CHANGING THE SCALAR MULTIPLICATION ON A VECTOR LATTICE

PAUL CONRAD

(Received 13 June 1974)
Communicated by E. Strzelecki

Introduction

Throughout this paper only abelian l-groups will be considered and G will denote an abelian l-group. G is large in the l-group H or H is an essential extension of G if G is an l-subgroup of H and for each l-ideal $L \neq 0$ of H we have $L \cap G \neq 0$. A v-hull of G is a minimal vector lattice that contains G and is an essential extension of G. Each G admits a v-hull (Conrad (1970)). We shall be interested in the following properties of G.
I. G admits a scalar multiplication so that it is a vector lattice.
II. Any two scalar multiplications of G are connected by an l-automorphism of G.
III. G admits a unique v-hull.

Suppose that G satisfies I and let \cdot be a scalar multiplication for G. Then each l-automorphism ϕ determines a new scalar multiplication Φ.

$$
r \Phi g=(r \cdot(g \phi)) \phi^{-1} \text { for each } r \in R \text { and } g \in G .
$$

Note that ϕ is a linear l-isomorphism of (G, Φ) onto (G, \cdot) and so connects the two scalar multiplications. Thus if G satisfies II then G admits essentially only one scalar multiplication.

Two l-automorphisms α and β of G determine the same scalar multiplication.
if and only if $(r \cdot(g \alpha)) \alpha^{-1} \beta=r \cdot(g \beta)$ for all $r \in R$ and $g \in G$ if and only if $(r \cdot h) \alpha^{-1} \beta=r \cdot\left(h \alpha^{-1} \beta\right)$ for all $r \in R$ and $h \in G$ if and only if $\alpha^{-1} \beta$ is linear with respect to \cdot.

Now let \mathscr{L} be the group of all l-automorphisms of G and let $\mathscr{L}=\{\alpha \in \mathscr{L} \mid \alpha$ is linear with respect to $\cdot\}$. If G satisfies II then there exists a one to one map of the set of all scalar multiplications of G onto the set of all left cosets of \mathscr{L} in \mathscr{L}.

We shall show that II is satisfied by a large class of vector lattices and that each l-group can be embedded in a vector lattice that satisfies II. Whether or not each l-group satisfies II remains an open and very difficult question, even for totally ordered vector lattices.

If G is a vector lattice with respect to two scalar multiplications, then the l-ideals of G are subspaces under both multiplications. In the unordered case there is no such preassigned set of subspaces and Example 5.1 shows that if $U \neq 0$ is an unordered real vector space then II is not satisfied.

An endomorphism α of an l-group G is a p-endomorphism (or a polar preserving endomorphism) if

$$
x, y \in G \text { and } x \wedge y=0 \text { imply } x \alpha \wedge y=0 .
$$

The set S of all p-endomorphisms of G is a semiring. Thus the subring $\mathscr{P}(G)$ of the endomorphism ring of G that is generated by S is a directed po-ring with positive cone $S . \mathscr{P}(G)$ is called the ring of polar preserving endomorphisms of G. If G is archimedean then $\mathscr{P}(G)$ is an archimedean f-ring (see Bigard and Keimel (1969) or Conrad and Diem (1971)). A subring of $\mathscr{P}(G)$ that contains the identity e and is o-isomorphic to R will be called a real subfield of $\mathscr{P}(G)$.

Proposirion. There is a natural one to one correspondence between the real subfields of $\mathscr{P}(G)$ and the scalar multiplications on G. In particular, G satisfies I if and only if $\mathscr{P}(G)$ is a po real vector space.

Proof. If (G, \cdot) is a vector lattice and $a \in R$ then define $\cdot a \in \mathscr{P}(G)$

$$
(\cdot a) g=a \cdot g \text { for all } g \in G
$$

The map $a \rightarrow a$ is an o-isomorphism of R onto a real subfield of $\mathscr{P}(G)$. Since the only automorphism of the field R is the identity, distinct scalar multiplications of G map onto distinct real subfields of $\mathscr{P}(G)$. Thus the map η of • onto the real subfield $\cdot R$ is one to one.

Now let D be a real subfield of $\mathscr{P}(G)$ and let π be the o-isomorphism of R onto D. For each $r \in R$ and $g \in G$ define

$$
r \cdot g=(\pi r) g
$$

Then (G, \cdot) is a vector lattice and $\cdot R=D$. Thus η is a one to one map of the scalar multiplication of G onto the real subfields of $\mathscr{P}(G)$.

Finally each real subfield of $\mathscr{P}(G)$ determines a scalar multiplication of $\mathscr{P}(G)$ so that it is a po real vector space. Thus G satisfies I if and only if $\mathscr{P}(G)$ contains a real subfield if and only if $\mathscr{P}(G)$ is a po real vector space.

Let (G, \cdot) and ($G, *$) be vector lattices and let α be a group automorphism of G.

Corollary. α is a linear man of (G, \cdot) onto ($G, *$) if and only if $\alpha \cdot R \alpha^{-1}={ }^{*} R$.

Proof. (\rightarrow) For each $a \in R$ and $g \in G$

$$
(\alpha \cdot a) g=\alpha(\cdot a g)=\alpha(a \cdot g)=a *(\alpha g)={ }^{*} a(\alpha g)=\left({ }^{*} a \alpha\right) g .
$$

Thus $\alpha \cdot a={ }^{*} a \alpha$ and hence $\alpha \cdot a \alpha^{-1}={ }^{*} a$. Therefore $\alpha \cdot R \alpha^{-1}={ }^{*} R$.
(\leftarrow) The map $\cdot a \stackrel{\tau}{\rightarrow} \alpha \cdot a \alpha^{-1}$ is an isomorphism of $\cdot R$ onto ${ }^{*} R$, and since R admits only one automorphism, τ is the o-isomorphism $\cdot a \rightarrow{ }^{*} a$. Thus

$$
\alpha^{\prime} a \alpha^{-1}={ }^{*} a \text { or } \alpha^{\prime} a={ }^{*} a \alpha \text { for all } a \in R .
$$

Thus for $a \in R$ and $g \in G$

$$
\alpha(a \cdot g)=\alpha(\cdot a g)=(\alpha \cdot a) g=\left({ }^{*} a \alpha\right) g={ }^{*} a(\alpha g)=a *(\alpha g) .
$$

Therefore any results we obtain about I or II for G have applications to $\mathscr{P}(G)$ and conversely.

1. Archimedean l-Groups

Throughout this section let G be an archimedean l-group. In Conrad (1970), it is shown that G admits a unique v-hull G^{v}, and Bleier (1971) proves that G^{v} is the smallest archimedean vector lattice that contains G. Thus G satisfies III. Also G satisfies II since it admits at most one scalar multiplication. For if (G, \cdot) and ($G, *$) are vector lattices then the identity automorphism of G is linear (see Conrad (1970)).

Iwasawa (1943) showed that if G is divisible and complete then G satisfies I. Thus if G is essentially closed then it satisfies I. If G has a basis and is laterally complete then G is a cardinal product ΠT_{α} of archimedean o-groups T_{α} and hence G satisfies I if and only if each convex o-subgroup is o-isomorphic to R. If G is a subdirect sum of integers then the Dedekind-MacNeille completion G^{\wedge} of G is a vector lattice if and only if each $0<g \in G$ is unbounded (see Conrad (1970)).

Proposition 1.1. G satisfies I if and only if each principal l-ideal $G(g)$ satisfies I.

Proof. If G satisfies I each l-ideal is a subspace. Now $G \subseteq G^{v}$. Thus since G^{v} is archimedean each $G(g)$ is a subspace of G^{v} (see Conrad (1970)) and hence $G=\bigcup_{\epsilon G g} G(g)$ is a subspace of G^{v}.

Now $\mathscr{P}(G)$ is an archimedean f-ring and hence squares are positive. Thus a subring K of $\mathscr{P}(G)$ that is isomorphic to R is a totally ordered subring of $\mathscr{P}(G)$ and hence a real subfield provided that $e \in K$.

Proposition 1.2. If S is an archimedean f-ring with identity e then there
exists a largest o-subring of S that contains e. In particular, S contains at most one real subfield.

Proof. By Bernau's embedding theorem (Bernau (1965)) we may assume that S is an l-subring of the ring $D(X)$ of almost finite continuous functions on a Stone space X and e is the identity for $D(X)$. Let F be an o-subring of S that contains e. Then F consists of constant functions-for otherwise there exists $f \in F$ such that $0<f(x)<f(y)<\infty$ for some pair $x, y \in X$. Thus there are positive integers m and n such that

$$
n f(x)<m e<n f(y)
$$

Therefore $n f$ and me are not comparable, a contradiction.
Corollary. An archimedean l-group G satisfies I if and only if the largest o-subring of $\mathscr{P}(G)$ that contains e is a real subfield. Since $\mathscr{P}(G)$ contains at most one real subfield, G admits at most one scalar multiplication.

Theorem 1.3. An archimedean l-group G contains a largest l-subgroup H that is a vector lattice. H is the largest subspace of G^{v} contained in G and H is an l-characteristic subgroup of G.

Proof. If A and B are l-subgroups of G and vector lattices then they are subspaces of G^{v} (Conrad (1970)). We show that the l-subgroup C of G generated by A and B is also a subspace of G^{v} and hence a vector lattice.

The group $A+B$ is a subspace of G^{v} and if $c \in C$ then

$$
c=V_{X} \wedge_{Y} t_{x y}
$$

where the $t_{x y}$ belong to $A+B$ and X and Y are finite. Thus for $r \in R$

$$
r c=r\left(\vee \wedge t_{x y}\right)=\vee \wedge\left(r t_{x y}\right) \in C .
$$

Thus G contains a largest l-subgroup H that is a vector lattice and H is a subspace of G^{v}. The above argument shows that if D is a subspace of G^{v} contained in G then the l-subgroup of G generated by D is also a subspace of G^{v}. Thus H is the largest subspace of G^{v} contained in G.

Finally suppose that α is an l-automorphism of G, then $H \alpha$ is an l-subgroup of G and a vector lattice (any l-homomorphism of a vector lattice into G^{v} is necessarily linear). Therefore $H \alpha \subseteq H$.

Remark. If G is an arbitrary l-group and an l-subgroup of a vector lattice K then the above proof shows that G contains a largest l-subgroup H that is also a subvector lattice of K, and H is the largest subspace of K contained in G. Example 5.9 shows that even if G is a vector lattice in its own right it need not equal H.

Theorem 1.4. For an archimedean l-group G the following are equivalent.

1) G satisfies I.
2) Each principal l-ideal $G(g)$ satisfies I.
3) $\mathscr{P}(G)$ satisfies I.
4) The largest o-subring of $\mathscr{P}(G)$ is a real subfield.
5) G is divisible and each cut in $Q^{+} e$ contains an element of $\mathscr{P}(G)$, where e is the identity for $\mathscr{P}(G)$.
6) G is divisible and for an arbitrary $0<g \in G$ each cut in $Q^{+} g$ contains an element of G.

Proof. We have shown 1), 2), 3), 4) are equivalent and clearly if G satisfies I then it is divisible. So we shall assume that G and hence $\mathscr{P}(G)$ are divisible.

If $0<g \in G$ then a cut in $Q^{+} g$ contains at most one element from G. For suppose that $a, b \in G$ belong to the cut. Then $a, b \in G(g)$. Let M be a maximal l-ideal of $G(g)$. Modulo $M a$ and b determine the same cut in $Q^{+} g$ and so $a \equiv b \bmod M$ for all such M. Thus $a=b$.
$(4 \rightarrow 5) . Q^{+} e \subseteq F \cong R$, where F is the real o-subfield of $\mathscr{P}(G)$. Thus each cut in $Q^{+} e$ contains an element of F.
$(5 \rightarrow 6)$. Let (L, U) be a cut in $Q^{+} g$. Then the corresponding cut (\bar{L}, \bar{U}) in $Q^{+} e$ contain a unique element α from $\mathscr{P}(G)$. Thus $g \alpha$ is contained in (L, U).
$(6 \rightarrow 1)$. Let a be the element in R determined by the cut (L, U) in Q^{+}and let h be the element in G contained in the corresponding cut (\bar{L}, \bar{U}) in $Q^{+} g$. Define $a g=h$. This determines a scalar multiplication on G so that it is a vector lattice.

Proposition 1.5. For a vector lattice H the following are equivalent.

1) H is archimedean.
2) The scalar multiplication on each l-subspace S of H is unique.

Proof. ($1 \rightarrow 2$). If S is a vector lattice then it must be a subspace of H (Con$\operatorname{rad}(1970)$).
$(2 \rightarrow 1)$. If H is not archimedean then there exists $0<b \ll a$ in H. The subspace $R a \oplus R b$ of H is totally ordered and hence an l-subspace of H. Let f be a homomorphism of $R a$ into $R b$ that is not linear and define

$$
\left(r_{1} a+r_{2} b\right) \tau=r_{1} a+f\left(r_{1} a\right)+r_{2} b
$$

This is an o-automorphism of $R a \oplus R b$ that is not linear and so can be used to define a new scalar multiplication on $R a \oplus R b$, but this contradicts (2).

It is an open question whether or not (1) is equivalent to:
3) The scalar multiplication on H is unique. If H is totally ordered then a slight generalization of the above proof shows that (3) implies (1).

2. The l-Group $V(\Gamma, R)$

Let Γ be a po-set such that no incomparable elements have a lower bound usually called a root system. Let $V=V(\Gamma, R)$ be the set of all functions from Γ into the reals whose support satisfies the ACC. A component v_{γ} of $v \in V$ is maximal if $v_{\gamma} \neq 0$ and $v_{\alpha}=0$ for all $\gamma<\alpha \in \Gamma$. Define $v \in V$ to be positive if each maximal component is positive. Then V is a vector lattice with respect to the natural addition and scalar multiplication (Conrad, Harvey and Holland (1963)).

Let A be an l-subgroup of V. A v-isomorphism τ of A into V is an l-isomorphism such that for each $a \in A, a_{\alpha}$ is a maximal component of a if and only if $(a \tau)_{\alpha}$ is a maximal component of $a \tau$.

Lemma 2.1. Each v-isomorphism τ of V into itself is epimorphic.
Proof. Consider $\theta<v \in V$ with a maximal component v_{α}. There is an element $u \in V$ with support α for which $(u \tau)_{\alpha}=v_{\alpha}$ since any o-isomorphism of R into R must be a multiplication by a positive real and hence an epimorphism.

Thus $V \tau$ is order dense in V and so τ preserves all infinite joins and intersections that exist in V (Bernau (1966)). Now $V \tau$ is laterally complete (i.e. each disjoint subset of V has a least upper bound) and so the join w of all the $u \tau$ (one for each maximal component of v) belongs to $V \tau$ and is a-equivalent to v ($m w \geqq v$ and $n v \geqq w$ for some positive integers m and n). Thus V is an a-extension of the a-closed l-group $V \tau$ and so $V=V \tau$. For a proof that V and hence $V \tau$ is a-closed see Conrad (1966).

Lemma 2.2. If A is an l-subgroup of V and $(A, *)$ is a vector lattice then the scalar multiplication * can be extended to Vso that ($V, *$) is also a vector lattice.

Proof. There exists a linear v-isomorphism τ of $(A, *)$ into V that can be extended to a v-isomorphism α of V into V. For a proof of this see Conrad (1970) (τ is determined by a Banaschewski map for real subspaces but they are also rational subspaces and so we get α). Now by Lemma 2.1α is epimorphic. For $r \in R$ and $v \in V$ define

$$
r \# v=(r(v \alpha)) \alpha^{-1}
$$

This is a scalar multiplication for V and for $a \in A$ we have

$$
r \# a=(r(a \tau)) \alpha^{-1}=((r * a) \tau) \alpha^{-1}=((r * a) \alpha) \alpha^{-1}=r * a
$$

so \# extends *.
Remark. Example 5.4 shows that A need not be a subspace of V.
An n-automorphism of V is a v-automorphism that induces the identity on each V^{γ} / V_{γ} where

$$
\begin{gathered}
V^{\gamma}=\left\{v \in V \mid v_{\alpha}=0 \text { for all } \alpha>\gamma\right\}, \text { and } \\
V_{\gamma}=\left\{v \in V \mid v_{\alpha}=0 \text { for all } \alpha \geqq \gamma\right\} .
\end{gathered}
$$

Theorem 2.3. Each n-characteristic l-subgroup A of V satisfies II; in fact any two scalar multiplications on A are connected by an n-automorphism of V. A satisfies I if and only if A is a subspace of V.

Proof. Let $*$ be a scalar multiplication so that $(A, *)$ is a vector lattice. By Lemma 2.2 * can be extended to V. Thus (see Conrad (1970)) there exists a linear v-isomorphism α of $(V, *)$ into V and by Lemma 2.1α is epimorphic. Now $V^{\gamma} \alpha=V^{\gamma}$ and $V_{\gamma} \alpha=V_{\gamma}$ so α induces an o-automorphism on each V^{γ} / V_{γ}. But $V^{\gamma} / V_{\gamma} \cong R$ and so these o-automorphisms are multiplications by positive reals. Let $\bar{\alpha}$ be the v-automorphisms of V determined by these multiplications. Then $\alpha \bar{\alpha}^{-1}$ is a linear n-automorphism of $(V, *)$ onto V and since A is n-characteristic

$$
(A, *) \alpha \bar{\alpha}^{-1}=A
$$

In particular, A is a subspace of V.
Corollary I. Each l-group can be embedded in a vector lattice that satisfies II.

Proof. The main theorem in Conrad, Harvey and Holland (1963) asserts that each l-group can be embedded in a suitable $V(\Gamma, R)$.

Corollary II. Each l-ideal of V satisfies I and II.
Proof. It suffices to show that if $\theta<v \in V$ then the principal l-ideal $V(v)$ generated by v is n-characteristic. For each l-ideal of V is the join of a directed set of principal l-ideals and hence is n-characteristic.

Let τ be an n-automorphism of V. Then clearly v and $v \tau$ are a-equivalent and hence

$$
V(v) \tau=V(v \tau)=V(v)
$$

Corollary III. Let $\left\{A_{\lambda} \mid \lambda \in \Lambda\right\}$ be a set of a-closed o-groups (that is, Hahn groups). Then the cardinal sum ΣA_{λ} and the cardinal product $\left\lfloor A_{\lambda}\right.$ of the A_{λ} satisfy I and II.

Proof. $\coprod A_{\lambda}=V(\Delta, R)$ when Δ is the join of the $\Gamma\left(A_{\lambda}\right)$ and ΣA_{λ} is an l-ideal of $\coprod A_{\lambda}$.

Corollary IV. If G is an n-characteristic l-subgroup of V then any two real subfields of $\mathscr{P}(G)$ are conjugate by a p-automorphism of G.

Proof. This follows from the theory in the introduction and the fact that an n-automorphism of V is a p-automorphism.

Let N be the group of the n-automorphisms of V. If $*$ is a scalar multiplication of V then Theorem 2.3 asserts that there exist $\alpha \in N$ such that

$$
(r v) \alpha=r *(v \alpha) \text { for all } r \in R \text { and } v \in V .
$$

Thus each scalar multiplication of V is determined by an $\alpha \in N$ and the scalar multiplications of V determined by $\alpha, \beta \in N$ agree if and only if $\alpha \beta^{-1}$ is linear.

Let A be a vector lattice. Then we may assume that A is an l-subspace of $V=V(\Gamma, R)$ for a suitable Γ. Suppose that $*$ is another scalar multiplication for A. Then we can extend $*$ to V and there exists a linear n-automorphism τ of $(V, *)$ onto V. In particular, A and $A \tau$ are subspace of V and $r^{*} a=(r(a \tau)) \tau^{-1}$ for each $r \in R$ and $a \in A$. Conversely if τ is an n-automorphism of V and $A \tau$ is a subspace of V then for each $a \in A$ and $r \in R$ we define $r * a=(r(a \tau)) \tau^{-1}$. Then ($A, *$) is a vector lattice and τ is a linear l-isomorphism of $(A, *)$ onto A.

Therefore the scalar multiplications of A are determined by the n-automorphisms of V that map A onto a subspace of V.

3. The l-Group $\Sigma(\Gamma, R)$

Let $V=V(\Gamma, R)$ be the vector lattice investigated in the last section. Let

$$
\begin{aligned}
& \Sigma=\Sigma(\Gamma, R) \\
& F=\{v \in V \mid \text { support of } v \text { is finite }\} \\
& F=F(\Gamma, R)
\end{aligned}=\{v \in V \mid \text { support of } v \text { lies on a finite number of } \quad \text { chains in } \Gamma\} \text {. }
$$

A value of an element g of an l-group G is an l-ideal of G that is maximal without containing $g . G$ is finite valued if each $g \in G$ has only a finite number of values. The set $\Gamma=\Gamma(G)$ of all the values of elements in G is a root system.

In Conrad (1974) it is shown that if A is a finite valued vector lattice with countable dimension then there exists a linear l-isomorphism of A onto $\Sigma(\Gamma, R)$, where Γ is the index set for the set of all the regular subgroups of the l-group A. In particular, A is completely determined by the root system Γ.

Theorem 3.1. If A is a finite valued l-group then any two scalar multiplications of A for which the dimension of A is countable are connected by a v-automorphism of A.

Proof. Let * and \# be two such scalar multiplications. Then $(A, *) \cong \Sigma(\Gamma, R)$ $\cong(A \not \#)$.

Corollary. Let Γ be a countable root system and let $\Sigma=\Sigma(\Gamma, R)$ with the natural scalar multiplication. If * is a new scalar multiplication for Σ then Σ and ($\Sigma, *)$ are connected by a v-automorphism if an only if $(\Sigma, *)$ has countable dimension.

Remark. We have been unable to determine whether or not ($\Sigma, *$) always has countable dimension. If so, then of course Σ satisfies II.

Theorem 3.2. Suppose that G is a finite valued l-group and $\Gamma(G)$ satisfies the $D C C$.

1) $\Sigma(\Gamma, R)=F(\Gamma, R)$ is the unique a-closure of G.
2) $\Sigma(\Gamma, R)$ is the unique a-extension of G that is a vector lattice.
3) $\Sigma(\Gamma, R)$ is the unique v-hull of G that is also an a-extension.

Proof. Recall that H is an a-extension of G if H is an l-group, G is an l-subgroup if H and each $0<h \in H$ is an a-equivalent to an element $0<g \in G$ or equivalently $L \rightarrow L \cap G$ is a one to one mapping of the set of l-ideals of H onto the l-ideals of G. An a-closure of G is an a-extension of G that does not admit a proper a-extension. Each group admits an a-closure but usually not a unique one (Conrad (1966) or Wolfenstein).

We first show that each a-extension H of G is finite valued. Here we do not need the fact that Γ satisfies the DCC. For $0<h \in H$ there is an element $0<g \in G$ such that $\eta g>h$ and $n h>g$ for some $n>0$. Let $\left\{H_{\lambda} \mid \lambda \in \Lambda\right\}$ be the set of all values of h in H. Then they are also values of g. Thus $\left\{H_{\lambda} \cap G \mid \lambda \in \Lambda\right\}$ is a set of values of g in G and hence Λ is finite.
(1) Let K be an a-closure of G. Then since K is finite valued, divisible and $\Gamma(K)$ satisfies the DCC there is a value preserving l-isomorphism σ of K such that

$$
K \sigma=\Sigma\left(\Gamma, K^{\gamma} / K_{\gamma}\right)
$$

where K^{γ} is the intersection of all the l-ideals of K that properly contain K_{γ} (see Theorem 4.9 in Conrad (1970)). In particular, each K^{γ} / K_{γ} is o-isomorphic to a subgroup S_{γ} of R and so there exists an l-isomorphism τ of K so that

$$
K \tau=\Sigma\left(\Gamma, S_{\gamma}\right) \subseteq \Sigma(\Gamma, R)
$$

But clearly $\Sigma(\Gamma, R)$ is an a-extension of $\Sigma\left(\Gamma, S_{\gamma}\right)$ and so since $K \tau$ is a-closed, $K \tau=\Sigma(\Gamma, R)$. Now $F(\Gamma, R)$ is always an a-closure of $\Sigma(\Gamma, R)$ (Conrad (1966) p. 147) and so in our case $F=\Sigma$.
(2) Suppose that K is an a-extension of G that is a vector lattice. Then each $K^{\gamma} / K_{\gamma} \cong R$ and so

$$
K \tau=\Sigma\left(\Gamma, S_{\gamma}\right)=\Sigma(\Gamma, R)
$$

(3) Since a v-hull of G is a vector lattice this is a special case of (2).

Corollary. For a root system Γ the following are equivalent.
a) $\Sigma(\Gamma, R)$ is a-closed.
b) $\Sigma(\Gamma, R)=F(\Gamma, R)$.
c) Γ satisfies the $D C C$.

Proof. We have shown c) $\rightarrow \mathrm{a}) \rightarrow \mathrm{b}$) and since F is always a-closed $(b \rightarrow a)$. $(\mathrm{a} \rightarrow \mathrm{c})$ If $\gamma_{1}>\gamma_{2}>\ldots$ is an inversely well ordered descending chain in Γ then let a be the element in $V(\Gamma, R)$ such that

$$
a_{\gamma}=\left\{\begin{array}{ll}
1 & \text { if } \gamma=\gamma_{i} \\
0 & \text { otherwise. }
\end{array} \text { for some } i\right.
$$

Then an easy computation shows that $[a] \oplus \Sigma$ is an a-extension of Σ and hence the chain must be finite.

Remark. In Conrad (1970) it is shown that for a totally ordered group G of finite rank a v-hull need not be an a-extension so G need not have a unique v-hull. Example 5.5 shows that $\Sigma(\Gamma, R)$ need not be an n-characteristic subgroup of $V(\Gamma, R)$ so we cannot conclude from the theory in the last section that $\Sigma(\Gamma, R)$ satisfies II.

Theorem 3.3. If G is a finite valued l-group and $\Gamma(G)$ satisfies the DCC then the following are equivalent.

1) G satisfies I.
2) Each G^{γ} / G_{γ} is o-isomorphic to R.
3) $G \cong \Sigma(\Gamma, R)$.
4) G is a-closed.

If this is the case then G satisfies II.
Proof. $1 \rightarrow 2$, and $3 \rightarrow 1$ and 2 are obvious. By Theorem 3.2Σ is the unique a-closure of G and hence $3 \leftrightarrow 4$.
$(2 \rightarrow 3)$. Since each G^{γ} / G_{γ} is divisible there exists a v-isomorphism σ such that

$$
\Sigma\left(\Gamma, G^{\gamma} / G_{\gamma}\right) \subseteq G \sigma \subseteq V\left(\Gamma, G^{\gamma} / G_{\gamma}\right)
$$

(Conrad (1970)) and since $G^{\eta} / G_{\gamma} \cong R$ for each $\gamma \in \Gamma$ we may assume

$$
\Sigma(\Gamma, R) \subseteq G \sigma \subseteq V(\Gamma, R) .
$$

Now Γ satisfies the DCC and so by the proof of Theorem 4.9 in Conrad (1970) we have $\Sigma(\Gamma, R)=G \sigma$.

Now suppose that * is another scalar multiplication for Σ and for each $\gamma \in \Gamma$ define $e(\gamma)$

$$
e(\gamma)_{\alpha}= \begin{cases}1 & \text { if } \alpha=\gamma \\ 0 & \text { otherwise } .\end{cases}
$$

Then $E=\{e(\gamma) \mid \gamma \in \Gamma\}$ is a basis for Σ and an independent subset of $(\Sigma, *)$ so the identity map on E can be lifted to linear v-isomorphism τ of Σ into ($\Sigma, *$). Since Σ is a-closed and ($\Sigma, *$) is an a-extension of $\Sigma \tau, \tau$ is epimorphic and hence G satisfies II.

Theorem 3.4. If G is an a-closed l-group that satisfies each bounded disjoint subset is finite, Then G satisfies I and II.

Proof. $F(\Gamma, R)$ is the unique a-closure of an l-group that satisfies (F) (see Conrad (1966)). Thus $G \cong F$ and so G satisfies I.

In Conrad (1966) it is shown that if G is a vector lattice that satisfies (F) then there exists a linear v-isomorphism τ such that $\Sigma(\Gamma, R) \subseteq G \tau \subseteq F(\Gamma, R)$ and hence F is an a-extension of $G \tau$. Thus if G is a-closed $G \tau=F$ and so II is satisfied.

Remark. If G satisfies (F) then $F(\Gamma, R)$ is an l-ideal of $V(\Gamma, R)$ and so Theorem 3.4 follows immediately from Corollary II of Theorem 2.3. Byrd (1966) gives an example that shows that in general $F(\Gamma, R)$ need not be n-characteristic in $V(\Gamma, R)$.

Note that if $\Gamma(G)$ is finite then G satisfies the hypothesis of Theorem 3.2 and 3.3. Also if G satisfies these hypotheses then any two real subfields of $\mathscr{P}(G)$ are conjugate by a p-automorphism of G.

4. Totally Ordered Groups

Throughout this section G will denote a totally ordered group with Γ the index set for the set of components G^{γ} / G_{γ} of $G . V(\Gamma, R)$ is the unique a-closure of G (Hahn 1907)). Thus if G is a-closed then $G \cong V$ and so by Theorem $2.3 G$ satisfies I and II and so does each l-ideal of V. The next Proposition shows that this is all we can conclude from Theorem 2.3.

Proposition 4.1. An n-characteristic subgroup L of V that is also a subspace is convex and conversely.

Proof. We show that $V(g) \subseteq L$ for each $0<g \in L$. Let g_{γ} be the maximal component of g and consider $0<h \in V(g)$. If $V(h) \neq V(g)$ then $h \ll g$ and o there exists an n-automorphism of V that maps g onto $g+h$. Then $h=g+h-g \in L$. If $V(h)=V(g)$ then there exists $r \in R$ such that $h_{\gamma}=r g_{\gamma}$ and so there exists an n-automorphism of V that maps $r g$ onto h.

Note that we need the total order of G. For if $H=R \oplus R$ then $\{(x, x) \mid x \in R\}$ is an n-characteristic l-subgroup of H and a subspace but it is not an l-ideal.

Now suppose that Γ satisfies the DCC then $V=\Sigma(\Gamma, R)$ and by Theorems 3.1 and 3.2 we have:
V is the unique a-extension of G that is a vector lattice.
V is the unique v-hull of G that is also an a-extension.

Moreover the following are equivalent: G satisfies I ; each $G^{\gamma} / G_{\gamma} \cong R ; G \cong V$; G is a-closed.

Proposition 4.2. For an o-group G the following are equivalent.

1) G satisfies I.
2) Each $G(g)$ satisfies I.

Proof. ($1 \rightarrow 2$) Clear.
$(2 \rightarrow 1)$ Let S be the collection of all pairs $(L, *)$ where L is a convex subgroup of G and an ordered vector space with respect to the scalar multiplication * Define $(L, *) \leqq(H, \#)$ if $(L, *)$ is a subspace of $(H, \#)$. Then by Zorn's lemma there exists a maximal element $(M, *)$ in S. We show $M=G$. Suppose by way of contradiction that $0<g \in G \backslash M$. Then $G(g) \supset M$ and since M is divisible $G(g)=M \oplus D$ a lexicographic extension of M by the o-group D. Now by hypothesis $G(g)$ admits a scalar multiplication \# and since M is contained in $G(g),(M, \#)$ is a subspace. Thus $G(g) / M \cong D$ is also an ordered vector space say $(D, 0)$. For $r \in R$ and $m+t \in M \oplus D$ define

$$
r \cdot(m+d)=r * m+r \circ d
$$

Then $(G(g), \cdot)$ is an ordered vector space and $(M, *)$ is a subspace, but this contradicts our choice of M and so $M=G$ satisfies I.

5. Examples and open questions

Example 5.1. A real non-ordered vector space U does not satisfy II. For let α be a group isomorphism of R onto the direct sum $\oplus_{\Lambda} R_{\lambda}$ and for r in the field R and x in the group R define

$$
r \circ x=(r(x \alpha)) \alpha^{-1}
$$

where $r(x \alpha)$ is the natural scalar multiplication in $\oplus_{\Lambda} R_{\lambda}$. Then $(R, 0)$ is a real vector space of dimension $|\Lambda|$. Thus if $|\Lambda|>1$ then (R, \circ) and (R, \cdot) are not connected by a group automorphism.

Example 5.2. $R=D \oplus Q$ lexicographically ordered is a totally ordered group and a real vector space but it does not satisfy I. Also the cardinal sum $D \oplus Q$ is an archimedean l-group and a real vector space that does not satisfy I.

Example 5.3. Let G be the subgroup of the cardinal product $\prod_{i=1}^{\infty} R_{i}$ generated by $\sum_{i=1}^{\infty} R_{i}$ and $(1,1,1, \cdots)$. Then G is an l-group and each $G^{\gamma} / G_{\gamma} \cong R$ except $G / \Sigma R_{i}$, but G does not satisfy I since it is not divisible.

If we totally order $\left\lfloor R_{i}\right.$ by defining $\left(x_{1}, x_{2}, \cdots\right)$ to be positive if the first non-zero x_{i} is positive, then G is an o-group with each $G^{y} / G_{\gamma} \cong R$ and G / C satisfies I for each non-zero convex subgroup C of G, but G does not satisfy I.

Let $H=\Sigma_{i=1}^{\infty} R_{i} \oplus Q(1,1,1, \cdots)$ the divisible hull of G. Then G admits a scalar multiplication so that it is a real vector space, since its dimension as a rational vector space is large enough. If we impose the cardinal order on H then it does not satisfy I ; for then it would have to be a subspace of the vector lattice $\coprod_{i=1}^{\infty} R_{i}$.

One should be able to show that if we impose the above total order on H then H does not satisfy I. If H does satisfy I then it follows from Lemma 2.2 and Theorem 2.3 that there exists an n-automorphism τ of $\left\lfloor R_{i}\right.$ such that $H \tau$ is a subspace.

Example 5.4. Let $V=\coprod_{i=0}^{\infty} R_{i}$ be totally ordered as in the last example. Let μ be a group isomorphism of R onto $\coprod_{i=1}^{\infty} Q_{i}$

$$
a \rightarrow\left(\mu_{1}(a), \mu_{2}(a), \cdots\right) .
$$

Define τ

$$
\left(a_{0}, a_{1}, a_{2}, \cdots\right) \tau=\left(a_{0}, \mu_{1}\left(a_{0}\right)+a_{1}, \mu_{2}\left(a_{0}\right)+a_{2}, \cdots\right) .
$$

Then τ is an n-automorphism of V. Now $A=\left(\sum_{i=0}^{\infty} R_{i}\right) \tau$ is o-isomorphic to $\sum_{i=0}^{\infty} R_{i}$ and so it admits a scalar multiplication but it is not a subspace of V. For pick the $a \in R$ for which $a \mu=(1,1,1, \cdots)$. Then $(a, 0,0, \cdots) \tau=(a, 1,1, \cdots) \in A$ but $r(a, 1,1, \cdots) \notin A$ for $r \in R \backslash Q$.

Example 5.5. Let $V=\coprod_{i=1}^{\infty} R_{i}$ totally ordered as above and let $G=\sum_{i=1}^{\infty} R_{i}$. Then the map

$$
\begin{aligned}
& (1,0,0, \cdots) \rightarrow(1,1,1, \cdots) \\
& (0,1,0, \cdots) \rightarrow(0,1,1, \cdots)
\end{aligned}
$$

determines a linear v-isomorphism σ of Σ into V such that

$$
\Sigma \subset \Sigma \sigma \subset V .
$$

The map

$$
\begin{aligned}
& (1,0,0, \cdots) \rightarrow(1,1,0,0, \cdots) \\
& (0,1,0, \cdots) \rightarrow(0,1,1,0, \cdots)
\end{aligned}
$$

determines a linear v-isomorphism of Σ onto a proper subgroup of itself. The map

$$
\begin{aligned}
& (1,0,0, \cdots) \rightarrow(1,1,1, \cdots) \\
& (0,1,0, \cdots) \rightarrow(0,1,0 \cdots) \\
& (0,0,1,0, \cdots) \rightarrow(0,0,1,0, \cdots)
\end{aligned}
$$

determines a map σ of Σ into V such that $\Sigma|\mid \Sigma \sigma$.

Example 5.6. Let

and let $V=V(\Gamma, R)$. The map

$$
\begin{aligned}
& (1,0,0, \cdots) \rightarrow(1,1,1, \cdots) \\
& (0,1,0, \cdots) \rightarrow(0,1,0, \cdots) \\
& (0,0,1,0, \cdots) \rightarrow(0,0,1,0, \cdots)
\end{aligned}
$$

determines an n-isomorphism σ of Σ into V such that $\Sigma|\mid \Sigma \sigma$.
Example 5.7. An a-closed archimedean l-group need not satisfy I. Let

$$
G=\prod_{i=1}^{\infty} Z_{i} \subset C \subset \prod_{i=1}^{\infty} R_{i}
$$

cardinally ordered, where C consists of all the elements of the form $g+\left(x_{1}, x_{2}, \cdots\right)$ where $g \in G$ and $0 \leqq x_{i} \leqq 1$ and the number of distinct x_{i} is finite. Thus $C=G+F$, where F is the group of all elements in $\amalg R_{i}$ with finite range. It is shown in Con$\operatorname{rad}(1966)$ that C is an a-closure of G. If C is a vector lattice then it must be a subspace of ΠR_{i}, but $\sqrt{ } 2(1,2,3, \cdots) \notin C$.

Note also that the v-hull G^{v} of G is not an a-extension of G. For clearly $G^{v} \supset C$. Actually
$G^{v}=\left\{a \in \amalg R_{i} \mid\right.$ there exists reals r_{1}, \cdots, r_{k} such that each component of a is of the form $x_{1} r_{1}+x_{2} r_{2}+\cdots x_{k} r_{k}$ with $\left.x_{t} \in Z\right\}$.
Remark. It can be shown that a hyper-archimedean a-closed l-group need not satisfy I.

Example 5.8. A minimal vector lattice that contains the o-subgroup $[1] \oplus[\sqrt{ } 2] \oplus[\pi]$ of R need not be totally ordered. Let f be a homomorphism of R into $R \oplus R ; f(a)=\left(f_{1}(a), f_{2}(a)\right)$ where

$$
\begin{aligned}
& f(1)=(1,1) \\
& f(2)=(\sqrt{ } 2, \sqrt{ } 2+1) \\
& f(\pi)=(\pi+1, \pi) .
\end{aligned}
$$

Let
 and let $V=V(\Gamma, R)$.

Define $\left(a_{0}, a_{1}, a_{2}\right) \tau=\left(a_{0}, a_{1}+f_{1}\left(a_{0}\right), a_{2}+f_{2}\left(a_{0}\right)\right)$. Then τ is an n-automorphism of V.

Define $r *(x \tau)=(r x) \tau$ for all $x \in V$ and $r \in R$. Then $(V, *)$ is a vector lattice. $r *\left(a_{0}, a_{1}+f_{1}\left(a_{0}\right), a_{2}+f_{2}\left(a_{0}\right)\right)=\left(r a_{0}, r a_{1}, r a_{2}\right) \tau=\left(r a_{0}, r a_{1}+f_{1}\left(r a_{0}\right), r a_{2}+f_{2}\left(r a_{0}\right)\right)$. If $a_{0}=1$ and $a_{1}=a_{2}=-1$ we have

$$
r *(1,0,0)=\left(r,-r+f_{1}(r),-r+f_{2}(r)\right)
$$

In particular

$$
\begin{aligned}
\sqrt{ } 2 *(1,0,0) & =(\sqrt{ } 2,0,1) \\
\pi *(1,0,0) & =(\pi, 1,0)
\end{aligned}
$$

Now let G be the o-subgroup of V generated by $(1,0,0),(2,0,0)$ and $(\pi, 0,0)$. Then V is a minimal vector lattice that contains G. Of course V is not the v-hull of G.

Example 5.9. A finite valued l-group G with $\Gamma(G)$ satisfying the DCC that admits two non-isomorphic v-hulls. Let Γ be the root system

and let $V=V(\Gamma, R)$. Let f be an isomorphism of R onto $\coprod_{i=1}^{\infty} R_{i}$ such that $f(1)=(1,0,0, \cdots)$ and in general $f(x)=\left(f_{1}(x), f_{2}(x), \cdots\right)$. Define

$$
\left(x ; x_{1}, x_{2}, \cdots\right) \tau=\left(x ; x_{1}+f_{1}(x), x_{2}+f_{2}(x), \cdots\right)
$$

Then τ is an n-automorphism of V. For $v \in V$ and $r \in R$ define $r \cdot(v \tau)=(r v) \tau$. Then (V, \cdot) is a vector lattice.

$$
\begin{aligned}
r \cdot\left(x ; f_{1}(x), f_{2}(x), \cdots\right) & =r \cdot(x ; 0,0, \cdots) \tau=(r x ; 0,0, \cdots) \tau \\
& =\left(r x ; f_{1}(r x), f_{2}(r x), \cdots\right) .
\end{aligned}
$$

In particular for $x=1$ we have

$$
r \cdot(1 ; 1,0,0, \cdots)=\left(r ; f_{1}(r), f_{2}(r), \cdots\right)
$$

Thus (V, \cdot) is a v-hull of $G=\Sigma(\Gamma, R)$ and G is also a vector lattice with respect to the natural scalar multiplication. Now $G \nsubseteq V$ since the maximal l-ideal of V is laterally complete but the maximal l-ideal of G is not.

Note, of course, that the v-hull V of G is not finite valued and it is not an a-extension of G.

Some open questions

1) Does II always hold?
2) If G is an archimedean l-group and each $G^{\gamma} / G_{\gamma} \cong R$ then does G satisfy I?
3) If G is an l-group and each $G(g)$ satisfies I then does G satisfy I?
4) If G is a vector lattice with a unique scalar multiplication then is G archimedean?

References

S. Bernau (1965), 'Unique representations of Archimedean lattice groups and normal Archimedean lattice rings', Proc. London Math. Soc. 15, 599-631.
S. Bernau (1966), Orthocompletions of lattice groups', Proc. London Math. Soc. 16, 107-130.
A. Bigard and K. Keimel (1969), 'Sur les endomorphismes conservant les polares d'un groupe réticule archimedien', Bull. Soc. Franee 97, 381-398.
R. Bleier (1971), 'Minimal vector lattice cover', Bull. Australian Math. Soc. 5, 331-335.
R. Byrd (1966), Lattices ordered groups (Dissertation Tulane Univ. 1966).

Paul Conrad (1966), 'Archimedean extensions of lattice-ordered groups', J. Indian Math. Soc. 30, 131-160.
Paul Conrad, J. Harvey and C. Holland (1963), 'The Hahn embedding theorem for abelian lattice ordered groups', Trans. Amer. Math. Soc. 108, 143-169.
Paul Conrad (1970), Lattice ordered groups (Lecture Notes, Tulane Univ. 1970).
Paul Conrad and J. Diem (1971), 'The ring of polar preserving endomorphisms of an l-group', Illinois J. Math. 15, 222-240.
Paul Conrad (1974), 'Countable vector lattices’, Bull. Austral. Math. Soc. 10, 371-376.
H. Hahn (1907), 'Uber die nichtarchimedischen Grossensysteme', Sitzungsberichte der Kaiserlchen Akademie der Wissensschaften, Vienna 116, 601-653.
K. Iwasawa (1943), 'On the structure of conditionally complete lattice-groups', Japan J. Math. 18, 777-789.
S. Wolfenstein, Contribution à l'étude des groupes réticules: extensions archimediennes, groupes à valeur normales (Thèse, U. of Paris).

University of Kansas
Lawrence
Kansas 6604, U.S.A.

