in R$ for which $a\mu = (1, 1, 1, \cdots)$. Then $(a, 0, 0, \cdots)\tau = (a, 1, 1, \cdots) \in A$ but $r(a, 1, 1, \cdots) \notin A$ for $r \in R \setminus Q$.

EXAMPLE 5.5. Let $V = \prod_{i=1}^{\infty} R_i$ totally ordered as above and let $G = \sum_{i=1}^{\infty} R_i$. Then the map

$$(1, 0, 0, \dots) \rightarrow (1, 1, 1, \dots)$$

 $(0, 1, 0, \dots) \rightarrow (0, 1, 1, \dots)$
.....

determines a linear v-isomorphism σ of Σ into V such that

 $\Sigma \subset \Sigma \sigma \subset V.$

The map

$$(1, 0, 0, \dots) \rightarrow (1, 1, 0, 0, \dots)$$

 $(0, 1, 0, \dots) \rightarrow (0, 1, 1, 0, \dots)$

determines a linear v-isomorphism of Σ onto a proper subgroup of itself.

The map

$$(1, 0, 0, \dots) \to (1, 1, 1, \dots)$$
$$(0, 1, 0, \dots) \to (0, 1, 0, \dots)$$
$$(0, 0, 1, 0, \dots) \to (0, 0, 1, 0, \dots)$$
$$\dots$$

determines a map σ of Σ into V such that $\Sigma \mid \Sigma \sigma$.

EXAMPLE 5.6. Let

and let $V = V(\Gamma, R)$. The map

$$(1, 0, 0, \dots) \to (1, 1, 1, \dots)$$
$$(0, 1, 0, \dots) \to (0, 1, 0, \dots)$$
$$(0, 0, 1, 0, \dots) \to (0, 0, 1, 0, \dots)$$

determines an *n*-isomorphism σ of Σ into V such that $\Sigma \mid \mid \Sigma \sigma$.

EXAMPLE 5.7. An a-closed archimedean l-group need not satisfy I. Let

$$G = \prod_{i=1}^{\infty} Z_i \subset C \subset \prod_{i=1}^{\infty} R_i$$

cardinally ordered, where C consists of all the elements of the form $g + (x_1, x_2, \cdots)$ where $g \in G$ and $0 \leq x_i \leq 1$ and the number of distinct x_i is finite. Thus C = G + F, where F is the group of all elements in $\coprod R_i$ with finite range. It is shown in Conrad (1966) that C is an a-closure of G. If C is a vector lattice then it must be a subspace of $\prod R_i$, but $\sqrt{2(1, 2, 3, \cdots)} \notin C$.

Note also that the v-hull G^v of G is not an a-extension of G. For clearly $G^v \supset C$. Actually

$$G^{v} = \{a \in \coprod R_{i} | \text{ there exists reals } r_{1}, \dots, r_{k} \text{ such that each component of } a \text{ is of the form } x_{1}r_{1} + x_{2}r_{2} + \dots + x_{k}r_{k} \text{ with } x_{i} \in Z\}.$$

REMARK. It can be shown that a hyper-archimedean *a*-closed *l*-group need not satisfy I.

EXAMPLE 5.8. A minimal vector lattice that contains the o-subgroup $[1] \oplus [\sqrt{2}] \oplus [\pi]$ of R need not be totally ordered. Let f be a homomorphism of R into $R \oplus R$; $f(a) = (f_1(a), f_2(a))$ where

$$f(1) = (1, 1)$$

$$f(2) = (\sqrt{2}, \sqrt{2} + 1)$$

$$f(\pi) = (\pi + 1, \pi).$$
and let $V = V(\Gamma, R)$.

Define $(a_0, a_1, a_2)\tau = (a_0, a_1 + f_1(a_0), a_2 + f_2(a_0))$. Then τ is an *n*-automorphism of V.

Define $r * (x\tau) = (rx)\tau$ for all $x \in V$ and $r \in R$. Then (V, *) is a vector lattice. $r * (a_0, a_1 + f_1(a_0), a_2 + f_2(a_0)) = (ra_0, ra_1, ra_2)\tau = (ra_0, ra_1 + f_1(ra_0), ra_2 + f_2(ra_0)).$ If $a_0 = 1$ and $a_1 = a_2 = -1$ we have

$$r * (1,0,0) = (r, -r + f_1(r), -r + f_2(r)).$$

In particular

$$\sqrt{2} * (1, 0, 0) = (\sqrt{2}, 0, 1)$$

 $\pi * (1, 0, 0) = (\pi, 1, 0).$

Now let G be the o-subgroup of V generated by (1,0,0), (2,0,0) and $(\pi,0,0)$. Then V is a minimal vector lattice that contains G. Of course V is not the v-hull of G.

EXAMPLE 5.9. A finite valued *l*-group G with $\Gamma(G)$ satisfying the DCC that admits two non-isomorphic v-hulls. Let Γ be the root system

and let $V = V(\Gamma, R)$. Let f be an isomorphism of R onto $\coprod_{i=1}^{\infty} R_i$ such that $f(1) = (1, 0, 0, \dots)$ and in general $f(x) = (f_1(x), f_2(x), \dots)$. Define

$$(x; x_1, x_2, \cdots)\tau = (x; x_1 + f_1(x), x_2 + f_2(x), \cdots)$$

Then τ is an *n*-automorphism of V. For $v \in V$ and $r \in R$ define $r \cdot (v\tau) = (rv)\tau$. Then (V, \cdot) is a vector lattice.

$$r \cdot (x; f_1(x), f_2(x), \cdots) = r \cdot (x; 0, 0, \cdots)\tau = (rx; 0, 0, \cdots)\tau$$

= $(rx; f_1(rx), f_2(rx), \cdots).$

In particular for x = 1 we have

$$r \cdot (1; 1, 0, 0, \cdots) = (r; f_1(r), f_2(r), \cdots).$$

Thus (V, \cdot) is a v-hull of $G = \Sigma(\Gamma, R)$ and G is also a vector lattice with respect to the natural scalar multiplication. Now $G \not\cong V$ since the maximal *l*-ideal of V is laterally complete but the maximal *l*-ideal of G is not.

Note, of course, that the v-hull V of G is not finite valued and it is not an a-extension of G.

Some open questions

1) Does II always hold?

- 2) If G is an archimedean *l*-group and each $G^{\gamma}/G_{\gamma} \cong R$ then does G satisfy I?
- 3) If G is an *l*-group and each G(g) satisfies I then does G satisfy I?

4) If G is a vector lattice with a unique scalar multiplication then is G archimedean?

References

- S. Bernau (1965), 'Unique representations of Archimedean lattice groups and normal Archimedean lattice rings', Proc. London Math. Soc. 15, 599-631.
- S. Bernau (1966), Orthocompletions of lattice groups', Proc. London Math. Soc. 16, 107-130.
- A. Bigard and K. Keimel (1969), 'Sur les endomorphismes conservant les polares d'un groupe réticule archimedien', Bull. Soc. France 97, 381-398.
- R. Bleier (1971), 'Minimal vector lattice cover', Bull. Australian Math. Soc. 5, 331-335.
- R. Byrd (1966), Lattices ordered groups (Dissertation Tulane Univ. 1966).
- Paul Conrad (1966), 'Archimedean extensions of lattice-ordered groups', J. Indian Math. Soc. 30, 131–160.
- Paul Conrad, J. Harvey and C. Holland (1963), 'The Hahn embedding theorem for abelian lattice ordered groups', *Trans. Amer. Math. Soc.* 108, 143–169.
- Paul Conrad (1970), Lattice ordered groups (Lecture Notes, Tulane Univ. 1970).
- Paul Conrad and J. Diem (1971), 'The ring of polar preserving endomorphisms of an *l*-group', *Illinois J. Math.* 15, 222-240.
- Paul Conrad (1974), 'Countable vector lattices', Bull. Austral. Math. Soc. 10, 371-376.
- H. Hahn (1907), 'Uber die nichtarchimedischen Grossensysteme', Sitzungsberichte der Kaiserlchen Akademie der Wissensschaften, Vienna 116, 601-653.
- K. Iwasawa (1943), 'On the structure of conditionally complete lattice-groups', Japan J. Math. 18, 777–789.
- S. Wolfenstein, Contribution à l'étude des groupes réticules: extensions archimediennes, groupes à valeur normales (Thèse, U. of Paris).

University of Kansas LAWRENCE Kansas 6604, U.S.A.