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The Attenuated Geodesic X-ray Transform

In Definition 5.3.3 we introduced a very general attenuated X-ray transform
IA in the context of an arbitrary non-trapping manifold (M,g) with strictly
convex boundary, where A ∈ C∞(SM,Cm×m) was a matrix attenuation. In
this chapter we shall focus on the scalar case m = 1 and in this case the
attenuation will be denoted by a. We shall see that under the assumption
that a ∈ �−1 ⊕ �0 ⊕ �1 and that (M,g) is a simple surface, the attenuated
X-ray transform Ia is injective on C∞(M). Along the way we will revisit the
existence of holomorphic integrating factors, but first we give a brief summary
of the classical situation of the Euclidean plane.

12.1 The Attenuated X-ray Transform in the Plane

We start with a smooth function a ∈ C∞(R2) with compact support contained
inside the unit disk D. For (x,v) ∈ SR2 we set

Da(x,v) :=
∫ ∞

0
a(x + tv) dt .

In the classical literature the function Da is called the divergent beam X-ray
transform of a at x in the direction of v. Note that if M denotes the closed unit
disk, then Da|SM = ua , where as ever ua denotes the unique solution to the
transport problem Xu = −a with u|∂−SM = 0. Note also that

Da(x + tv,v) = Da(x,v) −
∫ t

0
a(x + rv) dr . (12.1)

The classical attenuated X-ray transform of a compactly supported function
f in R

2 is defined using ρ := exp(−Da) as weight. It is most frequently
expressed in parallel-beam geometry, using the coordinates (s,ω) ∈ R×S1, as
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270 The Attenuated Geodesic X-ray Transform

Raf (s,ω) =
∫ ∞

−∞
exp

( − Da
(
sω + tω⊥,ω⊥))f (

sω + tω⊥) dt . (12.2)

Note that for a = 0 this reduces to the Radon transform in Section 1.1. Using
(12.1) we may rewrite this as

Raf (s,ω) = exp
( − Da(sω,ω⊥)

)
×

∫ ∞

−∞
exp

[∫ t

0
a(sω + rω⊥) dr

]
f
(
sω + tω⊥) dt . (12.3)

Suppose now that f is supported in the closed unit disk M . We may think of
f as a function in M , and consider the (Euclidean) attenuated X-ray transform
in M as in Section 5.3 given by

Iaf (x,v) =
∫ τ(x,v)

0
exp

[∫ t

0
a(x + rv) dr

]
f (x + tv) dt, (x,v) ∈ ∂+SM .

We wish to express Raf in terms of Iaf . If we now introduce a map h : SM →
[−1,1] × S1 by

h(x,v) = (〈x,v⊥〉,v⊥
)

as we did in Section 9.5, then we see that h∗Raf is a first integral of the
geodesic flow on SM . A short computation shows that its restriction to ∂+SM

gives via (12.2) (or via (12.3))

h∗Raf |∂+SM = e−I0(a)Ia(f ). (12.4)

It follows that Ra is injective if and only if Ia is injective. Moreover, as we
saw in Section 5.3 there is a connection to the transport equation: one has
Iaf = u|∂+SM where u is the solution of

Xu + au = −f in SM, u|∂−SM = 0. (12.5)

The literature on Ra is extensive, so we limit ourselves to giving some
of the highlights and discussing them from the perspective of the present
monograph. One reason for the interest in Ra is that it naturally arises in single
photon emission computed tomography (SPECT). This is an imaging method
in nuclear medicine, where typically a radioactive tracer material is injected
into the bloodstream of the patient and one measures the gamma radiation
produced by the material. The function f represents the spatial density of
emitters (emitting gamma photons isotropically) and a is a linear attenuation
coefficient. The function Raf measures the intensity of gamma photons at the
detector in the direction of a specific line.

In our discussion we shall assume that a is known and the objective is
to recover f from Raf . Remarkably, even in the Euclidean plane the full
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12.2 Injectivity Results for Scalar Attenuations 271

resolution of the injectivity question for Ra is relatively recent and is due
to Arbuzov et al. (1998). A couple of years later, Novikov (2002b) gave
an explicit inversion formula based on complexifying the transport problem
(12.5) and solving a scalar Riemann–Hilbert problem. Shortly after, Boman
and Strömberg (2004) produced an inversion formula that applied to a larger
class of attenuations, namely a ∈ �−1 ⊕ �0 ⊕ �1. An inversion formula in
fan-beam coordinates for the unit disk is provided in Kazantsev and Bukhgeim
(2007). For an exposition of some these developments we refer to Finch
(2003). We remark that in dimensions n ≥ 3 the problem of recovering f from
its Euclidean attenuated X-ray transform is formally overdetermined and can
be reduced to inversion on small two-dimensional slices, see e.g. Markoe and
Quinto (1985); Ilmavirta (2016).

In the two-dimensional results above, holomorphic integrating factors for
the attenuation a play a prominent role. As we explained in Section 9.5.3
these are easy to come by in the Euclidean case, but for an arbitrary simple
surface one needs to deploy some microlocal tools. In Proposition 10.1.2 we
have already produced holomorphic and antiholomorphic integrating factors
for any attenuation a ∈ �−1 ⊕ �1 on a simple surface. Below we shall extend
this result to attenuations a ∈ �−1 ⊕ �0 ⊕ �1. This result will allow us to
invert the attenuated geodesic X-ray transform.

12.2 Injectivity Results for Scalar Attenuations

We begin with definitions. Let (M,g) be a compact non-trapping surface with
strictly convex boundary, and let A ∈ C∞(SM) be a general attenuation. In
this chapter, the attenuation A will always be scalar and we will write A = a to
emphasize this. Recall that in Section 5.3 we introduced the attenuated X-ray
transform of f ∈ C∞(SM) as

Iaf = uf |∂+SM,

where uf is the solution of

Xu + au = −f in SM, u|∂−SM = 0.

Noting that X(e−ua
) = ae−ua

, we see that the previous equation is equivalent
with

X
(
e−ua

u
) = −e−ua

f in SM, e−ua

u|∂−SM = 0.

A short computation shows that in the scalar case Iaf has the explicit formula

Iaf (x,v) =
∫ τ(x,v)

0
exp

[∫ t

0
a(ϕs(x,v)) ds

]
f (ϕt (x,v)) dt
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272 The Attenuated Geodesic X-ray Transform

for (x,v) ∈ ∂+SM .
We will mostly be interested in the case where f ∈ C∞(M) (i.e. f is a

0-tensor).

Definition 12.2.1 If a ∈ C∞(SM), the attenuated geodesic X-ray transform
on 0-tensors is defined by

Ia,0 : C∞(M) → C∞(∂+SM), Ia,0f := Ia(#0f ).

As discussed in Section 12.4, there are counterexamples showing that Ia,0 is
not injective when a ∈ C∞(SM) is arbitrary. However, injectivity will hold in
the important special case where a ∈ C∞(M), or more generally when a has
the special form

a(x,v) = h(x) + θx(v),

where h ∈ C∞(M,C) is a function and θ is a smooth complex-valued 1-form,
which we identify with the function θx(v) on SM . Since we are working in
two dimensions, we may equivalently say that we will consider attenuations of
the form

a = a−1 + a0 + a1 ∈ �−1 ⊕ �0 ⊕ �1.

We first consider the case a0 = 0 (i.e. a is purely a 1-form). In this setting
we can prove a fairly general result.

Theorem 12.2.2 Let (M,g) be a compact non-trapping surface with strictly
convex boundary and I ∗

0 surjective. Let θ be any smooth complex-valued 1-
form. Then Iθ,0 is injective.

Proof Suppose that f ∈ C∞(M) and Iθ,0f = 0. By Theorem 5.3.6 there is
a smooth function u such that Xu + θu = −f and u|∂SM = 0. Since X + θ

maps even (odd) functions to odd (even) and f ∈ �0 we may assume without
loss of generality that u is odd.

Using Proposition 10.1.2 we know that there exists w holomorphic and even
with Xw = θ . Thus we have

X
(
ewu

) = ew((Xw)u + Xu) = −ewf . (12.6)

Note that ewu is odd and consider

q :=
−1∑
−∞

(
ewu

)
k
.

Since ewf is holomorphic, (12.6) gives

Xq = η+q−1 ∈ �0.
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But q|∂SM = 0 since u|∂SM = 0, hence injectivity of I0 gives q = 0 (see
Lemma 10.2.2). This means that ewu is holomorphic and thus u is holomor-
phic. Using Proposition 10.1.2 again but with w̃ antiholomorphic, we deduce
that u is also antiholomorphic. Since we assumed u odd we must have u = 0
and thus f = 0 as claimed.

This result has the following important corollary on the existence of
solutions of transport equations with prescribed zeroth Fourier mode (the case
θ = 0 was proved in Theorem 8.2.2).

Corollary 12.2.3 Let (M,g) be a simple surface and let θ be a
smooth complex-valued 1-form. Then, given f ∈ C∞(M,C) there exists
u∈C∞(SM,C) such that {

Xu + θu = 0,
u0 = f .

Proof Consider any smooth function W : SM → C \ {0} such that XW −
θW = 0. Then by Lemma 5.4.6 injectivity of Iθ,0 is equivalent to injectivity of
IW,0. Combining Theorem 12.2.2 with Corollary 8.4.6 we deduce the existence
of u when θ is replaced by −θ̄ . Since θ was an arbitrary complex 1-form, this
proves the result.

The next theorem may be seen as the dual statement at the level of the
transport equation to the injectivity of the geodesic X-ray transform on the
spaces �k .

Theorem 12.2.4 Let (M,g) be a simple surface. Given f ∈ �k there exists
u ∈ C∞(SM) such that {

Xu = 0,
uk = f .

Proof Let r := eikθ ∈ �k . Then θ := r−1X(r) ∈ �−1 ⊕ �1 is a 1-form.
By Corollary 12.2.3, there exists a smooth u such that Xu + θu = 0 and
u0 = r−1f ∈ �0. Now observe that

X(ru) = r(Xu + θu) = 0.

Since (ru)k = ru0 = f ∈ �k , the theorem is proved.

Armed with this theorem we can now prove the existence of holomorphic
integrating factors for a ∈ C∞(M,C).

Proposition 12.2.5 (Holomorphic integrating factors, part II) Let (M,g) be
a simple surface. Given a ∈ �0, there exists w ∈ C∞(SM) such that w is
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274 The Attenuated Geodesic X-ray Transform

holomorphic and Xw = a. Similarly, there exists w̃ ∈ C∞(SM) such that w̃
is antiholomorphic and Xw̃ = a.

Proof We do the proof for w holomorphic; the proof for w̃ antiholomorphic is
analogous.

First we note, as in the proof of Proposition 10.1.2, that the equation η−f1 =
a can always be solved. Indeed this is the case since it is equivalent to solving
a ∂̄-equation on a disk: by Lemma 6.1.8

η−f1 = e−2λ∂̄
(
f eλ

)
,

where f1 = f eiθ . Hence we just need to solve ∂̄(f eλ) = e2λa, which is always
possible, e.g. by extending a as a smooth compactly supported function outside
the disk and applying the Cauchy transform.

Next, using Theorem 12.2.4 there is a smooth function u such that Xu = 0
and u1 = f1. Now take w = u1 + u3 + u5 + · · · . Then Xw = η−u1 = a and
w is the desired holomorphic integrating factor.

We now state the final version on the existence of holomorphic integrating
factors.

Proposition 12.2.6 (Holomorphic integrating factors, final version) Let (M,g)

be a simple surface. Given a = a−1 + a0 + a−1 ∈ �−1 ⊕ �0 ⊕ �1, there
exists w ∈ C∞(SM) such that w is holomorphic and Xw = a. Similarly,
there exists w̃ ∈ C∞(SM) such that w̃ is antiholomorphic and Xw̃ = a.

Proof This is a direct consequence of Propositions 10.1.2 and 12.2.5.

We can now prove the main result of this section. For a = a0 this was first
proved in Salo and Uhlmann (2011).

Theorem 12.2.7 Let (M,g) be a simple surface, and assume that a = a−1 +
a0 + a1 ∈ �−1 ⊕ �0 ⊕ �1. Then Ia,0 is injective.

Proof This proof is very similar in spirit to that of Theorems 12.2.2 and 10.2.3.
Suppose that f ∈ C∞(M) satisfies Ia,0f = 0. By Theorem 5.3.6 there is a
smooth function u such that Xu + au = −f and u|∂SM = 0.

Using Proposition 12.2.6 we know that there exists w holomorphic with
Xw = a. Thus we may write

X
(
ewu

) = ew((Xw)u + Xu) = −ewf . (12.7)

Consider

q :=
−1∑
−∞

(
ewu

)
k
.
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Since ewf is holomorphic, (12.7) gives

Xq = η+q−2 + η+q−1 ∈ �−1 ⊕ �0.

But q|∂SM = 0, hence splitting into even and odd degrees, Theorem 10.2.3
gives that q = 0. This means that ewu is holomorphic and thus u is holomor-
phic. Using Proposition 12.2.6 again but with w̃ antiholomorphic we deduce
that u is also antiholomorphic. Hence u = u0. To complete the proof we need
to show that u0 also vanishes (and hence f = 0 as well).

Going back to the transport equation Xu+au = −f we see that if we focus
on degree −1 we have η−u0 + a−1u0 = 0 with u0|∂M = 0. Choose some
b ∈ �0 satisfying η−b = a−1. Then

η−
(
ebu0

) = 0,

and ebu0 is a holomorphic function on M that vanishes on the boundary, so it
must be zero everywhere.

Exercise 12.2.8 Let (M,g) be a simple surface and let a = a−1 + a0 + a1 ∈
�−1 ⊕ �0 ⊕ �1. Establish the following tensor tomography result with
attenuation a: let u ∈ C∞(SM) be such that

Xu + au = f, u|∂SM = 0.

Suppose fk = 0 for |k| ≥ m + 1 for some m ≥ 0. Then uk = 0 for |k| ≥ m

(when m = 0, this means u = f = 0).

12.3 Surjectivity of I ∗
⊥

There is another application of Theorem 12.2.4 that was already used for the
characterization of the range of I0 in the case of simple surfaces in Theorem
9.6.2.

Theorem 12.3.1 Let (M,g) be a simple surface. Then the operator

I ∗
⊥ : C∞

α (∂+SM) → C∞(M)

is surjective.

Proof Let us recall that I∗
⊥h = −2π(X⊥h�)0 for h ∈ C∞

α (∂+SM) (cf. (9.14)).
Given f ∈ C∞(M), consider functions w±1 ∈ �±1 solving (as we have done
in the proof of Proposition 12.2.5):

η−w1 = −f/4πi, η+w−1 = f/4πi. (12.8)
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276 The Attenuated Geodesic X-ray Transform

By Theorem 12.2.4 there are odd functions p,q ∈ C∞(SM) such that Xp =
Xq = 0 and p−1 = w−1, q1 = w1. Consider the function

w :=
−1∑
−∞

pk +
∞∑
1

qk .

By (12.8) we have Xw = 0. Let h := w|∂+SM ∈ C∞
α (∂+SM). We claim that

I ∗
⊥h = f . Indeed using (12.8) again,

I ∗
⊥h = −2π(X⊥w)0 = −2πi(η−w1 − η+w−1) = f/2 + f/2 = f

as desired.

12.4 Discussion on General Weights

Theorem 12.2.7 prompts a natural question: is it possible to prove injectivity
of Ia,0 for a more general a? What would happen if we just took an arbitrary
a ∈ C∞(SM)?

It turns out that for an arbitrary attenuation a ∈ C∞(SM), injectivity of Ia,0
is no longer true even in the Euclidean case. Recall that by Lemma 5.4.6 the
injectivity of Ia,0, where a ∈ C∞(SM) is a general attenuation, is equivalent
to the injectivity of the weighted X-ray transform Iρ,0 for any smooth weight
ρ : SM → C \ {0} satisfying Xρ − aρ = 0.

In Boman (1993), an example is given of ρ ∈ C∞(SR2) with ρ > 0 and
f with compact support in R

2 such that Iρ(f ) = 0. If the weight ρ is real
analytic, injectivity is known, cf. Boman and Quinto (1987). However, as of
today there is no complete characterization of the set of weights for which
injectivity of Iρ holds. Novikov (2014) considers weights ρ that have a finite
vertical Fourier expansion, namely ρ ∈ ⊕N

−N�k , and shows injectivity of Iρ on
compactly supported functions in the plane under additional assumptions on ρ.

With this in mind we can now state the following open problem for simple
surfaces.

Open problem. Let (M,g) be a simple surface and let a ∈ ⊕N
−N�k be an

attenuation with finite vertical Fourier expansion. Is it true that Ia,0 is injective?
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