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The influence of free-stream conicity on the various aspects of the flow over a spherical
test model is examined using both analytical and numerical methods. For the analytical
method, a simple closed-form analytical model is assembled. Six different free-stream
conditions with different Mach numbers, Reynolds numbers and thermochemistry are
tested at four different degrees of conicity corresponding to those which can realistically
be encountered in experiments. It is found that the results around the stagnation
point are mostly insensitive to the flow condition and gas type, except for some mild
non-equilibrium effects, and excellent agreement between the analytical and numerical
results exists. The shock stand-off distance on the stagnation streamline is shown to
decrease with increasing conicity. This decrease increases the tangential velocity gradient
at the stagnation point, increasing the stagnation point heat flux and decreasing the
stagnation point boundary layer thickness. The free-stream conicity is also found to alter
the normalized distributions of the shock stand-off distance, heat flux, surface pressure and
boundary layer thickness with the angle from the stagnation point. In general, increasing
the conicity magnifies the slope of these distributions. Regarding the boundary layer
transition, it is found that, if it occurs in a uniform free stream, it would also occur
in a conical free stream, albeit with the transition point shifted upstream closer to the
stagnation point due to the increase in the boundary layer edge tangential velocity. Overall,
considering the relevant experimental uncertainties, corrections for free-stream conicity
are generally recommended when larger test models are used.
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1. Introduction

Experimental work in hypersonics is vital for progress in this field. This is enabled
by impulse facilities, which produce hypersonic flow for a very short duration of time
(Gu & Olivier 2020). An important component of impulse facilities is the nozzle which
generates the hypersonic flow by converting thermal energy into kinetic energy via an
expansion. The nozzle is either contoured or conical. The contoured nozzle can produce
uniform free-stream (nozzle exit) conditions near the design condition, but may not work
so well off-design. Also, the design procedure for these nozzles is non-trivial, especially
for high-enthalpy conditions involving real-gas effects (Chan et al. 2018). On the other
hand, the conical nozzle is easy to design and works over a wide range of conditions, but
it produces a non-uniform (divergent) free stream. Nonetheless, the conical nozzle is still
widely used due to its advantages; this is explicitly stated by Hornung (2019) and supported
by figure 1, which lists the numerous facilities with a conical nozzle, corresponding to a
large portion (approximately half) of all hypersonic impulse facilities in the world (Gu
& Olivier 2020). Therefore, it is of significant interest to examine how the divergent free
stream affects the experimentation.

The practical importance of studying the divergent free stream is in the interpretation
and numerical reproduction of wind tunnel experiments. Recently, huge interest has
been shown in understanding and better characterizing the test conditions generated in
hypersonic impulse facilities because it is now acknowledged that this is crucial for
improving the usefulness and quality of experimental work; in particular, much work
has recently been done on determining the pressure, temperature, velocity and chemical
composition of the test conditions (Grossir et al. 2018; Collen et al. 2022; Gu et al.
2022; Finch et al. 2023; Jans et al. 2024). On the same theme is studying the influence
of the free-stream conicity. Interest in free-stream conicity was shown decades ago
(Inouye 1966; Lunev & Khramov 1970; Shapiro 1975; Lin, Reeves & Siegelman 1977;
Eremeitsev & Pilyugin 1981, 1984; Golovachov 1985) but then forgotten about until it
was revived recently by Hornung (2019) in line with the recent interest in characterizing
test conditions. This revival is necessary as further work needs to be done in this
area. The past works provide a good theoretical foundation for studying the problem
but fail to relate to practical experimental conditions and arrangements, and lack a
certain degree of comprehensiveness and systematization. Consequently, it remains largely
unclear quantitatively how much the free-stream conicity influences the experiments. This,
subsequently, motivates the current work.

This paper will focus on the sphere, being the experimental test model, which is
commonly used for important fundamental studies, with its centre positioned on the nozzle
centreline. The divergent free stream from a conical nozzle can be modelled as a steady
spherical source flow (Inouye 1966; Lin et al. 1977; Golovachov 1985; Hornung 2019;
Farokhi 2021), as shown in figure 2. One can define d = L1/Rs, which measures the
degree of non-uniformity, where Rs is the radius of the sphere and L1 is the distance
between the centre of the source and the shock wave on the axisymmetry axis; d = ∞
then corresponds to a uniform flow. The sphere is usually positioned near the nozzle
exit such that the centre of the shock front lies on the nozzle exit plane, as shown in
figure 2. In this case, the nozzle half-angle φ can be related to d via tan(φ) = k/d, where
k is a measure of how big the spherical test model is relative to the nozzle exit; k = 2
would correspond to a large test model with a flow field which roughly takes up all the
core flow space while k = 10 would correspond to a small Pitot or heat flux probe. The
half-angle of the conical nozzles used on hypersonic impulse facilities, past and present,
varies between 5.8◦ and 15◦, as shown in figure 1. Depending on the relative size of
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Figure 1. The relationship between the nozzle half-angle φ and the non-uniformity parameter d (d = L1/Rs)
for different values of k (k = d tan(φ)). Also shown are the φ values of the conical nozzle on TCM2 (Zeitoun
et al. 1994), JF-10 (Zhao et al. 2005), T5 (Marineau & Hornung 2009), NASA Ames reflected shock tunnel
(RST) (Menees 1972), Hypulse (Chue et al. 2003), Cornell Aeronautical Laboratory (CAL) RST (Hall & Russo
1966), FD-21 (Shen et al. 2023), Sandia RST (Lynch et al. 2023), HEG (Hannemann et al. 2018), Delft Ludwieg
tube (LT) (Schrijer & Bannink 2010), L3K (Gülhan et al. 2018), HIEST (Tanno & Itoh 2018), T3 (Mallinson,
Gai & Mudford 1996), T-ADFA (Krishna, Sheehe & O’Byrne 2018), TH2 (Gu et al. 2022) and NASA Langley
expansion tunnel (ET) (Miller 1977).

the test model (k), the degree of non-uniformity can realistically be around d = 4–100
in the experiments. More precisely, the value of d in practice will be slightly higher than
this due to the boundary layer in the nozzle which generally reduces the effective nozzle
half-angle from the geometric one reported in figure 1. Also, as mentioned earlier, the
test model is normally placed near the nozzle exit, where the core flow is largest (since
wind tunnel nozzles are always underexpanded, the core flow gets smaller downstream
due to the expansion fan originating from the wall corner at the nozzle exit, as shown in
figure 2). If, for whatever reason, the model is placed some distance downstream of the
nozzle exit, the effect would be to increase ‘d’ (because L1 is increased) and reduce the
influence of free-stream conicity. Additionally, if one really wanted to do this, it would
probably be necessary to use a smaller model as well due to the reduced core flow, which
will further increase ‘d’ (because Rs is decreased). Consequently, the lower bound of d = 4
stated above can duly be considered a conservative estimate of the maximum influence of
free-stream conicity that may be encountered in practice.

In this paper, we will examine how much effect this non-uniformity can have on the
various aspects of the flow over the spherical test model on the forebody – such as
the shock wave, pressure, heat flux, boundary layer and tangential velocity gradient –
under different flow conditions and gas states. Both analytical and numerical methods
will be used, and the results between the two will be compared. The numerical work
will include thermochemical non-equilibrium simulations; this is unlike the previous
studies that examine the influence of free-stream conicity, which only consider perfect-gas
or equilibrium flows (Inouye 1966; Lunev & Khramov 1970; Shapiro 1975; Lin et al.
1977; Eremeitsev & Pilyugin 1981, 1984; Golovachov 1985; Hornung 2019). Also unlike
the previous works, the results here will be fully related to practical experimental
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Figure 2. The schematic of the diverging free stream upstream of a spherical test model generated by a
conical nozzle, which always operates in underexpanded mode in wind tunnels.

scenarios by considering the realistic range of ‘d’ and by considering the uncertainties
(measurement uncertainties and shot-to-shot variations) of hypersonic experiments. In
addition to answering the aforementioned important question of just how much the
free-stream conicity influences the experiments, the underlying physics involved will be
thoroughly explained as well, which is not discussed in many of the earlier works which
mostly only look to predict and quantify the influence of free-stream conicity without
really attempting to provide a physical explanation for the observations.

2. Methodology

2.1. Analytical method
An appreciable amount of theoretical work exists in the literature (mostly done by
Russian researchers during the 1970s and 1980s) to describe the influence of hypersonic
free-stream conicity on the flow over a sphere. In these studies, analytical equations have
been derived which predict how much effect a divergent free stream has on the various
aspects of the flow over a spherical test model. More precisely, these works compare
conical free streams with the equivalent uniform free streams, where the free-stream
properties immediately ahead of the shock on the symmetry axis are identical. From these
past studies, a comprehensive analytical model is subsequently compiled for use in the
current work, which is described as follows, aided by figures 3 and 4.

To quantify the influence of the free-stream conicity on the shock stand-off distance on
the symmetry axis, Shapiro (1975) gave

Δ0

Δ0∞
= θ s

θ s∞

1

1 + Δ0∞

(
1 − θ s

θ s∞

) , (2.1)
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Figure 3. Flow field around a sphere in a conical free stream with the nomenclatures.
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Figure 4. Flowchart describing the operation of the analytical model. The blue boxes are the parameters to be
predicted, the yellow boxes are the predictors and the green boxes are the inputs (other than trivial free-stream
values) to the predictors.

where Δ0 and Δ0∞ are the shock stand-off distances on the symmetry axis for a
non-uniform and uniform free stream, respectively, and

θ s

θ s∞
= 1

2

⎡
⎣(

1 + Δ0∞
Δ0∞

+ 1
)

−
√(

1 + Δ0∞
Δ0∞

− 1
)2

+ 4
l

1 + Δ0∞
Δ0∞

⎤
⎦ , (2.2)

where θ s and θ s∞ are the locations (angle from the symmetry axis) of the sonic point on
the boundary layer edge (or surface of the sphere for inviscid flows) for a non-uniform and
uniform free stream, respectively, and l is the distance between the centre of the source and
centre of the sphere. The above equations were derived, without needing to define any gas
properties, based on geometric considerations of the shock wave, sphere and conical free
stream, and assuming the normalized distribution of the shock stand-off distance, Δ/Δ0,
is independent of the degree of free-stream conicity when given as a function of η = θ/θ s
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instead of θ (that is, θ is normalized with that of the sonic point). The above equations,
along with the assumption of Δ/Δ0 being a universal function of η, are shown by Shapiro
(1975) and Golovachov (1985) to work well after comparing with both viscous and inviscid
computational fluid dynamics (CFD) simulations for a range of Mach numbers (3–10),
Reynolds numbers (177–35 500) and d (0.3–25) for both perfect-gas and equilibrium flows.
The above equations require Δ0∞ a priori, which can be calculated analytically with (Lobb
1964)

Δ0
∞ = 0.82Rs

ρ1

ρ2
, (2.3)

where ρ1 and ρ2 are the flow densities before and after the shock on the symmetry axis,
respectively. This correlation is obtained based on the numerical results of Van Dyke
(1958) for a perfect gas for Mach numbers between 1.5 and 10.

Recently, Hornung (2019) independently derived another expression describing the
influence of the free-stream conicity on the shock stand-off distance on the symmetry
axis based on a control volume conservation of mass argument with geometric relations,
without needing to specify any gas properties, while assuming the shock-parallel
component of velocity is constant across the shock layer. Further assuming the average
density across the shock layer remains constant with varying free-stream conicity, which
is true for perfect-gas or equilibrium flows, one can derive

Δ0

Δ0∞
= 1

1 +
(
R0

c
)
∞

L1

, (2.4)

where (R0
c)∞ is the radius of curvature of the shock on the symmetry axis in a uniform

free stream, which can be calculated analytically with the semi-empirical correlation of
Billig (1967) for a perfect gas with γ = 1.4(

R0
c

)
∞

= 1.143 exp
(

0.54

(M − 1)1.2

)
Rs, (2.5)

where M is the free-stream Mach number.
To describe the influence of the free-stream conicity on the stagnation point heat flux,

Eremeitsev & Pilyugin (1981) gave

q0

q0∞
=

√
1 + Rs

L2
, (2.6)

where L2 is the distance between the centre of the source and the stagnation point
on the sphere (L2 = L1 + Δ0). This equation is derived, without considering finite-rate
thermochemistry, based on the self-similar boundary layer theory of Lees (1956) with the
boundary layer edge conditions obtained using thin shock-layer theory, where M∞ → ∞
and γ∞ → 1. In such a limit, the wall-normal gradient of the flow properties is assumed
to be large compared with their tangential gradient, and the shock shape, the body shape
and the streamline shapes are assumed to be all the same. Analytical expressions for the
boundary layer edge properties are obtained, according to the method of Chernyi (1961),
by replacing the flow variables in the von Mises formulation of the governing equations
by their power series expansion truncated after the first term, which is then used with
Lees’ theory to obtain (2.6). As suggested by this equation, the gas model-dependent terms
disappear, indicating q0/q0∞ can be predicted without specifying any gas properties.
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An alternative expression for q0/q0∞ can be derived as follows. Because the free-stream
conicity does not change the flow properties at the stagnation point – such as the pressure,
density, temperature and enthalpy – for a perfect or equilibrium gas (Shapiro 1975;
Golovachov 1985), the change in the stagnation point heat flux, in this case, comes purely
from the change in the tangential velocity gradient at the boundary layer edge on the
stagnation streamline, (du/dx)0,e, according to Fay & Riddell (1958) with

q0 ∝
√(

du
dx

)0,e

, (2.7)

assuming a perfect or equilibrium gas. Following from Olivier (1995), who obtained
an analytical expression for the tangential velocity gradient after an integral method is
used to solve the two-dimensional conservation equations for the stagnation point without
needing to specify any gas properties, the tangential velocity gradient assuming a perfect
or equilibrium gas can be derived as(

du
dx

)0,e

∝ Rs + Δ0

Δ0 . (2.8)

Therefore, one can write

q0

q0∞
=

√√√√√ Rs + Δ0

Δ0

Δ0∞
Rs + Δ0

. (2.9)

Alternatively, Shapiro (1975) proposed another expression for predicting the influence of
free-stream conicity on the tangential velocity gradient given as(

du
dx

)0,e

(
du
dx

)0,e

∞

= θ s∞
θ s , (2.10)

which is simply derived assuming the tangential velocity gradient remains constant along
the boundary layer edge between the axisymmetry axis and the sonic point. Combining
(2.7) and (2.10) gives

q0

q0∞
=

√
θ s∞
θ s . (2.11)

Analytical methods also exist to describe the influence of the free-stream conicity on the
flow property distributions in the flow around the sphere. For the normalized surface heat
flux distribution, Eremeitsev & Pilyugin (1984) gave, based on a similar method to what
they used in their previous work (Eremeitsev & Pilyugin 1981) discussed above involving
thin shock-layer and self-similar boundary layer theories,

q
q0(
q
q0

)
∞

= [cos (θ)](Rs/3L2)(5Rs/L2+8) , (2.12)

where θ is the angle from the symmetry axis of some point on the sphere’s surface,
and q/q0 is the normalized heat flux (normalized by the value at the stagnation point).
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Subscript ∞ indicates the uniform free-stream result as usual. Again, finite-rate
thermochemistry is not considered in the derivation, and the gas property-dependent terms
disappear.

For the normalized surface pressure distribution, Lunev & Khramov (1970) gave, based
on the classic Newtonian theory for spheres and accounting for the conically expanding
free stream,

ps

p0
s(

ps

p0
s

)
∞

=
(
ρu2)

θ(
ρu2

)
θ=0

cos2(ω + θ)

cos2(θ)
, (2.13)

where ω is the flow divergence angle at θ , ps/p0
s is the normalized surface pressure

(normalized by the Pitot pressure) and (ρu2)θ is the local ram pressure on the sphere
surface, assuming an ideal Newtonian flow, at θ . The value of (ρu2)θ at different locations
can be calculated from the governing equations for a steady spherical source flow in closed
form which, for a perfect gas, is (Golovachov 1985)

U =
(

r∗

r

)2 (
2

γ + 1

)1/(γ−1) (
1 − γ − 1

γ + 1
U2

)−(1/(γ−1))

,

p
p∗ =

(
r∗

r

)2 (
1 − γ − 1

γ + 1
U2

)(
γ + 1

2U

)
,

ρ

ρ∗ =
(

r∗

r

)2 (
1
U

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

where γ , p, ρ and U = u/u∗ are the heat capacity ratio, static pressure, density and
normalized value of the velocity u in the source flow at a distance of r from the source
centre. The superscript ‘∗’ values represent the properties at r∗, where u = u∗ = √

γ p∗/ρ∗
(M = 1). Newtonian theory is essentially a pure fluid mechanics theory and does not
consider the thermodynamics, which makes it suitable for pressure predictions since the
pressure behind a strong shock wave is only weakly dependent on the thermodynamics
(Chernyi 1961; Anderson 2019).

Furthermore, Shapiro (1975) proposed a transformation, where the distribution is
given in terms of η = θ/θ s instead of θ , allowing all the results (non-uniform and
uniform) to coalesce, as mentioned earlier in this section. In other words, the distributions
become independent of the degree of free-stream conicity when the distributions are
considered functions of η. This transformation, discovered via analysis of numerous
numerical simulations, is suggested to work not only on the shock stand-off distance
distribution, but also on the surface pressure and heat flux distributions regardless of the
gas type for both frozen and equilibrium flows (Shapiro 1975; Golovachov 1985). With
this transformation, one can obtain the distributions in some non-uniform free streams
given that the corresponding distribution in the equivalent uniform free stream and the
sonic point ratio θ s/θ s∞ are known. For a uniform free stream, the normalized pressure
distribution can be obtained analytically from Newtonian flow theory (Anderson 2019)(

ps

p0
s

)
∞

= cos2 (θ), (2.15)
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which works for any hypersonic flow. The normalized heat flux distribution can be
obtained analytically from (Murzinov 1966)(

q
q0

)
∞

= 0.55 + 0.45cos(2θ), (2.16)

which is correlated from numerous equilibrium simulations, but is shown to also work
well for both non-reacting (Wang, Bao & Tong 2010; Gu et al. 2022) and non-equilibrium
(Voronkin & Geraskina 1969) simulations. The normalized shock stand-off distance
distribution can be obtained analytically from the semi-empirical correlation of Billig
(1967) (

Δ

Δ0

)
∞

=
√

z2 + y2 − Rs

Δ0∞
,

θ = tan−1
(

y
z

)
,

z = Rs + Δ0
∞ −

(
R0

c

)
∞

cot2
(

sin−1
(

1
M

))
⎡
⎢⎢⎢⎢⎣

√√√√√√1 +
y2 tan2

(
sin−1

(
1
M

))
(
R0

c
)2
∞

− 1

⎤
⎥⎥⎥⎥⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.17)

who assumed the shock shape is a hyperbola that asymptotes to the free-stream Mach
angle, which is a good approximation for the shock over a sphere in any hypersonic flow
(Hornung 2010; Zander et al. 2014).

For predicting the influence of free-stream conicity on the normalized shock stand-off
distance distribution, an alternative transformation may be proposed in which all the
results (non-uniform and uniform) are assumed to coalesce when the distribution is given
in terms of θ + ω (where ω is the flow divergence angle at θ , defined earlier in this section)
instead of θ . That is, it assumes that the normalized shock stand-off distance at some
θ = θ1 in a uniform flow is equal to that at θ = θ1 − ω in a non-uniform flow.

Overall, the analytical model is summarized in figure 4, which can be used to accurately
predict (shown later in this paper) the influence of free-stream conicity on various
aspects of the flow over a sphere. This analytical model is formed by different analytical
equations which are used together to make the predictions without needing any input
from CFD. Although, many of these equations in our analytical model are derived by
others (except (2.9) and (2.11), and the transformation of the normalized shock stand-off
distance distribution, which are our own contributions), using these analytical equations
together in the way described in figure 4 is an important original contribution of the current
work. For example, Shapiro’s transformation requires the corresponding distribution in a
uniform free stream as an input, which was originally obtained from CFD (Shapiro 1975;
Golovachev & Leont’eva 1983; Golovachov 1985) but we propose the use of analytical
expressions for this in our model, allowing for a more practical, fully analytical way
of determining the influence of free-stream conicity. Similar can be said for many of
the other equations in our analytical model. Therefore, aside from bringing together
relevant equations that have been scattered throughout the literature and providing original
commentaries regarding the derivation and limitations of these analytical expressions,
a methodology is given for using these equations together to accurately predict the
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influence of free-stream conicity without needing any input from CFD. Furthermore, the
compilation and subsequent visual description of the model shown in figure 4 allows us to
also gain insight into the relationship among how the different parameters are influenced
by the free-stream conicity. From this, it can be seen that θ s/θ s∞ is the most fundamental
parameter characterizing the influence of the free-stream conicity which can be related to
every other parameter.

Most of the predictors for the influence of free-stream conicity (yellow boxes in figure 4)
used as part of our analytical model have never been compared with CFD before (e.g.
(2.1), (2.8), (2.10), (2.9), (2.11), (2.12) and (2.13)). Even for the equations that have been
compared with CFD before, most of them have not been compared with modern-day CFD
results (e.g. (2.2), (2.6) and Shapiro’s transformation); the older CFD simulations they
were compared with are less accurate as they either first solved the Euler equations to get
the inviscid flow field, which is then used as the boundary layer edge condition to solve
the boundary layer equations (Golovachov 1985), or used very few grids (e.g. 7 × 26 in
the tangential and wall-normal directions, respectively) when solving the Navier–Stokes
equations (Golovachev & Leont’eva 1983). Therefore, it is not immediately clear whether
our analytical model could give accurate enough results, and a systematic validation is,
thus, required to find out. As will be presented later in this paper, good agreement is
observed between our analytical model and CFD for a range of flow conditions (different
Mach and Reynolds numbers, and gas models), which is a non-trivial and important
result. Furthermore, the results of this comparison when considered together with how
the analytical equations were derived allow further insights to be revealed regarding the
physical problem.

None of the equations given above in this section explicitly consider thermochemical
non-equilibrium effects in their derivation (which is expected considering there are rarely
analytical solutions when finite-rate thermochemistry is involved). However, this is not
an issue because, as will be shown later on in this paper, the influence of the free-stream
conicity is mostly insensitive to non-equilibrium effects. This may be expected considering
Shapiro (1975) and Golovachov (1985) have shown that the influence of free-stream
conicity is mostly independent of the flow condition, type of gas and whether the gas is in
equilibrium or frozen; the same can be deduced from the derivations of Hornung (2019),
Lunev & Khramov (1970) and Eremeitsev & Pilyugin (1981, 1984), who demonstrated that
it may be unnecessary to specify the thermodynamic properties of the gas when predicting
the influence of free-stream conicity, as mentioned above. Thus, it is found that good
predictions of the influence of free-stream conicity are made by the current analytical
model even when the flow is in thermochemical non-equilibrium.

2.2. Numerical method
The Navier–Stokes solver ‘Eilmer’ from The University of Queensland is used for the
current work. As shown by Gollan & Jacobs (2013) and Gibbons et al. (2023), Eilmer is
a validated and established tool for the simulation of various hypersonic flows, including
frozen (perfect gas), thermochemical equilibrium and thermochemical non-equilibrium
flows. Accurate predictions of the flow field and wall heat flux in such conditions are
demonstrated by comparing them with experimental measurements (Deepak, Gai & Neely
2012; Jacobs et al. 2015; Park, Gai & Neely 2016). Due to the reliability of the code, it has
been used as a validation tool for new models of high-enthalpy blunt-body viscous flows
(Yang & Park 2019; Ewenz Rocher et al. 2021; Gu et al. 2022).
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Influence of free-stream conicity on the flow over a sphere

Eilmer is an open-source explicit Navier–Stokes solver for transient compressible flow
in two and three dimensions based on the integral form of the Navier–Stokes equations.
The core gas dynamics formulation is based on finite-volume cells. The inviscid fluxes
are calculated at the cell interfaces using an adaptive flux calculator in which the
Harten–Lax–van Leer–Einfeldt scheme (Einfeldt 1988) is applied near shocks and the
Roe scheme (Roe 1981) is applied elsewhere; as discussed by Nishikawa & Kitamura
(2008), this resolves the problem of simulating flow fields containing flow features that
require low dissipation schemes to accurately capture but also containing discontinuities
which require high dissipation schemes to avoid numerical instabilities (e.g. the carbuncle
problem). The viscous fluxes are calculated using the averaged values of the viscous
stresses at the cell vertices. A modified van Albada limiter (van Albada, van Leer &
Roberts 1997) and a monotonic upstream-centred scheme for the conservation laws’
(van Leer 1979) reconstruction scheme are used to obtain second-order spatial accuracy.
The time advancement procedure is based on the operator-splitting method (Oran &
Boris 2001) and the time integration uses the implicit first-order Runge–Kutta method
(Petzold 1986). Numerical stability is maintained by the Courant–Friedrichs–Lewy (CFL)
criterion, with a CFL value of 0.5 used in the current work. For thermochemical
non-equilibrium simulations, Park’s two-temperature model (Park 1993) is used, in which
the dissociation/recombination reactions are controlled by an effective temperature, Tc,
given as Tc = T0.5

tr T0.5
v , where Ttr is the translational–rotational temperature and Tv is

the vibrational temperature. The thermochemical effects are handled with specialized
updating schemes that are coupled into the overall time-stepping scheme. The species mass
diffusion is modelled using Fick’s first law assuming binary diffusion (Anderson 2019).
The heat flux for thermochemical non-equilibrium flows is calculated via the formulation
given by Gupta et al. (1990). The reader is referred to Gollan & Jacobs (2013), Gibbons
et al. (2023) and Jacobs et al. (2010) for further details on Eilmer, including its formulation
and validation. The current work makes use of the existing features of the code without
any further development.

The numerical test conditions are shown in table 1. Conditions 1–4 originate from
a reservoir pressure and temperature of 2 MPa and 800 K, respectively, which are
representative of conditions in a cold hypersonic (low-enthalpy) facility (Schrijer &
Bannink 2010). Condition 3 is the same as condition 2 except the sphere is larger.
Condition 5 is a high-enthalpy condition corresponding to the HEG condition H12R0.39
(Hannemann et al. 2018; Shen et al. 2023). Condition 6 is the same as condition 5 except
thermochemical equilibrium is assumed. The free-stream chemical composition (mass
fraction) in the perfect-gas and equilibrium simulations is N2 = 0.767 and O2 = 0.233,
while that in condition 5 (the non-equilibrium simulation) is N2 = 0.7417, N = 0.0,
O2 = 0.1634, O = 0.0454 and NO = 0.0495. Condition 5 has a free-stream vibrational
temperature of 2300 K. Although variants of air are explicitly used as the test gas here,
the results presented later in this paper are not limited to this gas because the influence
of free-stream conicity is mostly insensitive to the flow condition and type of gas, as have
been shown (Lunev & Khramov 1970; Shapiro 1975; Eremeitsev & Pilyugin 1981, 1984;
Golovachov 1985; Hornung 2019) for some properties in the flow over a sphere and will
be further demonstrated later in this paper for some more properties, considering PG air
and EQ air are essentially different types of gas with totally different species composition.

The computational domain and the boundary conditions used for the current work are
shown in figure 5. The simulation is two-dimensional and axisymmetric, which is enough
for the intents and purposes of the current work (three-dimensional simulations of such
flows are known to be very difficult and contain significant numerical error, as discussed
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Condition Gas Model Rs (m) p∞ (Pa) T∞ (K) u∞ (m s−1) M∞ Re

1 PG 0.01 3780.0 133.33 1157.4 5.0 1.24 × 105

2 PG 0.01 204.8 57.97 1221.1 8.0 3.93 × 104

3 PG 0.1 204.8 57.97 1221.1 8.0 3.93 × 105

4 PG 0.01 24.9 31.75 1242.5 11.0 1.85 × 104

5 NONEQ 0.01 701.0 723.0 4842.0 8.7 4.61 × 103

6 EQ 0.01 701.0 723.0 4842.0 9.0 4.79 × 103

Table 1. The numerical test conditions. Here, ‘PG’, ‘EQ’ and ‘NONEQ’ refer to perfect gas, thermochemical
equilibrium and thermochemical non-equilibrium simulations, respectively, p∞, T∞, u∞ and M∞ are the
free-stream static pressure, temperature, velocity and Mach number. The Reynolds number, Re, is calculated
using the free-stream properties and Rs.

Fixed temperature wall

(NC or SC in NONEQ simulations)

Axisymmetry axis

r = L1

Extrapolated outflow

Supersonic inflow

Source centre

Figure 5. The computational domain, boundary conditions and mesh. The wall temperature Tw is fixed at
295 K.

by Candler et al. (2007); therefore, there is really not much to be gained and a lot to be lost
if one chooses to compute in three dimensions for the current work).

For condition 5, both a non-catalytic (NC, where no catalytic interaction occurs between
gas and surface) and super-catalytic (SC, where instantaneous equilibration of the gas
occurs at the surface) wall are tested, which correspond to surface reaction Damköhler
numbers of 0 and ∞, respectively (Inger 1963). Relating to real applicability, an NC
wall would correspond to some glass surfaces while an SC wall would correspond to
some metallic surfaces (Goulard 1958). The surface catalycity is really only relevant for
thermochemical non-equilibrium simulations. For perfect-gas simulations, the chemical
composition in the fluid remains a perfect air mixture (mass fractions of N2 = 0.767
and O2 = 0.233); therefore, nothing can happen at the wall due to surface catalycity
since the chemical composition of the fluid at the wall is already in equilibrium at
the corresponding wall temperature (295 K). Likewise, for equilibrium simulations, the
local chemical composition of the fluid is always in equilibrium at the local temperature;
therefore, the fluid at the wall is also in equilibrium at the corresponding wall temperature,
which means that surface catalycity cannot have any influence here. Consequently, surface
catalycity can only impact non-equilibrium simulations (e.g. condition 5 in the current
work).

989 A10-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

48
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.489


Influence of free-stream conicity on the flow over a sphere

The inflow boundary is made to be adaptive and fit with the shock front. The free-stream
conditions shown in table 1 correspond to those of the uniform free stream, which in turn
correspond to the free-stream conditions immediately ahead of the shock on the symmetry
axis in the case of a non-uniform free stream (r = L1 in figure 5) which is modelled as a
spherical source flow. Subsequently, for the non-uniform free-stream simulations, the flow
state on the inflow faces has to be computed from the governing equations of a steady
spherical source flow in differential form in spherical coordinates given as (Crittenden &
Balachandar 2018)

∂
(

r2ρur

)
= 0,

∂p + ρur∂ur = 0,

∂h + ur∂ur = 0,

⎫⎪⎪⎬
⎪⎪⎭ (2.18)

where h is the specific enthalpy and ur is the radial velocity. The solution is numerically
obtained with the equation of state after specifying the location of the source centre and
the flow condition at some specific distance of r from the source centre. Different locations
for the source centre are tested such that d = 4, 25 and 100 are examined for each condition
in table 1. We specify the flow condition at r = L1, which is given in table 1, and the flow
state on the inflow faces is computed according to (2.18), as mentioned above. A frozen
source flow is assumed for conditions 1–5 while an equilibrium source flow is assumed for
condition 6.

A structured grid of 240 × 240 is used, which is similar to that used in other comparable
works from the recent literature (Fahy et al. 2021; Luo et al. 2023; Guo, Wang & Li 2024).
Strong clustering is implemented at the shock front and normal to the wall, as shown in
figure 5. The clustering at the shock front is regular, with a spacing of around 0.5–2.0 μm
while the clustering normal to the wall decreases in the radial direction with a minimum
cell spacing of around 0.05–1.0 μm at the first cell from the wall at the stagnation point,
depending on the condition. Mild clustering is made in the wall-tangential direction
towards the axisymmetry axis, as shown in figure 5. The minimum spacing in the
tangential direction, which is found on the first cell from the axisymmetry axis, is around
10 μm. The average spacing in the wall-normal and wall-tangential directions is around
15 μm and 85 μm, respectively.

For predicting the surface heat flux, various computational scientists have stated that the
wall cell Reynolds number, Rewall, needs to be below a certain value. Some authors state
that any Rewall value below 3 would give good results (Papadopoulos et al. 1999), while
other authors state that the Rewall value should be around 1 (Ren et al. 2019). The latter
condition is achieved for the current work using a 240 × 240 grid for all the simulated
cases, as shown exemplarily in figure 6(a) for condition 5. A mesh independence study is
carried out for each test case by testing with scaled meshes and comparing the heat flux
distribution around the sphere, which is influenced by many aspects of the flow field and is
the most grid-sensitive parameter (Candler et al. 2007; Mazaheri & Kleb 2007; Kitamura
et al. 2010; Gu et al. 2022). An example is shown in figure 6(b) for condition 5; the result
is essentially converged when more than 120 × 120 cells are used, and similarly for the
other test cases. Therefore, all the numerical results presented in the subsequent sections,
which are obtained using a 240 × 240 grid, are converged. An estimated representative
uncertainty of less than ±0.5 % can be given to the computed stagnation point heat flux
(Gu et al. 2022), which is already the most uncertain property calculated in these kinds
of simulations (Capriati et al. 2022). Hence, the numerical uncertainties of the current
simulations can be considered negligible for the intent and purposes of the current work.
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Figure 6. The wall (a) cell Reynolds number and (b) heat flux for condition 5 (NONEQ) with a non-uniform
free stream of d = 4 and a non-catalytic wall. The angle is in degrees.

Uncertainty Type Δ q Δ/Δ0 q/q0 ps/p0
s

Measurement uncertainty, % ±5–10 ±5–10 ±10–20 ±10–20 ±6–12
Test condition repeatability, % ±5–10 ±15–20 0 0 0
Total uncertainty, % ±15 ±20–30 ±10–20 ±10–20 ±6–12

Table 2. Representative experimental uncertainties.

Further validation of these numerical results is implied from the excellent agreement with
the analytical/theoretical results, as will be shown below in § 4.

3. Experimental uncertainties

Before presenting the results examining the influence of free-stream conicity on the flow
over a sphere, it is necessary to first define the representative experimental uncertainties
for the flow properties of interest. This work is essential because the importance of
free-stream conicity must later be interpreted in relation to the experimental uncertainties
(e.g. if the influence of free-stream conicity is small relative to the experimental
uncertainties, then one may suggest that free-stream conicity is unimportant, and vice
versa). The uncertainties are summarized in table 2. The total uncertainty is considered
the sum of the measurement uncertainty, which is the uncertainty originating from the
measurement-taking device/method, and the test condition repeatability, which is the
uncertainty originating from the facility generating a slightly different test condition in
each shot.

For the shock stand-off distance, Δ, measured via imaging, the measurement
uncertainty reported in the literature ranges from approximately 5 %–10 % (Zander et al.
2014; Sudhiesh Kumar & Reddy 2016). Assuming that the total uncertainty is manifested
as the shot-to-shot variation of repeated measurements of Δ at a given nominal test
condition, this is reported to be around 15 % (Zander et al. 2014). Consequently, the
contribution to the total uncertainty from the test condition repeatability is around
5 %–10 %. For the surface heat flux, the measurement uncertainty of measurements made
using coaxial thermocouples is reported to be around 5 %–10 % (Park et al. 2021).
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Figure 7. The relative shot-to-shot and mirror measurement variation of (a) the absolute heat flux
measurements, and (b) the normalized heat flux measurements, on a 39 mm diameter sphere. The upper-bar
symbol denotes the average value. The angle is in degrees.

The shot-to-shot variation of coaxial thermocouple heat flux measurements made at
various locations on the surface of a 39 mm diameter sphere in the TH2 reflected shock
tunnel at two different test conditions (Gu et al. 2022) is presented in figure 7(a). Also
included in the figure, and treated as shot-to-shot variations, are measurements made in
the same shot at the same angle from the stagnation point but at opposite locations on
the sphere (mirror measurements). Independent of the angle from the stagnation point, the
results indicate a total uncertainty of around 20 %–30 %, which is also consistent with the
data in Rose & Stark (1958) and Eitelberg, Krek & Beck (1996), with the test condition
repeatability contributing approximately 15 %–20 %.

The normalized heat flux, q/q0, and surface pressure, p/p0, distributions are known
to be rather insensitive to the free-stream condition (and the type of gas) (Lees 1956;
Murzinov 1966; Anderson 2019). The same is found for the normalized shock stand-off
distance distribution, Δ/Δ0, as shown in figure 8, obtained using (2.17); although this
equation still contains the Mach number, shock stand-off distance and shock radius of
curvature, which are free-stream-dependent quantities (unlike the equations for q/q0 and
p/p0 which contain no such quantities), their influence on the result is rather weak.
Therefore, the test condition repeatability will not contribute to the total uncertainty
for these normalized distribution measurements. The total uncertainty would then be
just the measurement uncertainty which, for these normalized measurements, would
be two times the measurement uncertainty of the absolute measurements since these
normalized measurements are obtained as a quotient of two absolute measurements. This
results in total uncertainties of around ±10 %–20 % for the normalized shock stand-off
distance and heat flux measurements, and ±6 %–12 % for the normalized surface pressure
measurements.

For the normalized surface pressure and heat flux uncertainties estimated here,
experimental data are available for comparison. Shot-to-shot and mirror measurement
scatters of the normalized surface pressure are reported by Karl, Martinez Schramm
& Hannemann (2003) and Rose & Stark (1958); variations of around ±5 %–10 % are
observed, which is consistent with the estimated uncertainty in table 2. Shot-to-shot
and mirror measurement scatters of the normalized heat flux taken in TH2 are shown
in figure 7(b); independent of the angle from the stagnation point, variations of around
±10 %–20 % are observed, which is exactly consistent with the estimated value in table 2.
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Figure 8. The normalized shock stand-off distance distribution obtained using (2.17). The angle is in degrees.

The experimental data reported by Karl et al. (2003) and Eitelberg et al. (1996) show
further consistency. Also, the scatter of the normalized values in figure 7(b) is distinctly
smaller than that of the absolute values in figure 7(a), providing further confirmation
of the role of the test condition repeatability discussed earlier. As shown in table 2,
the test condition repeatability contributes significantly to the total uncertainty of Δ

and q measurements. Therefore, as a corollary, instead of interpreting and analysing
experimental data by simply using a nominal estimate of the test condition, it is of
significant benefit to obtain a unique free-stream estimate for each individual shot, using
the method of Gu et al. (2022) for example, to eliminate the uncertainty contribution from
the test condition repeatability.

4. Results

4.1. Point properties
The influence of free-stream conicity on various point properties in the flow over a
sphere – including the boundary layer thickness and tangential velocity gradient, which
have never been examined before to any extent in the literature – is shown in figure 10.
The qualitative trends exhibited by these properties from the influence of free-stream
conicity have intuitive physical interpretations. The ‘y’ component (see figure 3) of
the free-stream velocity immediately upstream of the shock (and not exactly on the
axisymmetry axis) becomes more prominent with increasing free-stream conicity. Near
the axisymmetry axis, the shock is aligned almost parallel with the y-axis, which allows
this increasing ‘y’ velocity to transfer through the shock and thereby increase the tangential
velocity and tangential velocity gradient in the flow behind the shock in this region,
as shown in figure 10(c) for the tangential velocity gradient at the boundary layer edge
on the axisymmetry axis. This increased tangential velocity gradient duly causes the
sonic condition to be reached after a shorter distance and, consequently, shifts the sonic
point closer to the axisymmetry axis, as shown in figure 10(b). Also, the increased
tangential velocity increases the inertial force (over the viscous force) in the flow making
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Influence of free-stream conicity on the flow over a sphere
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Figure 9. Inviscid flow over a sphere in the vicinity of the axisymmetry axis.

the boundary layer thinner, as shown in figure 10(d). Because the boundary layer edge
pressure, density and temperature on the axisymmetry axis are essentially unchanged
with free-stream conicity, this thinner boundary layer directly increases the temperature
gradient at the wall near the axisymmetry axis, resulting in a larger heat flux, as shown
in figure 10(e). Furthermore, as indicated in figure 10(a), the increased tangential velocity
forces the shock stand-off distance near the axisymmetry axis to decrease, considering
the control volume in figure 9, to maintain ṁin = ṁout since both the flow density leaving
the control volume and ṁin are essentially not influenced by free-stream conicity. This
statement can be formulated mathematically as follows, assuming the tangential velocity is
constant across the shock layer, an idea from Hornung (2019), and equal to [(du/dx)0 dy],

ρ̄out
∞

[(
du
dx

)0

∞
dy

]
2π dyΔ0

∞ = ρ̄out

[(
du
dx

)0

dy

]
2π dyΔ0, (4.1)

where ρout is the average density leaving the control volume. The left-hand side
corresponds to ṁout in a uniform free stream while the right-hand side corresponds to
that in a conical free stream. Assuming ρout = ρ̄out∞ , one obtains(

du
dx

)0

(
du
dx

)0

∞

= Δ0∞
Δ0 , (4.2)

which can actually be obtained from (2.8) if one assumes (Rs + Δ0)/(Rs + Δ0∞) ≈ 1,
that is, the change in shock stand-off distance caused by free-stream conicity is negligible
compared with the distance between the shock and the centre of the sphere (appropriate,
since the shock layer is generally thin in hypersonic flows); shown in figure 10(c), this is
a fine approximation as (4.2) agrees well with the other results, which also validates the
simple model used in its derivation.

Examining the different results for the shock stand-off distance on the symmetry axis,
figure 10(a), one can see that the theoretical results match the numerical results well,
with errors of less than ±0.03 at d = 4. The influence of free-stream conicity on the shock
stand-off distance is shown to mostly have little sensitivity to the free-stream condition; the
PG results at different Mach and Reynolds numbers are essentially identical, differing by
less than 0.03 for d = 4, consistent with the finding of Golovachov (1985). The EQ result
is also very similar to the PG results, which is consistent with the finding of Golovachov
(1985) and Shapiro (1975), who suggested that PG and EQ flows have the same influence of
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Figure 10. The influence of the degree of free-stream conicity, measured by d, on the (a) shock stand-off
distance on the symmetry axis (‘Hornung’ and ‘Shapiro’ are from (2.4) and (2.1), respectively), (b) sonic point
location (‘Shapiro’ is from (2.2)), (c) tangential velocity gradient at the boundary layer edge on the stagnation
streamline (‘Shapiro’, ‘Olivier’ and ‘Current work’ are from (2.10), (2.8) and (4.2), respectively), (d) boundary
layer thickness at the stagnation point and (e) stagnation point heat flux (‘Eremeitsev & Pilyugin’, ‘Current
work 1’ and ‘Current work 2’ are from (2.6), (2.9) and (2.11), respectively).
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Influence of free-stream conicity on the flow over a sphere

the free-stream conicity. On the other hand, the NONEQ results do have a more noticeable
difference from the other results. More precisely, the free-stream conicity is shown to have
a lesser influence on the NONEQ conditions compared with the other conditions. This
can be explained as follows. Because the free-stream conicity causes the shock stand-off
distance to decrease, the flow along the stagnation streamline becomes more frozen, which
is obvious when examining the Damköhler number for O2 dissociation (which is the main
reaction occurring in the inviscid flow in the NONEQ condition) written as (following
Candler 2018)

Da0
sk = Δ0kD,O2pp

u0TpR
, (4.3)

where u0 is the mean post-shock velocity on the stagnation streamline, R is the universal
gas constant, Tp and pp are the equilibrium post-shock total temperature and pressure,
respectively, and kD,O2 is the oxygen dissociation rate constant at Tp (Da0

sk = O(0) for
the NONEQ condition); since the free-stream condition immediately upstream of the
shock on the stagnation streamline is unchanged, u0, Tp, pp and kD,O2 are essentially not
influenced by free-stream conicity, which means Da0

sk decreases due to the smaller shock
stand-off distance (e.g. (Da0

sk)
d=4/(Da0

sk)
d=∞ = Δ0

d=4/Δ
0∞ = 0.77), leading to a more

frozen flow along the stagnation streamline. However, such freezing tends to increase the
shock stand-off distance, as shown by Wen & Hornung (1995). Consequently, this results
in the non-equilibrium flow having a resistance to the decrease in shock stand-off distance
caused by the free-stream conicity; such resistance is uniquely a non-equilibrium effect
and is non-existent in PG and EQ flows.

Equation (2.4) from Hornung (2019) assumes the average density across the shock layer
on the stagnation streamline outside of the boundary layer remains constant, which is
true for perfect-gas or equilibrium flows. For non-equilibrium flows, this average density
does change with free-stream conicity, as shown in figure 11, which shows the density
on the stagnation streamline between the shock and the boundary layer edge (defined as
the wall-normal distance where the local total enthalpy is 99 % of the free-stream total
enthalpy). In this case, Hornung’s equation should be given as

Δ0

Δ0∞
= ρ̄0∞

ρ̄0
1

1 +
(
R0

c
)
∞

L1

, (4.4)

where ρ̄0 and ρ̄0∞ are the average density across the shock layer on the stagnation
streamline outside of the boundary layer in the non-uniform and uniform free streams,
respectively. Therefore, although thermodynamics was not explicitly considered in
Hornung’s derivations, the effect of non-equilibrium flow is allowed to enter through the
average density across the shock. Figure 11 indicates that the average density across the
shock in the d = 4 flow is approximately 4 %–5 % lower than that in the uniform flow
which, according to (4.4), means the non-equilibrium value of Δ0/Δ0∞ at d = 4 should
be higher than the perfect or equilibrium gas value by the same amount; this is indeed
observed in the results shown in figure 10(a) when comparing the NONEQ results with
the PG and EQ results from CFD.

To examine the importance of free-stream conicity, the result in figure 10(a) is compared
with the experimental uncertainties for the shock stand-off distance, as shown in table 2.
The influence of the free-stream conicity becomes comparable to the total uncertainty
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Figure 11. The density on the stagnation streamline between the shock and the boundary layer edge for
condition 5 (NONEQ) with a non-catalytic wall. Since ‘n’ is the normal distance from the wall and δ0 is
the boundary layer thickness at the stagnation point, the x-axis shows the normal distance from the boundary
layer edge normalized with the shock stand-off distance.

when d � 10. If a unique free-stream estimate for each individual shot is available, then the
uncertainty from the test condition repeatability is eliminated and only the measurement
uncertainty needs to be considered, in which case the influence of the free-stream conicity
becomes relevant when d � 20. Therefore, because d values as small as around 4 can
realistically be encountered, as discussed in § 1, experimental measurements of the shock
stand-off distances made in facilities with conical nozzles may be significantly influenced
by the divergent free stream and, thus, this should be considered and checked before
interpreting the experimental results. If corrections are required, they can be done easily
using the analytical expressions that are shown in the current work to be very accurate
(within the measurement uncertainty shown in table 2).

It is very interesting to observe that the two theoretical results (Shapiro 1975;
Hornung 2019), which were derived from different methods and have completely different
expressions ((2.1) and (2.4)), produce essentially the same curves in figure 10(a). The
Shapiro expression requires the calculation of the influence of free-stream conicity on the
sonic point location, θ s/θ s∞, a priori; an analytical expression for this is provided (2.2)
and its comparison with the numerical results is shown in figure 10(b). One can see that
the expression is very accurate, matching with the numerical results which are found at
the boundary layer edge defined as the location where the local total enthalpy is 99 % of
the free-stream total enthalpy. All the results, including the NONEQ and EQ results, are
essentially identical at a given d, which means that the results are not condition dependent.
The overall excellent prediction of θ s/θ s∞ is a significant result as this value is also,
importantly, required a priori for the Shapiro transformation (Shapiro 1975), introduced
in § 2.1, for the property distributions.

For the sonic point and tangential velocity gradient, shown in figures 10(b) and 10(c),
respectively, the fact that the NONEQ results are essentially indistinguishable from the
other results may be surprising given that the NONEQ shock stand-off distance displays a
resistance that may transfer to the tangential velocity gradient, as shown in (2.8) and (4.2),
which may, in turn, influence the sonic point location. However, (2.8) is for perfect-gas and
equilibrium flows; for non-equilibrium flows, the relationship should, instead, be derived
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Influence of free-stream conicity on the flow over a sphere

from Olivier (1995) as (
du
dx

)0,e

∝ Rs + Δ0

Δ0
1

ρ0,e , (4.5)

because the density at the boundary layer edge on the stagnation streamline, ρ0,e, depends
on the thermochemistry along the stagnation streamline which is influenced by free-stream
conicity, which is unlike in perfect-gas and equilibrium flows where ρ0,e is not influenced
in this way. In non-equilibrium flows, the free-stream conicity makes the flow near the
stagnation streamline more frozen, which decreases the density (Anderson 2019); this
is shown in figure 12 where the non-equilibrium effect reduces ρ0,e by approximately
4 % at d = 4, which is comparable to its effect on the shock stand-off distance where
the NONEQ results at d = 4 are approximately 4 % greater than the other results, as
shown in figure 10(a). Consequently, the effect of the reduction in ρ0,e on (du/dx)0,e

cancels out the effect of the resistance in shock stand-off distance, resulting in (du/dx)0,e

effectively having no special non-equilibrium effect, as shown in figure 10(c), where the
analytical perfect or equilibrium gas results obtained using (2.8) (along with (2.4) to
analytically predict the change in Δ0) gives excellent agreement with all the numerical
results. Likewise, retaining the density terms in (4.1), one obtains(

du
dx

)0,e

(
du
dx

)0,e

∞

= ρ̄out∞
ρ̄out

Δ0∞
Δ0 , (4.6)

which allows non-equilibrium effects to enter through the density ratio. As shown in
figure 11, non-equilibrium reduces the average density by approximately 4 %–5 %, which
is cancelled out by its effect on the shock stand-off distance, resulting in the tangential
velocity gradient ratio being effectively not influenced by the non-equilibrium according
to (4.6). This cancellation can be expected from theory (conservation of mass) where
the product [ρ̄outΔ0] is known to be a constant for a given free stream and sphere size
regardless of the thermochemistry involved (Wen & Hornung 1995).

Furthermore, due to the lack of non-equilibrium effects on the sonic point location and
tangential velocity gradient, (2.10) from Shapiro (1975), which assumes a linear velocity
distribution on the boundary layer edge between the axisymmetry axis and the sonic point,
also predicts the tangential velocity gradient accurately as, shown in figure 10(c) (basically
indistinguishable from Olivier’s method). Shapiro mentioned that the error of his equation
due to the aforementioned assumption is no larger than 5 %; this is further confirmed in
the current work by comparing with the CFD results. From CFD, the velocity distribution
is essentially linear – with only a slight concave down curvature – as shown exemplarily
for condition 4 (PG M = 11) in figure 13. Shapiro’s equation actually gives the ratio of
the average tangential velocity gradient between the axisymmetry axis and the sonic point.
Although the tangential velocity gradient at θ = 0 is slightly higher than the average value
due to the slight concave down curvature, this same trend is observed in both the uniform
and non-uniform free-stream simulations, as shown in figure 13, allowing the errors to
essentially cancel out and resulting in a good prediction of the ratio at θ = 0.

The boundary layer thickness at the stagnation point – defined as the wall-normal
distance where the local total enthalpy is 99 % of the free-stream total enthalpy – is
examined in figure 10(d). One can see that the free-stream conicity decreases the boundary
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Figure 12. The influence of the degree of free-stream conicity on the density at the boundary layer edge on
the stagnation streamline.
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Figure 13. The boundary layer edge velocity, ue, distribution between the axisymmetry axis and the sonic
point for condition 4 (PG M = 11).

layer thickness at the stagnation point, and the results are rather insensitive to the different
flow conditions at any given d. Shown together with the Navier–Stokes solutions in this
figure are the PG and NONEQ results from the numerical solutions of the self-similar
boundary layer at the stagnation point of a sphere, which are denoted as ‘Theory’. This
theory (Anderson 2019) does not explicitly account for free-stream conicity. However, as
discussed earlier, free-stream conicity influences the tangential velocity gradient at the
stagnation point, which can be varied in the aforementioned theory to possibly predict
the influence of the free-stream conicity on the boundary layer thickness at the stagnation
point. Using the tangential velocity gradient at the stagnation point for a uniform free
stream calculated analytically with Newtonian theory, and using (2.4) and (2.8) to calculate
the change in tangential velocity gradient with free-stream conicity, d, while all other
boundary layer edge (stagnation point) properties remain unchanged for each condition
(equilibrium stagnation conditions are used as the edge conditions in the NONEQ cases),
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Influence of free-stream conicity on the flow over a sphere

the theoretical results are produced and excellent agreement with CFD is observed. This
indicates, firstly, that the free-stream conicity decreases the boundary layer thickness
solely due to the tangential velocity gradient, which increases due to the decreasing shock
stand-off distance, and, secondly, the self-similarity of the boundary layer at the stagnation
point is not influenced by the free-stream conicity. Furthermore, the results indicate
essentially no dependence on the flow condition and gas type. No distinct non-equilibrium
effects are observed, which means that the changes to the edge condition caused by
non-equilibrium, as mentioned earlier, do not significantly influence the boundary layer
thickness.

The result for the stagnation point heat flux is shown in figure 10(e), where the
free-stream conicity is found to increase the stagnation point heat flux, which is expected
given the non-uniformity decreases the shock stand-off distance which increases the
tangential velocity gradient, as discussed earlier in § 2.1. The theoretical results again
match the numerical results well; the error is less than ±0.03 at d = 4. Also, the three
theoretical results, which come from different expressions with different origins ((2.6),
(2.9) and (2.11)) are essentially identical. The results for the stagnation point heat flux,
as with the shock stand-off distance, are mostly insensitive to the flow condition and
gas type. The exception here is the NONEQ result using an NC wall which is a little
lower than the other results, as can be clearly seen when examining the d = 4 results.
Interestingly, the NONEQ result using a SC wall does not exhibit this result. Consequently,
it is found that the cause of the NONEQ NC result differing from the other results is due
to the non-equilibrium effect in the boundary layer. The thinning of the boundary layer
at the stagnation point (which is almost frozen) with increasing conicity, discussed above,
allows even less recombination to occur in the boundary layer, as demonstrated in the
Navier–Stokes solution of condition 5 with a NC wall shown in figure 14; this same trend
is also observed in the solutions of the NONEQ NC self-similar boundary layer. This
phenomenon can also be shown through the gas-phase oxygen recombination Damköhler
number (also called the recombination rate parameter) for the stagnation point boundary
layer given as (Fay & Riddell 1958; Inger 1963)

Da0
BL = kr,O2p2

p

(du/dx)0,eT2
pR2 , (4.7)

where kr,O2 is the oxygen recombination rate constant at Tp (Da0
BL = O(−4) for the

NONEQ condition). Because the free-stream condition immediately upstream of the shock
on the stagnation streamline is unchanged, the only parameter in the above equation
that changes due to free-stream conicity is (du/dx)0,e, which increases with increasing
free-stream conicity, as mentioned earlier. Therefore, Da0

BL decreases with increasing
free-stream conicity due to the increasing (du/dx)0,e (e.g. (Da0

BL)d=4/(Da0
BL)d=∞ =

(du/dx)0,e∞ /(du/dx)0,e
d=4 = 0.75), which was also shown earlier to decrease the boundary

layer thickness, resulting in a more frozen boundary layer, and this is consistent with the
CFD results. This phenomenon, consequently, results in less heat release in the boundary
layer and a lower heat flux when the wall is non-catalytic (Fay & Riddell 1958).

On the other hand, if the wall is super-catalytic, the non-equilibrium in the boundary
layer becomes irrelevant in terms of predicting the heat flux, as shown by Fay & Riddell
(1958). That is, the heat flux at a super-catalytic wall is essentially the same regardless of
the behaviour of the chemical kinetics in the boundary layer. This is further demonstrated
in figure 15, which shows the solutions from the non-equilibrium self-similar boundary
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Figure 14. The O2 mass fraction, cO2 , distribution in the stagnation point boundary layer of condition 5
(NONEQ) with a non-catalytic wall, where ‘n’ is the normal distance from the wall and superscript ‘e’ refers
to the boundary layer edge.
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Figure 15. The solutions of the non-equilibrium self-similar stagnation point boundary layer for condition 5
(NONEQ) with varying tangential velocity gradient.

layer with varying tangential velocity gradient while the other boundary layer edge
conditions remain constant and equal to the equilibrium stagnation point condition of
condition 5. The results show that the heat flux scales perfectly with

√
(du/dx)0,e when

the wall is super-catalytic, but not when the wall is non-catalytic due to the inhibiting
of recombination by boundary layer thinning. Therefore, the NONEQ SC result in
figure 10(e) is not affected by the aforementioned phenomenon and, hence, agrees well
with the other results. As a corollary, one can suggest that (2.7), which works very well for
perfect-gas and equilibrium flows, also works very well for non-equilibrium flows when
the wall is super-catalytic, and this is consistent with the results of Fay & Riddell (1958).

To examine the importance of free-stream conicity, the result in figure 10(e) is compared
with the experimental uncertainties for the surface heat flux, as shown in table 2.
The influence of the free-stream conicity becomes comparable to the total uncertainty
when d � 3. In this case, given the context of the experimental uncertainty, the influence
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Influence of free-stream conicity on the flow over a sphere

of the free-stream divergence may generally be considered insignificant as it is within
the experimental uncertainty even when the largest possible test model is used. However,
if a unique free-stream estimate for each individual shot is available, then the influence
of the free-stream conicity becomes relevant when d � 10, and, thus, corrections to the
experimental results may be necessary in certain cases which can easily be carried out
using the analytical expressions given in the current work which are shown to be very
accurate (within the measurement uncertainty shown in table 2).

4.2. Distributions
The influence of free-stream conicity on various normalized distributions in the flow over
a sphere is shown in figure 16. Although these normalized distributions are insensitive to
the free-stream condition in a uniform flow, as discussed in § 3, they are all significantly
influenced by the free-stream conicity. From hereon in, all the NONEQ results refer to
the NC wall case because the SC wall case produces essentially the same results and no
special wall catalycity effects are observed, therefore, it is appropriately omitted for clarity.
Looking at the normalized shock stand-off distance distribution in figure 16(a), one can see
that the free-stream conicity causes the normalized shock stand-off distance to increase. In
other words, the shock angle at any given θ increases with increasing free-stream conicity,
as shown exemplarily in figure 17. This is an expected observation considering that the
divergent free stream expands in the y direction, which effectively turns the shock in the
anti-clockwise direction about the origin, as seen in expansion fan/shock wave interactions
(Nel, Skews & Naidoo 2015). The increase is more severe the larger the angle is away from
the stagnation point. At θ = 90◦ and d = 4, the normalized shock stand-off distance is
around two times larger than that in the corresponding uniform free stream. For reference,
the absolute shock stand-off distance distribution is shown exemplarily in figure 18(a) for
condition 4. One can see that the shock stand-off distance on the symmetry axis decreases
with decreasing d, as expected from the previous section. Decreasing d also increases the
gradient (dΔ/dθ ) throughout, resulting in the shock stand-off distance in the non-uniform
flow being eventually greater than that in the uniform flow when θ becomes large. This is
why the normalized distributions have the qualitative trend shown in figure 16(a).

Comparing figure 16(a) with the experimental uncertainty shown in table 2, one can
see that measurements of the normalized shock stand-off distance should be corrected
for the influence of free-stream conicity when θ is close to 90◦ at d ≈ 25 and when
θ � 30◦ at d ≈ 4. The Shapiro transformation (Shapiro 1975), discussed in § 2.1, is found
to give a reasonable prediction when θ is not too large (θ � 40 at d = 4), as shown in
figure 16(a), consistent with the finding by Golovachov (1985), which may be used to
correct for the free-stream conicity. At large θ , the Shapiro transformation is found to
overpredict the normalized shock stand-off distance, and, thus, numerical methods must
be used to correct for the free-stream conicity in this case. An alternative transformation
may be proposed, as mentioned in § 2.1, in which all the results (non-uniform and uniform)
are assumed to coalesce when the distribution is given in terms of θ + ω (where ω is
the flow divergence angle at θ , defined earlier in § 2.1) instead of θ . That is, it assumes
that the normalized shock stand-off distance at some θ = θ1 in a uniform flow is equal
to that at θ = θ1 − ω in a non-uniform flow. This transformation, denoted as ‘Current
work’ in figure 16(a), is found to underpredict the normalized shock stand-off distance
which, together with the Shapiro transformation, forms the bounds on the more accurate
numerical results. Regarding the numerical results, although the PG results for different
free-stream conditions show very little difference, the results do show some sensitivity to
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Figure 16. The normalized distributions of the (a) shock stand-off distance, (b) surface heat flux (‘Eremeitsev
& Pilyugin’ is from (2.12)) and (c) surface pressure (‘Lunev & Khramov’ is from (2.13)). ‘Shapiro’ refers to
the Shapiro transformation (Shapiro 1975).
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Figure 17. The shock locations for condition 2 (PG M = 8). The curves are shifted on the x-axis such that
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Figure 18. The absolute distributions of the (a) shock stand-off distance, and (b) surface heat flux for
condition 4 (PG M = 11).

the thermochemistry as the EQ, NONEQ and PG results differ slightly from each other
which can be seen when looking at the d = 4 results.

Looking at figure 16(c), one can see that the free-stream conicity causes the normalized
surface pressure to decrease. As discussed by Lunev & Khramov (1970), this can simply
be explained with the Newtonian theory: in a conical free stream, as θ increases the
free-stream flow angle, ω, increases as well, which effectively makes the body surface
more parallel with the free stream (figure 3), compared with the corresponding uniform
free stream, and this causes the pressure distribution to decrease more rapidly in a conical
free stream. The decrease is more severe the larger the angle away from the stagnation
point. Because free-stream conicity does not influence the Pitot pressure (Golovachov
1985), the normalized and absolute distributions have the same qualitative shape.
Comparing figure 16(c) with the experimental uncertainty shown in table 2, one can see
that measurements of the normalized surface pressure should be corrected for the influence
of free-stream conicity when θ ≈ 90◦ at d ≈ 100, θ � 40◦ at d ≈ 25, and θ � 10◦ at
d ≈ 4. The Shapiro transformation and the expression of Lunev & Khramov (1970) (2.13)
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give similar results, and both are found to work reasonably well when θ is not too large
(θ � 50◦ at d = 4), allowing analytical corrections for the free-stream conicity. When θ is
too large (θ � 60◦ at d = 4), not only are the analytical methods inaccurate, but also the
influence from the free-stream conicity becomes dependent on the flow condition and gas
type, consistent with the work of Golovachov (1985).

Looking at the normalized heat flux distribution in figure 16(b), one can see
that the free-stream conicity causes the normalized heat flux to decrease, which is
qualitatively the same trend seen in the normalized surface pressure distribution. This
is expected considering the work of Lees (1956), who showed that the normalized heat
flux distribution around a sphere is closely related to its normalized surface pressure
distribution. The absolute heat flux distribution is shown exemplarily in figure 18(b),
and one can see that the stagnation point heat flux increases with decreasing d, as
expected from the previous section, while the gradient dq/dθ is decreased (made steeper)
throughout, resulting in the normalized distributions having the qualitative trend shown in
figure 16(b). Comparing figure 16(b) with the experimental uncertainty shown in table 2,
one can see that measurements of the normalized heat flux should be corrected for the
influence of free-stream conicity when θ � 50◦ at d ≈ 25 and when θ � 20◦ at d ≈ 4.
The Shapiro transformation (Shapiro 1975) is found to work reasonably well when θ is
not too large (θ � 50◦ at d = 4), as shown in figure 16(a), consistent with the finding of
Golovachov (1985), as with the normalized shock stand-off distance and pressure. The
expression of Eremeitsev & Pilyugin (1984) (2.12) gives results that are very similar to the
Shapiro transformation in which good agreement with the numerical results is also attained
when θ is not too large. Hence, in the case of θ not being too large, these two analytical
methods are available for the correction of free-stream conicity, while numerical methods
are required otherwise. Also, when θ is not too large, the numerical results show that the
influence of the free-stream conicity is essentially independent of the free-stream condition
and thermochemistry; only when θ becomes large (θ � 50◦ at d ≈ 4) does the dependence
on the flow condition and gas type show up, which is similar to the normalized pressure
and is consistent with the work of Golovachov (1985).

It should be mentioned that, for the Shapiro transformation results shown in figure 16,
the disagreement trend at large values of θ is not due to poor predictions of the
corresponding uniform free-stream distributions, required a priori, obtained using the
analytical expressions given by (2.15)–(2.17). This is because this disagreement exists
even when the numerically obtained uniform free-stream distributions are used, instead
of the analytical expressions, as the inputs for the Shapiro transformation. This is shown
exemplarily in figure 19 for condition 2 with d = 4. Therefore, the failure of the Shapiro
transformation at large values of θ is inherent to the transformation itself rather than from
the inputs. Nevertheless, for the surface pressure, significant quantitative improvements
can be achieved at θ > 50◦ by using a more accurate input, as shown in figure 19(c),
indicating (2.15) (from Newtonian theory) is inaccurate at larger values of θ ; this makes
sense because the shock lies far from the surface at large θ , hence, deviating from an
ideal Newtonian flow (Anderson 2019). For the shock stand-off distance and heat flux
distributions shown in figures 19(a) and 19(b), respectively, no significant quantitative
improvements are observed when using a more accurate input, indicating the analytical
expressions are accurate enough.

For completeness, the boundary layer thickness – which has never been examined before
in this context to any extent – is examined in figure 20. The free-stream conicity decreases
the boundary layer thickness at the stagnation point, as discussed earlier. Downstream of
the stagnation point, the free-stream conicity causes the boundary layer thickness to
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Figure 19. The normalized distributions of the (a) shock stand-off distance, (b) surface heat flux and
(c) surface pressure, for condition 2 with d = 4 using Shapiro’s transformation with uniform free-stream
distributions obtained analytically and numerically.
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Figure 20. The influence of free-stream conicity on the (a) absolute boundary layer thickness distribution
and (b) normalized boundary layer thickness distribution.

grow rapidly, as shown in figure 20(a), and beyond approximately 30◦ the boundary
layer thickness at any given θ becomes greater than that in the uniform free stream.
This thickening of the boundary layer caused by free-stream conicity is consistent with
the decrease in heat flux, as shown in figure 16(b). This is also consistent with the unit
Reynolds number distribution as shown in figure 21; near the stagnation point, the inertial
force relative to the viscous force is greater in a conical free stream due to the higher
boundary layer edge velocity, which results in a thinner boundary layer, while further
away from the stagnation point the inertial force becomes relatively smaller in a conical
free stream due to the lower boundary layer edge density, resulting in a thicker boundary
layer.

Regarding the normalized distribution, it is of interest to test if the Shapiro
transformation also works with the boundary layer thickness. The result is shown in
figure 20(b), where the Shapiro transformation is applied to predict the distributions
for d = 4, 25 and 100 using the normalized distributions for the uniform free stream
computed from CFD. One can see that, similar to the normalized distributions of the
other properties shown above in figure 16, good agreement is observed for most cases
when θ is not too large (e.g. θ � 50 at d = 4). The exception is the NONEQ result for
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Figure 21. Ratio of the unit Reynolds number distribution using the boundary layer edge properties around a
sphere between a conical free stream with d = 4 and a uniform free stream for condition 1 (PG M = 5).

which the Shapiro transformation does not work, even at small values of θ . The results in
figure 20 indicate that free-stream conicity has a quantitatively different (lesser) influence
on non-equilibrium flow where the differentiation with the other conditions is noticeable
even at small values of θ ; among the other conditions, the differentiation only becomes
noticeable at large values of θ . This demonstrates another special non-equilibrium effect,
non-existent in frozen and equilibrium flows, that is mild and is like the resistance shown
by Δ0 and by q0 when the wall is non-catalytic, as demonstrated above in § 4.1.

4.3. Boundary layer transition
Another aspect of the flow around a sphere worth examining is the boundary layer
transition, which is observed experimentally. Despite substantial recent work on this
topic, a theoretical understanding of the boundary layer transition on a blunt body
remains elusive (Paredes, Choudhari & Li 2017, 2018; Hein et al. 2019; Schilden et al.
2020; Di Giovanni & Stemmer 2018). The boundary layer flow over a blunt body does
not support the growth of modal instability waves, and this problem has been termed
the ‘blunt-body paradox’. Roughness-induced transient growth has been considered a
possible cause; however, transient growth analysis for purely stationary disturbances in
weakly non-parallel boundary layers and direct numerical simulations of the flow behind
a roughness patch on a spherical forebody only found moderate energy amplification
(Paredes et al. 2017, 2018; Hein et al. 2019). Due to the lack of theoretical foundations
in this problem, the relevant research relies heavily on experimentation which can,
consequently, involve the use of conical nozzles (Lin et al. 1977).

Currently, the best way to predict the aforementioned transition is using semi-empirical
correlations with inputs obtained via laminar CFD simulations. From experimental data,
which show that transition always occurs in the subsonic region (upstream of the sonic
point θ s), the following correlation is given for a sphere (Paredes et al. 2017):

ReΘ

(
k
Θ

Te

Tw

)0.7 ≥
=

{
255 at θ s : transition onset
215 : onset location , (4.8)

where Θ is the boundary layer momentum thickness, k is the peak-to-valley roughness
height, Tw is the wall temperature, Te is the boundary layer edge temperature and ReΘ
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Figure 22. The influence of free-stream conicity on the distribution of the left-hand sides of (a) (4.8) and
(b) (4.9), assuming k and Tw are constants.

is the Reynolds number based on the momentum thickness and flow conditions at the
boundary layer edge, ρeueΘ/μe. The correlation shows that the left-hand side of (4.8) has
to exceed a value of 255 at the sonic point for transition to occur at all, and transition occurs
at a point where the left-hand side of (4.8) equals 215. To study, for the first time, how
free-stream conicity affects the transition location in the flow over a sphere, the influence
of free-stream conicity on the left-hand side of (4.8) is shown in figure 22(a), considering
that k and Tw are not influenced. Examining this figure, one can see that the free-stream
conicity increases the value of the left-hand side in the subsonic region, which means that
the transition location in the conical free stream, if transition were to occur, would occur
closer to the stagnation point than in the uniform free stream. An alternative (and more
recent) correlation to predict the onset location is given by Paredes et al. (2018)

ReΘ

(
k
Θ

)(
Te

Tw

)1.31

= 455, (4.9)

and the influence of free-stream conicity on the left-hand side of this equation is shown
in figure 22(b); the same trend is observed. Also, both results in figure 22 show very little
dependence on the flow condition and gas state. Equations (4.8) and (4.9) were derived for
perfect-gas flows, and, thus, their validity in reactive flows is unknown. Nevertheless, they
are still applied to the non-equilibrium and equilibrium results in the current work due to
the lack of any alternatives.

To understand the trend found in figure 22, it is of interest to examine the trends
of the flow properties making up the left-hand sides of (4.8) and (4.9); this is shown
in figure 23. One can see that the increase in the value of the left-hand side in the
subsonic region by free-stream conicity is mainly due to the increase in the boundary
layer edge tangential velocity, as shown in figure 23(d), caused by the free-stream conicity
which is shown in § 4.1 to increase the tangential velocity gradient. With increasing
free-stream conicity, this increase in the edge velocity, together with the decrease in the
edge viscosity shown in figure 23(b), overcomes the contributions to decrease the left-hand
side caused by the decrease in the edge density and temperature, shown in figures 23(c) and
23(a), respectively, and the decrease in the momentum thickness in the subsonic region,
shown in figure 23(e). Downstream of the sonic point, the influence of the edge density
and temperature wins over and the left-hand side is shown to decrease with increasing
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Figure 23. The influence of free-stream conicity on the distribution of the (a) edge temperature,
(b) edge viscosity (calculated using Sutherland’s formula), (c) edge density, (d) edge tangential velocity and
(e) momentum thickness.

free-stream conicity. However, what happens upstream of the sonic point is more important
because current experimental data indicate that transition only occurs in the subsonic
region.

Regarding the edge temperature (and, consequently, the viscosity) shown in figure 23,
an exception to the mainstream trend can be observed in the NONEQ result where the
free-stream conicity is shown to cause an increase in the value in the subsonic region;
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point, and (b) absolute distribution of the left-hand side of (4.8), without k and Tw which are constants, for
condition 1 (PG M = 5).

this is the same phenomenon mentioned in § 4.1 where the free-stream conicity is found to
make the flow near the stagnation streamline more frozen, which increases the translational
temperature because less energy is transferred to the vibrational and chemical modes. This
phenomenon is also evident in the edge density results, with the NONEQ flow having its
edge density in the subsonic region decreased more by the free-stream conicity compared
with the other conditions, as mentioned earlier in § 4.1.

In addition to examining the distribution of the values of the left-hand side of (4.8) in
the subsonic region, it is also of interest to examine the value of the left-hand side of
(4.8) at the sonic point because the left-hand side has to exceed a certain value at this
location for transition to occur. The result is shown in figure 24(a). One can see that the
left-hand side at the sonic point decreases very slightly, ≈5–8 % at d = 4, with increasing
free-stream conicity for all the conditions. This is because, although free-stream conicity
increases the left-hand side at any given θ in the subsonic region, free-stream conicity also
shifts the location of θ s closer to the stagnation point where the left-hand side has a lower
value, as shown exemplarily in figure 24(b) for condition 1. Ultimately, the shift of θ s to a
location with a lower value of the left-hand side slightly overcomes the overall increase of
the left-hand side in the subsonic region, resulting in a slight decrease of the left-hand side
at θ s. Because this decrease is only very slight, it can be suggested that the free-stream
conicity will not influence whether transition occurs. Therefore, if transition occurs in a
uniform free stream, it would also occur in a conical free stream, albeit with the transition
point shifted upstream closer to the stagnation point, as mentioned earlier in this section.
This result shows no significant dependency on the flow condition and gas type.

Finally, to provide some idea of how much the transition point gets shifted upstream due
to free-stream conicity, figure 25 is produced. To systematize the comparison, k for each
condition is selected such that the left-hand sides of (4.8) and (4.9) are equal to 280 and
500, respectively, at the sonic point in the uniform free-stream case; this value of k remains
constant for the same condition at different d. The results show that the transition point can
get shifted upstream by as much as 15 %–20 % and 20 %–25 % for the different conditions
at d = 4 using (4.8) and (4.9), respectively, and demonstrate no significant dependency
to the flow condition and gas type. Such a shift is significant, and it should be accounted
for when interpreting the experimental results if a conical nozzle is used along with a
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Figure 25. The influence of free-stream conicity on the transition onset point, θ tr, using equations (a) (4.8)
and (b) (4.9). The wall temperature Tw is 295 K in all the cases.

significantly large spherical test model. Note that the results presented in figure 25 (and
figure 24a) are only given at discrete points because their calculation involves significant
inputs from CFD which can only be obtained for a few values of d (d = 4, 25, 100). As
indicated in (4.8) and (4.9), parameters such as the boundary layer momentum thickness,
edge velocity, edge density and edge temperature in both uniform and non-uniform free
streams are required, and these have to be attained using CFD. Consequently, the influence
of free-stream conicity on transition, unlike some of the other properties analysed earlier,
cannot be predicted purely analytically.

4.4. Flow field
For completeness, it is of interest to examine the entire flow field. The results are
exemplarily shown in figure 26 for condition 2 (PG M = 8), and the same trends are
observed in the other conditions. As expected from § 4.1, the shock stand-off distance
on the axisymmetry axis is clearly smaller in the conical free stream (bottom half) than in
the uniform free stream (top half). Also, as shown in figure 26(a), free-stream conicity
makes the entire sonic line move towards the axisymmetry axis, which is consistent
with the sonic point results presented in § 4.1. Looking at figure 26(e, f ), one can see
that the velocity in the z-direction does not change much with free-stream conicity but
the velocity in the y-direction does. Although the conical free stream expands in both
directions, the shock is mostly aligned closer to the y-axis than the z-axis, which allows
more of the y component of the free-stream velocity to transfer through the shock, resulting
in this observation. Examining figure 26(b–d), free-stream conicity does not influence
the pressure, temperature and density near the stagnation region but does decrease these
parameters elsewhere, which is consistent with the corresponding distributions along the
boundary layer edge, as presented earlier in § 4, due to the expansion in the free stream.
Finally, examining figure 26(g,h), in which both panels are indicative of the entropy
variations in the flow field, one can see that free-stream conicity does not significantly
influence the entropy distribution in the flow field; in both the uniform and non-uniform
free-stream cases, the entropy at the boundary layer edge is approximately constant and
equal to the entropy around the stagnation region, as expected in the flow over a sphere
(Anderson 2019), and an entropy layer forms from the shock wave at θ � 40◦.
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Figure 26. The condition 2 (PG M = 8) flow field (a) Mach number, (b) pressure, (c) temperature, (d) density,
(e) velocity z, ( f ) velocity y, (g) total pressure and (h) entropy (Δs = (γ /(γ − 1)) ln (T/T∞) − ln (p/p∞)).
The top half corresponds to a uniform free stream while the bottom half corresponds to d = 4.
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Figure 27. The condition 5 (NONEQ) NC wall flow field of the (a) difference between the
translational–rotational temperature, Ttr , and vibrational temperature, Tv , (b) translational–rotational
temperature and (c) vibrational temperature.

Further analysis is undertaken for the non-equilibrium condition to examine how
free-steam conicity changes the thermochemical non-equilibrium behaviour in the flow
field. Thermal non-equilibrium is examined in figure 27 by looking at the difference
between the translational–rotational temperature and vibrational temperature; the NC wall
results are shown exemplarily, and the same is observed for the SC wall. The flow near the
shock front has strong thermal non-equilibrium, with Ttr being significantly greater than
Tv , while the flow in the boundary layer near the wall is essentially in thermal equilibrium,
and no significant differences are observed between the uniform and conical free-stream
cases concerning these observations. On the other hand, the thermal non-equilibrium seen
in the inviscid flow near the boundary layer edge at θ � 30◦, where Tv is significantly
greater than Ttr, does exhibit a difference between the two free-stream cases: the conical
free stream produces stronger thermal non-equilibrium here. This is expected considering
the flow expanding around the sphere from the stagnation region is further assisted by the
expansion in the conical free stream resulting in a more rapid expansion due to free-stream
conicity leading to a stronger thermal non-equilibrium of this kind (Tv > Ttr). This is also
consistent with the results shown above in this section where free-stream conicity is found
to increase the velocity and decrease the pressure, temperature (translational–rotational)
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and density in the flow over a sphere outside of the stagnation region. Consider the
vibrational Damköhler number of the inviscid flow travelling around the boundary layer
edge of the sphere (following from Passiatore et al. 2022)

Dae
v = Rs/ue

τv

, (4.10)

where τv is the vibrational relaxation time (Dae
v = O(0) for the current condition). The

decrease in pressure and temperature by free-stream conicity increases τv (Millikan &
White 1963) which, together with the increase in ue, decreases Dae

v making the flow more
vibrationally frozen (e.g. (Dae

v)
d=4/(Dae

v)
d=∞ = 0.4 using conditions at the boundary

layer edge at θ = 45◦). Looking at figure 27(b,c), the translational–rotational temperature
is lower in the conical free-stream case while the vibrational temperature remains basically
the same between the two cases, resulting in the larger thermal non-equilibrium seen in
the conical free-stream case.

To examine the finite-rate chemistry, which is dominated by the oxygen
dissociation/recombination reaction in this condition, figure 28 is made, which shows the
O2 mass fraction flow field. Examining the difference between the uniform free-stream
and conical free-stream results, the O2 mass fraction distribution remains largely the
same near the shock front while some differences can be observed in the inviscid
region near the boundary layer edge, like with the thermal non-equilibrium. This can
be seen more clearly in figure 29(a), which shows the O2 mass fraction along θ =
0◦, 30◦, 60◦ rays in the inviscid flow; the results in this figure are for an NC wall, and
the same is observed for a SC wall. One can see that the O2 mass fraction is always
higher in the conical free stream, indicating inhibition of dissociation and the presence
of larger chemical non-equilibrium. This is confirmed when examining figure 29(b),
which shows the difference between the equilibrium O2 mass fraction (calculated using
Cantera (Goodwin et al. 2023) at the local translational–rotational temperature and
pressure) and the actual O2 mass fraction in the inviscid flow. In this region, the
actual O2 mass fraction is always in excess of the local equilibrium value (dissociating
non-equilibrium with [(cO2)eq − cO2] < 0), and one can see that free-stream conicity
generally increases the degree of this kind of chemical non-equilibrium here because the
conical free-stream results (dashed lines) are always lower than the uniform free-stream
results (solid lines) at all three θ values. The result for θ = 0◦ was already presented in
§ 4.1; for this case, the observation is caused by the smaller shock stand-off distance,
as explained earlier. For the θ = 30◦, 60◦ cases, the larger chemical non-equilibrium
observed in the conical free stream is due to the same reason explained above for the
larger thermal non-equilibrium: the expanding free stream assists the expansion of the
flow around the sphere from the stagnation region, resulting in a more rapid expansion
which creates a larger non-equilibrium. Examining the O2 dissociation Damköhler
number which, for the current discussion, can be written as (following from Candler
2018)

Dae
c = Rsρ

ekD,O2

ueMO2

, (4.11)

where MO2 is the O2 molar mass, and kD,O2 is the O2 dissociation rate constant, which
increases exponentially with temperature (Dae

c = O(−1) for the current condition), we
see that, for the inviscid gas flowing around the sphere, the free-stream conicity causes the
velocity to increase, and the density and temperature to decrease, which all contribute to
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Figure 28. The condition 5 (NONEQ) NC wall O2 mass fraction, cO2 , flow field.

decrease the Dae
c and make the flow more frozen (e.g. (Dae

c)
d=4/(Dae

c)
d=∞ = 0.4 using

conditions at the boundary layer edge at θ = 45◦).
Finally, details of the gas-phase reaction in the boundary layer are important for the

NC wall (unlike the SC wall) due to its influence on the wall heat flux, as mentioned
earlier (Fay & Riddell 1958). Therefore, to examine this more closely, figure 30 is made,
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Figure 29. The (a) O2 mass fraction, cO2 , and (b) difference between the equilibrium O2 mass fraction (at
the local translational–rotational temperature and pressure), (cO2 )eq, and the actual O2 mass fraction in the
inviscid flow along rays of θ = 0◦, 30◦, 60◦ for condition 5 with NC wall. The x-axis is normalized to give the
distribution between the shock front and boundary layer edge.
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Figure 30. The O2 mass fraction in the boundary layer along rays of θ = 0◦, 30◦, 60◦ for condition 5 with
NC wall. The x-axis is normalized to give the distribution between the wall and boundary layer edge.

which shows the O2 mass fraction along θ = 0◦, 30◦, 60◦ rays in the boundary layer with
an NC wall. One can see that, in both the conical and uniform free streams, the mass
fraction does not change much through the boundary layer, especially when θ is not large,
with only minor recombination occurring near the wall, indicating the boundary layer
is basically frozen. Larger variation of the O2 mass fraction is seen through the boundary
layer at θ = 60, particularly in the conical free stream, where the O2 mass fraction is higher
near the boundary layer edge and decreases with decreasing distance from the wall, but
this is not due to chemical reactions happening in the boundary layer. This is due to the
growing thickness of the boundary layer which swallows the inviscid flow with radially
varying O2 mass fraction, as seen in figures 28 and 29(a) (similar to the entropy layer
swallowing phenomenon Anderson 2019). In other words, at θ = 60, the flow near the
wall in the boundary layer originates from the inviscid region with θ ≈ 0 while the flow in
the boundary layer near the boundary layer edge originates from the inviscid region with
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Figure 31. The condition 5 (NONEQ) NC wall O2 mass fraction streamlines overlaid on the inviscid and
boundary layer flow domains represented by the dark grey and light grey contours in the background,
respectively. The four streamlines pass through θ = 60 at n/δ = 0.25, 0.5, 0.75, 1.0.

θ 
 0, resulting in the aforementioned O2 mass fraction distribution through the boundary
layer since the chemistry is essentially frozen in the boundary layer. This description is
seen more clearly in figure 31, which shows four streamlines that pass through θ = 60
at n/δ = 0.25, 0.5, 0.75, 1.0. One can see that the mass fraction along the streamlines
essentially freezes after entering the boundary layer. Because different streamlines enter
the boundary layer with different mass fractions, an obvious mass fraction distribution
forms through the boundary layer at larger values of θ despite the flow being basically
frozen in the boundary layer. This distribution is, therefore, related to the O2 mass fraction
distribution along the boundary layer edge, which is shown in figure 32. Free-stream
conicity, in addition to reducing the dissociation in the inviscid flow as it expands around
the sphere, also increases the rate of growth of the boundary layer, as mentioned earlier
in § 4.2, making it swallow more of the inviscid flow; these factors combine to result in
the O2 mass fraction distribution along the boundary layer edge being higher and having a
larger variation in the conical free stream, as shown in figure 32. This larger mass fraction
variation along the boundary layer edge is directly responsible for the corresponding
larger mass fraction variation through the boundary layer in the conical free stream seen
in figure 30.
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Figure 32. The condition 5 (NONEQ) NC wall O2 mass fraction along the boundary layer edge.

5. Conclusions

The influence of free-stream conicity on the various aspects of the flow over a
spherical test model, such as the shock wave, pressure, heat flux and boundary layer,
is examined using both analytical and numerical methods. For the analytical method,
an easy-to-use closed-form analytical model is compiled which predicts the influence of
free-stream conicity without the need for any input from numerical computations. For the
numerical method, the ‘Eilmer’ Navier–Stokes solver is used to perform two-dimensional
axisymmetric simulations of the flow around a sphere in free streams with different
degrees of conicity. Six different free-stream conditions with different Mach numbers,
Reynolds numbers and thermochemistry are tested at four different degrees of conicity
(d = ∞, 100, 25, 4) corresponding to those which can realistically be encountered in
experiments. The numerical work included thermochemical non-equilibrium simulations;
this is unlike the previous studies that examine the influence of free-stream conicity, which
only consider perfect-gas or equilibrium flows. Also unlike the previous works, the current
work is fully related to practical experimental scenarios by considering the realistic range
of ‘d’ and by considering the uncertainties (measurement uncertainties and shot-to-shot
variations) of hypersonic experiments. Furthermore, the influence of free-stream conicity
on the tangential velocity gradient, boundary layer thickness and boundary layer transition
is considered for the first time in this paper. In addition to answering the important question
of just how much the free-stream conicity influences the experiments, the underlying
physics involved is thoroughly explained as well, which is not discussed in many of the
earlier works, which mostly only look to predict and quantify the influence of free-stream
conicity without really attempting to provide a physical explanation for the observations.

The shock stand-off distance on the symmetry axis, Δ0, is shown to decrease with
increasing free-stream conicity. The decrease in Δ0 increases the tangential velocity
gradient at the stagnation point, which increases the stagnation point heat flux, q0, and
decreases the stagnation point boundary layer thickness, δ0. Excellent agreement between
the analytical and numerical results is observed for Δ0/Δ0∞ and q0/q0∞, with errors of
less than ±0.03 at d = 4. This same level of agreement is observed between self-similar
boundary layer theory and numerical results for δ0/δ0∞. Considering the experimental
uncertainties, measurements of Δ0 and q0 made in facilities with conical nozzles may be
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significantly influenced by the divergent free stream and, thus, this should be considered
and checked before interpreting the experimental results. The influence of d on these
properties is also mostly insensitive to the flow condition and gas type, except for the
non-equilibrium effects on Δ0 and on q0 when the wall is non-catalytic where mild
resistance to changes in free-stream conicity is observed.

The free-stream conicity is also found to alter the normalized distributions of the
shock stand-off distance Δ/Δ0, heat flux q/q0, surface pressure ps/p0

s and boundary
layer thickness δ/δ0 with the angle from the stagnation point θ . In general, increasing
the free-stream conicity magnifies the slope of these distributions. For Δ/Δ0 and δ/δ0,
which increase with increasing θ , the free-stream conicity increases the gradient of
the distribution curve while for q/q0 and ps/p0

s , which decrease with increasing θ ,
the free-stream conicity decreases the gradient of the distribution curve. The influence
of free-stream conicity on these normalized distributions is severe when d = 4, and
appropriate corrections are likely required in most cases. When θ � 40, the results are
mostly independent of the flow condition and gas type, and good agreement with analytical
results is found, allowing for easy corrections for the free-stream conicity. However, for
larger values of θ , the dependence on the flow condition and gas type shows up, and the
analytical methods fail to give a reasonable prediction, thus, numerical methods will have
to be used for corrections in this case.

When examining the entire flow field, free-stream conicity is found to change the gas
dynamics (increase velocity, decrease temperature, pressure and density) in such a way
that a non-equilibrium flow becomes generally more frozen, thermally and chemically,
throughout the flow field. This increases the mass fraction distribution through a frozen
boundary layer due to the swallowing of the inviscid flow with varying O2 mass fraction.

Regarding the influence of free-stream conicity on the boundary layer transition,
an analysis is carried out using the available empirical corrections which employ the
boundary layer edge conditions and the momentum thickness. It is found that, if transition
occurs in a uniform free stream, it would also occur in a conical free stream, albeit with the
transition point shifted upstream closer to the stagnation point by approximately ≈ 20 %
when d = 4 irrespective of the flow condition and gas state. The increase in the boundary
layer edge tangential velocity caused by the free-stream conicity increasing the tangential
velocity gradient is found to be responsible for this upstream shift in the transition location.

Overall, at and near the stagnation point (θ � 40), the influence of free-stream conicity
is mostly insensitive to the flow condition and gas state, except for some special
non-equilibrium effects which are only mild. Considering that PG air and EQ air are
essentially different types of gas with totally different species compositions, the current
results are consistent with past results for some properties of the flow over a sphere which
indicated a lack of dependency on the type of gas and whether the gas is in equilibrium
or frozen, and this trend is extended here to more properties, such as the boundary layer
thickness and transition. Consequently, although the current work explicitly used variants
of air as the test gas, most of the current results would apply to other types of gas too at a
wide range of hypersonic flow conditions.
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