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Abstract

It is crucial to understand the genetic mechanisms and biological pathways underlying the relationship between obesity and serum lipid levels.
Structural equation models (SEMs) were constructed to calculate heritability for body mass index (BMI), total cholesterol (TC), triglyceride
(TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and the genetic connections between BMI
and the four classes of lipids using 1197 pairs of twins from the Chinese National Twin Registry (CNTR). Bivariate genomewide association
studies (GWAS) were performed to identify genetic variants associated with BMI and lipids using the records of 457 individuals, and the
results were further validated in 289 individuals. The genetic background affecting BMI may differ by gender, and the heritability of males
and females was 71% (95% CI [.66, .75]) and 39% (95% CI [.15, .71]) respectively. BMI was positively correlated with TC, TG and LDL-C in
phenotypic and genetic correlation, while negatively correlated with HDL-C. There were gender differences in the correlation between BMI
and lipids. Bivariate GWAS analysis and validation stage found 7 genes (LOC105378740, LINC02506, CSMD1,MELK, FAM81A, ERAL1 and
MIR144) that were possibly related to BMI and lipid levels. The significant biological pathways were the regulation of cholesterol reverse
transport and the regulation of high-density lipoprotein particle clearance (p < .001). BMI and blood lipid levels were affected by genetic
factors, and they were genetically correlated. There might be gender differences in their genetic correlation. Bivariate GWAS analysis found
MIR144 gene and its related biological pathways may influence obesity and lipid levels.
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Obesity is a worldwide epidemic with a high prevalence in both
developed and developing countries, causing a global disease bur-
den and socioeconomic challenges (Rohde et al., 2019). Obesity
contributes to multiple chronic disease states, such as type 2 dia-
betes (Bragg et al., 2018), nonalcoholic steatohepatitis (Pang et al.,
2019), coronary artery disease (Global Burden of Metabolic Risk
Factors for Chronic Diseases Collaboration et al., 2014), cancer
(Parr et al., 2010), and even causes death (Flegal et al., 2007).
Serum lipids, such as total cholesterol (TC), triglycerides (TG),
high-density lipoprotein cholesterol (HDL-C) and low-density lip-
oprotein cholesterol (LDL-C) can reflect metabolic processes.
Dyslipidemia, a characteristic of metabolic syndrome (MetS), is
also a risk factor for insulin resistance, type 2 diabetes and cardio-
vascular disease (Alshehry et al., 2016; Cadby et al., 2020; Rankinen
et al., 2015).

Consistent conclusions on the association between obesity and
serum lipid levels have been drawn. Obesity-related phenotypes

such as body mass index (BMI) are positively correlated with
TC, TG and LDL-C levels, but negatively associated with HDL-
C levels. However, most of these studies only used Pearson corre-
lation or multiple stepwise regression methods (Abbasi et al., 2013;
Tao et al., 1992; Zhu et al., 2005), and only a few have constructed a
genetic model or performed variance decomposition utilizing fam-
ilial or twin samples to assess the correlation between the two phe-
notypes (Cadby et al., 2018; Pang et al., 2010; Tang et al., 2006).
Monozygotic twins (MZ) are considered 100% genetically similar,
whereas dizygotic twins (DZ) share an average of 50% genetic
materials. The heritability of a phenotype can be evaluated by con-
structing a structural equation model (SEM) using twin samples,
and the correlation between two phenotypes and the proportion
of genetic and environmental contributions can be assessed by
applying bivariate SEM (Liao et al., 2015).

Since obesity and serum lipid levels are correlated and even
genetically related, many studies have explored genes or single-
nucleotide polymorphisms (SNPs) that are related to both pheno-
types simultaneously to identify their common underlying biologi-
cal pathway. Genomewide association studies (GWAS) have
recognized numerous variants in recent years. The simplest
method for identifying pleiotropic variants is to find the overlap
between the two phenotype GWAS results. Alternatively,
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candidate SNPs or genes that are significantly associated with
one trait can be tested for their relationship with another. For
example, the FTO gene has been widely confirmed to be related
to obesity, and researchers have explored whether SNPs in
this gene are related to serum lipids, with inconsistent conclu-
sions (Al-Attar et al., 2008; Gao et al., 2018; Kring et al.,
2008). Other studies constructed genetic risk score based
on significant SNPs of one phenotype in GWAS studies to
test for association with another phenotype, or conducted
Mendelian randomization analysis (Emdin et al., 2017; Kim
et al., 2016; Lotta et al., 2018). However, these methods
mentioned above are likely to have conservative results because
they have low detection power and may neglect some true asso-
ciations (Solovieff et al., 2013).

Cross-phenotype (CP) associations indicate that certain genetic
variants are related to multiple phenotypes, which is linked to plei-
otropy in complex diseases (Solovieff et al., 2013). The cross-phe-
notype association (CPASSOC) method is a meta-analysis that
incorporates results from the summary statistics of several pheno-
types from one or from various studies. This approach has higher
statistical power than single-trait analysis and can be used to
describe population structure and relatedness (Zhu et al., 2015).
SNPs associated with obesity and serum lipid levels can be explored
using this program.

This study aimed to: (1) calculate the heritability of BMI, TC,
TG, HDL-C and LDL-C and assess the correlation between BMI
and the four serum lipid phenotypes; (2) identify genetic variants
jointly associated with BMI and lipid levels; and (3) explore bio-
logical pathways related to BMI and lipid metabolism.

Materials and Methods

Study Sample

All participants were recruited from the Chinese National Twin
Registry (CNTR), the first established, largest population-based
twin registry in China. The CNTR has enrolled 61,566 twin pairs
from 11 regions since 2001 (Gao et al., 2019). Details of this twin
registry have been previously reported (Gao et al., 2019; Li et al.,
2013). The data for this study was based on follow-up surveys
in Shandong, Jiangsu, Zhejiang, Sichuan and Heilongjiang prov-
inces in 2013 and 2017−2018, and contains questionnaire response
information, anthropometric assessments and fasting blood bio-
chemical tests.

In the construction of the SEM in this study, participants who
were aged over 18 and willing to cooperate with physical examina-
tion and blood collection were included, and those who were preg-
nant or being treated with weight- or lipid-lowering medicine were
excluded. Only twins reared together were included in the study. If
any one of the twin pairs was excluded, the other one was also
excluded. Zygosity was determined based on age and gender,
and whether strangers were confused about the appearance of
twins during the baseline investigation, with an accuracy of
86.98% (Wang et al., 2015). SEM analysis was conducted on data
from the 1197 twin pairs who remained (475 MZ male pairs, 252
MZ female pairs, 207 DZ male pairs, 79 DZ female pairs, 184 DZ
opposite-sex pairs); 805 people had genetic information from
either genotyping or whole-genome sequencing.

All participants provided written informed consent, and the
Biomedical Ethics Committee at Peking University approved this
study (IRB00001052-13022/14021).

Measurements

Height and weight were measured using a portable stadiometer
and digital balance (Body Composition Analyzer/Scale,
TANITA, Tokyo, Japan; Liao et al., 2015). If repeated measure-
ments were available, the average of this phenotype was calculated.
BMI was defined as weight (kg)/height2 (m2).

Covariates, including age, gender, smoking, alcohol consump-
tion and physical activity were obtained from questionnaires.
Smoking status and alcohol consumption were divided into three
categories (never, former, and current). Physical activity was cal-
culated based on the participants’ responses to the time spent
on work, transportation, daily life and rest time. The metabolic
equivalent task (MET) value was calculated, and the results were
coded into three categories (low, medium, high; Ainsworth
et al., 2000; Fan et al., 2014).

The collection, storage and testing of blood samples have been
described previously (Liao et al., 2015). DNA was extracted for
genotyping or sequencing.

Genotyping

Genomic DNA was extracted from the whole peripheral blood
using BioTeke whole blood DNA extraction Kit. DNA quantifica-
tion and quality were measured by electrophoresis and UV
spectrophotometer. Genotyping was performed using the
Human Omni ZhongHua-8 BeadChip (Illumina Inc, San Diego,
USA). DNA genotyping was performed on 480 twins, including
125 MZ twin pairs, 112 DZ twin pairs and 6 unrelated individuals.
Duplicated samples (n= 1) and samples with SNP call rate <95%
(n= 16) were excluded. There were 867,807 SNPs in autosomes
initially. We excluded single SNPs based on the following criteria:
SNP genotype missingness rate > 5% (n= 7651), minor allele fre-
quency (MAF)< 0.05 (n= 160,312), Hardy-Weinberg equilibrium
(HWE) significance < 10−6 (n= 185). Finally, the genetic data of
457 subjects and 697,297 SNPs were imputed with reference to
1000 Genomes (Phase 3) using IMPUTE2 (Howie et al., 2009).
Imputed SNPs were examined based on the following criteria: if
MAF> 3%, imputation INFO should be> 0.3; or if 1% <
MAF≤ 3%, INFO should be> 0.6; or if 0.5% < MAF ≤ 1%,
INFO should be> 0.8; or if 0.1% < MAF ≤ 0.5%, INFO should
be> 0.9. Finally, 9,395,080 SNPs passed quality control.

Sequencing

After random interruption, end repair and PCR, the DNA
extracted from the whole peripheral blood became sequencing
raw reads. After data filtering, data quality control, mapping to
reference, marking duplicates, indel realignment and base recali-
bration, the raw reads were transformed into variant SNPs. The
whole sequencing procedures were performed by BGI Genomics
Co., Ltd, China with qualified control.

Statistical Analysis

Structural equation modeling. For classic SEM in a twin study,
phenotypic variation can be divided into additive genetic effects
(A), dominance genetic effects (D), shared environmental effects
(C) and nonshared environmental effects (E). The proportion of
variance of A and D within the overall variation is defined as her-
itability. Sex-specific differences in genetic effects can be examined
by including DZ opposite-sex twins, with different parameters for
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males and females, as well as by specifying the correlation between
their genetic effects (rg ;Orstavik et al., 2007). rg is freely estimated
when fitting the model that accounts for qualitative and quantita-
tive genetic differences, which means that genes that influence a
phenotype differ between males and females. Then, rg was set to
1 to fit the quantitative model, which means that the same genes
influence the trait, while their effect varies in magnitude. The no-
sex-difference model means that rg is equal to 1 and the parameters
for different genders are also identical. As the effects of C and D
cannot be concurrently assessed in twins reared together, the
ACE model and ADE model were fitted separately, and the one
with a lower Bayesian Information Criterion (BIC) value was
chosen as the best model (Mather et al., 2016). Then nested models
that dropped the genetic (A or D) and environmental (C) compo-
nents were fitted and the performances of the ACE/ADE model
and its nested models were compared. A nested model was defined
as the best-fit model if the LRT p value was >.05, and the Akaike’s
information criterion (AIC) was smaller than that of the ACE/
ADE model.

Similar to univariate SEM, bivariate SEM can be applied to
assess the variances of A, C, D and E between two phenotypes using
Cholesky decomposition (Figure 1, sex-differences are not shown).
A bivariate SEM was fitted based on the results of the univariate
SEM. We reported phenotypic correlation (rp) and proportion
of genetic and environmental contributions to the phenotypic cor-
relation for BMI and lipid phenotypes. rp means the correlation
coefficient of two phenotypes, and proportions of genetic correla-
tion means the proportion of shared genetic factors contributing to
phenotypic correlations. In the SEM analysis, raw data of BMI were

used and logarithmic transformation of serum lipids was per-
formed, andmodels were adjusted for age. The SEMwas fitted with
OpenMx package (version 2.18.1) in R (version 4.0.2).

GWAS

GWAS analysis of BMI, TC, TG, HDL-C, LDL-C were conducted
for 457 participants (2 individuals treated with lipid-lowering
medicine were excluded) using the genomewide efficient mixed-
model association (GEMMA, version 0.98, Linux) program, which
uses linear mixed models to explain kinship among samples, pop-
ulation stratification and other confounding factors in genetic
association tests (Zhou & Stephens, 2012). Logarithmic transfor-
mation of serum lipids data was performed tomeet the normal dis-
tribution, and the models were adjusted for age, age square, sex and
the first 10 principal components (PCs). CPASSOC analysis based
on univariate GWAS results can identify SNPs that influence BMI
and lipid traits simultaneously (Zhu et al., 2015). This analysis was
conducted assuming heterogeneity is present or not present,
because the effect size and direction of a SNP may be different
between two phenotypes. The results of CPASSOC were further
compared with the results of bivariate GWAS performed by
GEMMA (Zhou & Stephens, 2014). Genomewide significance
was set at p< 5E-8, but p< 1E-5 was adopted as a suggestive sig-
nificance level owing to the limited sample size in this analysis (Li
et al., 2019; Ran et al., 2013). The CPASSOC analysis (version 1.0.1)
were performed in R (version 4.0.2). SNPs with suggestive signifi-
cance were selected for the validation stage, which involved sub-
jects with sequencing data. If a certain SNP was not in the
validation data, another SNP in linkage disequilibrium (r2 > .6)
was selected. Validation model was adjusted for age, sex and
region. p < .05 was set as significance level. Both of the two stages
used an additive genetic model.

Enrichment Analysis

Significant SNPs in the GWAS analysis were mapped to the loci or
the nearest gene on the chromosomes. Enrichment analysis of GO
pathways was conducted using Gorilla (http://cbl-gorilla.cs.
technion.ac.il/) (Eden et al., 2009). Pathways with a p value <
.001 were considered significant biological pathways.

Results

Structural Equation Modeling

The basic epidemiological characteristics of all 2394 individuals,
including 727 MZ twin pairs and 470 DZ twin pairs in the SEM
analysis, are described in Table 1. The analysis involved 1548
men and 846 women aged 49.6 and 46.6, respectively. More than
half of men were current smokers and drinkers, while the corre-
sponding percentages of women were relatively lower. TC and
LDL-C levels were comparable between genders. Men had higher
BMI and TG level, while lower HDL-C level than women did.

The univariate and bivariate SEM model selection procedures
are shown in Supplementary Table S1 and S2 respectively.
Univariate SEM results showed that BMI and the four lipid phe-
notypes were all affected by genetic factors. The ACE model was
better than ADE for all traits except for LDL-C, and there were
qualitative sex differences in the variation of BMI, and quantitative
sex differences in the variation of TG, HDL-C and LDL-C
(Supplementary Table S1). For example, the heritability of BMI
was 71% (95% CI [.66, .75]) in males but only 39% (95% CI
[.15, .71]) in females. The shared environmental factors had a

Fig. 1. Choleskey decomposition of bivariate structural equation model (ACE model).
A1, A2 = additive genetic variances; C1, C2 = shared environmental variances; E1, E2 =
nonshared environmental variances; a11, a22 = additive genetic path coefficients; c11,
c22= shared environmental path coefficients; e11, e22= nonshared environmental path
coefficients; a21, c21, e21 = specific additive genetic path coefficient, specific shared
environmental path coefficient, specific nonshared environmental path coefficient
influence on phenotype1 and phenotype2 simultaneously; rG = correlation between
genetic factors; rC = correlation between shared environmental factors; rE = correla-
tion between nonshared environmental factors.
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greater impact on the variation of BMI in females (34%, 95% CI [.4,
.56]) than males (0%). Similar results were also obtained for HDL-
C level. However, sex differences seemed to be smaller in the varia-
tion of TC, TG and LDL-C, of which the heritability was 50−70%
(Supplementary Table S3).

The results of the bivariate SEM are shown in Table 2, and there
were genetic correlations between BMI and the four serum lipids in
both genders. For example, the correlation coefficient between
BMI and serum TC was 0.16 (95% CI [.11, .21]) and 0.17 (95%
CI [.10, .25]) for males and females respectively. Genetic effects
accounted for 76% of male and 65% of female phenotypic corre-
lations between BMI and TC. The genetic contribution that
affected the covariation of BMI and the four serum lipids
accounted for more than 60%, exceeding the environmental
contribution.

GWAS

The study sample with genotype data consisted of 302men and 155
women whose epidemiological characteristics are similar to those

of participants eligible for SEM analysis (Supplementary Table 4).
The paired subjects were randomly divided into two groups, con-
sidering the similarity of the genetic material between them. The
remaining unpaired subjects were all included in group 1.
Finally, there were 241 subjects in group 1 and 216 subjects in
group 2. The results of the two groups were combined using
METAL. We excluded SNPs with a missingness rate > 5% or
minor allele frequency (MAF) < 0.05 after imputation due to the
small sample size in each group. Finally, 5,191,111 and
5,144,874 SNPs were included in group 1 and group 2 analyses
respectively.

The results of the two analysis strategies (CPASSOC assuming
no heterogeneity and CPASSOC assuming heterogeneity) in the
three groups (group 1, group 2 and combined) are shown in
Supplementary Tables S5−S8. We only showed the SNP with
the smallest p value nearest to one gene. The results performed
by GEMMA bivariate linear mixed models were similar to
CPASSOC (assuming heterogeneity), indicating the results were
robust, so we did not show these results. The Manhattan plot of
results of CPASSOC (assuming heterogeneity) are shown in

Table 1. Epidemiological characteristics of 2394 Chinese twins for SEM analysis

All Male Female p value

n (%) 2394 1548 (64.7) 846 (35.3)

Age (years, mean ± SD) 48.6 ± 12.0 49.6 ± 11.7 46.6 ± 12.2 .852

Zygosity (MZ), n (%) 1454 (60.7) 950 (61.4) 504 (59.6) <.001

Region, n (%)

Sichuan 256 (10.7) 165 (10.7) 91 (10.8) –

Shandong 606 (25.3) 397 (25.6) 209 (24.7) .818

Jiangsu 610 (25.5) 389 (25.1) 221 (26.1) .883

Zhejiang 678 (28.3) 461 (29.8) 217 (25.7) .427

Heilongjiang 244 (10.2) 136 (8.8) 108 (12.8) .119

Smoking status, n (%)

Never 1323 (55.3) 495 (32.0) 828 (97.9) −

Former 269 (11.2) 266 (17.2) 3 (0.4) <.001

Current 802 (33.5) 787 (50.8) 15 (1.8) <.001

Drinking status, n (%)

Never 1019 (42.6) 432 (27.9) 587 (69.4) −

Former 82 (3.4) 69 (4.5) 13 (1.5) <.001

Current 1293 (54.0) 1047 (67.6) 246 (29.1) <.001

Physical activity level, n (%)

Low 577 (24.1) 346 (22.4) 231 (27.3) −

Medium 356 (14.9) 207 (13.4) 149 (17.6) .599

High 1461 (61.0) 995 (64.3) 466 (55.1) .002

BMI (kg/m2, mean ± SD) 24.52 (3.27) 24.63 (3.04) 24.33 (3.65) .024

TC (mmol/L, mean ± SD) 4.87 (1.02) 4.87 (1.06) 4.87 (0.95) .790

TG (mmol/L, mean ± SD) 1.84 (2.23) 1.99 (2.59) 1.59 (1.30) <.001

HDL-C (mmol/L, mean ± SD) 1.34 (0.35) 1.31 (0.36) 1.40 (0.34) <.001

LDL-C (mmol/L, mean ± SD) 2.56 (0.76) 2.55 (0.75) 2.57 (0.79) .580

Note: SEM, structural equation modeling; MZ, monozygotic; BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density
lipoprotein cholesterol. p values were corrected for the correlation between co-twins using multinomial logistic regression for categorical variables and random-effects models for continuous
variables.
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Figure 2 and Supplementary Figures S1−S4. In total, we obtained
913 SNPs that might be associated with BMI and lipid traits
simultaneously.

Initially, there were 325 participants who had whole-genome
sequencing data. We excluded individuals who had recently taken
lipid- or weight-lowering medicine, and we randomly selected one
individual from the paired twins to form a validation set, which
comprised 289 individuals. 845 SNPs that were found or were in
the linkage disequilibrium (r2> .6) with SNPs in the first stage were
selected for validation. Validation results are shown in
Supplementary Table S9, and only the SNP with the smallest P
value nearest to one gene were reported. Finally, we identified
12, 18 16, 16, 18 genes that could be associated with BMI, TC,
TG, HDL-C and LDL-C, and 7 genes (LOC105378740,
LINC02506, CSMD1, MELK, FAM81A, ERAL1, MIR144) that
could be associated with both BMI and lipid traits simultaneously,
as shown in Table 3.

By providing the seven genes above, the Go enrichment analysis
performed by Gorilla obtained four biological pathways that are
mainly involved with the MIR144 gene. These pathways regulate
reverse cholesterol transport and high-density lipoprotein particle
clearance, which is mainly involved in lipid homeostasis.

Since we found sex differences in the genetic effects in the varia-
tion of BMI and lipid traits in the SEM analysis, we conducted a
bivariate GWAS stratified by gender. The MIR144 gene was also
significant and enriched in biological pathways in males, but
was not significant in females. Furthermore, no significant meta-
bolic pathways were obtained in female participants.

Discussion

The results showed that BMI and the four serum lipid traits (TC,
TG, HDL-C, and LDL-C) were influenced by genetic factors, and

there seemed to be sex differences in some phenotypes. Phenotypic
correlations were observed between BMI and lipid levels, in which
genetic factors accounted for a moderate proportion. Based on a
bivariate GWAS analysis, seven genes were found to be associated
with the combination of BMI and lipids. The enrichment analysis
revealed some biological pathways related to BMI and lipid
metabolism.

Previous studies reported that estimated heritability of BMI
ranged from .47−.90 (median .75) in twin studies and .24−.81
(median .46) in family studies (Elks et al., 2012) respectively. In
our univariate SEM analysis, the heritability of BMI was found
to be .71 (95% CI [.66, .75]) for males and .39 (95% CI [.15,
.71]) for females. However, conclusions regarding whether herit-
ability in BMI differed by sex were not consistent. Themeta-regres-
sion conducted by Elks et al. (2012) confirmed a null effect of sex,
but some studies have even indicated that females had a higher her-
itability than males (Harris et al., 1995; Herskind et al., 1996;
Schousboe et al., 2003). The results of this study were similar to
those of another study conducted in Chinese twins, which found
that the heritability of BMI differs by area and sex. The highest
was 67.8% in males of Tianjin and the lowest was 11.2% in females
inHeilongjiang province (Zhou et al., 2015). There were qualitative
differences between genders, and this means that different genes
affect BMI. Only phenotypes such as waist circumference
(Randall et al., 2013), waist-to-hip ratio (Yang et al., 2015), and
BMI-adjusted waist-to-hip ratio (Winkler et al., 2015) have been
found to have gender heterogeneity in genetic factors, which
may be explained by the differences in the proportion and distri-
bution of body fat betweenmen andwomen. Further efforts should
be made to investigate whether the mechanisms that affect obesity
differ by sex and area.

All four serum lipid traits were related to genetic factors, and
their heritability was similar to that reported by previous studies

Table 2. Results of best bivariate structural equation model for BMI-lipid levels

Phenotype Best model

Components of variance

rp

Proportion of contribu-
tion

A C E Genetic Environmental

Male BMIþ TC ACE BMI 0.71 (0.66, 0.75) − 0.29 (0.25, 0.34) .16 (.11, .21) 76% 24%
TC 0.48 (0.33, 0.64) 0.16 (0.01, 0.30) 0.36 (0.32, 0.41)

BMIþ TG AE BMI 0.71 (0.66, 0.75) − 0.29 (0.25, 0.34) .37 (.32, .41) 73% 27%

TG 0.60 (0.55, 0.65) − 0.40 (0.35, 0.45)

BMIþ HDL-C ACE BMI 0.71 (0.66, 0.75) − 0.29 (0.25, 0.34) −.29 (−.34, −.24) 77% 23%

HDL-C 0.70 (0.66, 0.74) − 0.30 (0.26, 0.34)

BMIþ LDL-C AE BMI 0.71 (0.66, 0.75) − 0.29 (0.25, 0.34) .15 (.09, .20) 64% 36%

LDL-C 0.57 (0.51, 0.62) − 0.43 (0.38, 0.49)
Female BMIþ TC ACE BMI 0.38 (0.14, 0.67) 0.35 (0.06, 0.57) 0.27 (0.22, 0.33) .17 (.10, .25) 65% 35%

TC 0.48 (0.33, 0.64) 0.16 (0.01, 0.30) 0.36 (0.32, 0.41)

BMIþ TG ACE BMI 0.37 (0.15, 0.65) 0.36 (0.10, 0.56) 0.27 (0.22, 0.33) .26 (.19, .33) 63% 37%

TG 0.66 (0.59, 0.71) − 0.34 (0.29, 0.41)

BMIþ HDL-C ACE BMI 0.35 (0.13, 0.64) 0.38 (0.11, 0.59) 0.27 (0.22, 0.33) −.20 (−.27, −.12) 84% 16%

HDL-C 0.43 (0.20, 0.72) 0.31 (0.02, 0.52) 0.27 (0.22, 0.32)
BMIþ LDL-C ACE BMI 0.37 (0.13, 0.66) 0.36 (0.08, 0.58) 0.27 (0.22, 0.33) .17 (.10, .24) 70% 30%

LDL-C 0.71 (0.64, 0.76) − 0.29 (0.24, 0.36)

Note: BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; A, additive genetic effect; C, shared
environmental effect; E, nonshared environmental effect; rp = phenotypic correlation coefficient.
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(Chien et al., 2007; Heller et al., 1993; Lin et al., 2014; Souren et al.,
2007; Weiss et al., 2006). In the bivariate SEM analysis, BMI was
positively correlated with TC, TG and LDL-C, and negatively
related to HDL-C, which was the same as the conclusions drawn
from analyses performed on subjects from different races, genders
and regions (Abbasi et al., 2013; Cadby et al., 2018; Mahaney et al.,
1995; Pang et al., 2010; Tang et al., 2006; Tao et al., 1992; Zhu et al.,

2005). BMI was more strongly correlated with blood pressure,
insulin and lipids in men than in women in an observational study
(Fall et al., 2015). Lipid metabolomics studies also found that some
lipids were associated with BMI in opposite directions across gen-
ders, and the strength of the correlation between some lipids and
BMI differed significantly between males and females (Beyene
et al., 2020). Mendelian randomization studies also indicated that

Fig. 2. Manhattan plots for bivariate GWAS results of BMI and lipid traits in the first stage (combined group, cross-phenotype association [CPASSOC], assuming heterogeneity).
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the correlations betweenmetabolites and BMIwere higher inmales
than in females (Wurtz et al., 2014). This phenomenon-may partly
be explained by gender differences in the distribution characteris-
tics of BMI and blood lipids, as is indicated in our study. Fat is more
likely to deposit in the abdomen in males, which is associated with
a deleterious cardiometabolic pattern; for example, hypertension,
dyslipidemia and insulin resistance (Fall et al., 2015; Schorr et al.,
2018). The sex differences in the correlation between obesity and
lipids needs to be further explored.

BMI and the four lipid traits were also genetically correlated in
our study, and the proportions of genetic correlation of BMI and
lipids were over 50%, indicating genetic effects played a more
important role. This conclusion was consistent with some previous
twin and family studies, which also indicated a genetic correlation
between BMI and lipids. A Chinese twin study fitted models with
some combinations of obesity phenotypes and lipids and found no
statistically significant genetic correlation between BMI and HDL-
C (Liao et al., 2015), which might be explained by the small sample

size (only 903 individuals) in that research. However, another
Chinese twin study found that the correlation between BMI and
lipid traits was mainly due to environmental factors, and it even
showed that BMI is positively correlated with HDL-C (Pang
et al., 2010), which was contrary to the conclusions of other studies.
This study fitted a complex multivariate SEM with six phenotypes,
which may lead to unstable parameter estimates. Compared with
that study, the bivariate model in our study can explain the corre-
lation between phenotypes more clearly. Some lipids were found to
be genetically correlated with obesity in metabolomics study
(Cadby et al., 2020). SNPs associated with lipids were identified
to be correlated with BMI and waist-hip-ratio (Willer et al.,
2013). The genetic risk scores of BMI were associated with lipid
traits and vice versa (He et al., 2010; Kim et al., 2016). These studies
suggested that BMI and lipids were genetically correlated, and it is
of vital importance to find out the genetic background.

After conducting a bivariate GWAS analysis and validation
stage, we identified seven genes (LOC105378740, LINC02506,

Table 3. Genes that could be associated with BMI and lipid traits in the bivariate GWAS results

Gene Chr SNP Position (hg19) Associated trait p1 p2

LOC105378740 1 rs12565060 56311809 BMI 5.18E-1

TC 7.26E-5a 4.11E-2

LDL-C 4.99E-6a 5.77E-2

1 rs12563373 56312695 BMI 2.22E-2

TC 9.80E-5a 7.06E-1

LDL-C 7.91E-6a 8.20E-1

LINC02506 4 rs79198200 31878384 BMI 3.53E-2

HDL-C 3.60E-3b 1.36E-2

LDL-C 8.25E-6b 8.94E-1

CSMD1 8 rs56181019 4,271,843 BMI 3.27E-2

TC 8.10E-6c 9.98E-2

HDL-C 1.29E-3c 1.91E-3

MELK 9 rs10738975 36732969 BMI 1.60E-2

TC 1.69E-1b 5.57E-2

HDL-C 1.82E-6b 6.18E-1

LDL-C 4.71E-2b 1.02E-3

FAM81A 15 rs8029197 59749417 BMI 1.39E-2

TC 7.14E-6a 1.46E-1

TG 7.96E-4a 1.52E-3

HDL-C 1.70E-2a 8.50E-2

LDL-C 6.93E-5a 9.30E-1

ERAL1 17 rs89916866 27183155 BMI 9.86E-3

TG 7.49E-6d 1.42E-1

17 rs59068724 27184386 BMI 1.02E-1

TG 7.49E-6d 4.82E-2
MIR144 17 rs1109024 27189971 BMI 2.75E-2

TC 3.88E-3d 1.59E-2

TG 7.49E-6d 1.34E-1

LDL-C 5.11E-3d 1.03E-2

Note: BMI, body mass index; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol. p1 are the p values of bivariate GWAS
analysis for the BMI and the corresponding lipid trait. p2 are the p values for the validation stage. ap valuewas extracted from combined group assuming no heterogeneity. bp valuewas extracted
from group1 assuming heterogeneity. cp value was extracted from group 2 assuming no heterogeneity. dp value was extracted from group1 assuming no heterogeneity.
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CSMD1, MELK, FAM81A, ERAL1, MIR144) that could be associ-
ated with both BMI and lipid traits simultaneously. Enrichment
analysis also revealed the essential role of theMIR144 gene in lipid
metabolism. The transcription product of the MIR144 gene is
microRNA-144 (miR-144). Studies have shown that miR-144
inhibits the expression of the ABCA1 (adenosine triphosphate
binding cassette transporter A1) gene, reduces the level of HDL-
C and regulates cholesterol metabolism, thereby accelerating the
progression of atherosclerosis (de Aguiar Vallim et al., 2013;
Ramirez et al., 2013). miR-144 accelerates plaque formation by
promoting the production of pro-inflammatory cytokines (Hu
et al., 2014), so it may be closely related to coronary heart disease.
Elevation of miR-144 can be observed in coronary heart disease
patients, and ST-segment elevation myocardial infarction was sig-
nificantly associated with elevatedMIR144 expression (Chen et al.,
2018). In the F1-zebrafish model, overexpression ofMIR144 led to
lipid accumulation and further induced lipid metabolism disorder
(Wang et al., 2018). Inmicemodels, miR-144 is one of themost up-
regulated miRNAs in response to a high-fat diet (Guedes et al.,
2016). Meanwhile, miR-144 is a significant predictor of insulin
resistance, and its expression is up-regulated in patients with type
2 diabetes (Yan et al., 2021; Zhu & Leung, 2015). TheMIR144 gene
might be closely related to obesity-relatedmetabolic disorders such
as dyslipidemia, type 2 diabetes and other metabolic diseases.

TheCSMD1 gene is a putative suppressor of head and neck squ-
amous cell carcinoma in cancer research (Sun et al., 2001). This
gene was previously identified to be associated with obesity-related
phenotypes (BMI; Zhu et al., 2020), BMI-adjusted waist
(Christakoudi et al., 2021), BMI-adjusted waist-hip-ratio (Liu
et al., 2013), blood pressure (Hong et al., 2010), glucose (Hebbar
et al., 2021), lipids (Hebbar et al., 2021) and metabolic syndrome
(Nock et al., 2009), however, the mechanism is not yet clear. The
FAM81A gene was previously found to be related to BMI-adjusted
visceral adipose (Fox et al., 2012) and phosphatidylethanolamine
measurement (Rhee et al., 2013) in GWAS analysis, which may
be associated with obesity and lipid metabolism. The other four
genes were not formally related to these phenotypes. Deletion of
the ERAL1 gene resulted in mitochondrial dysfunction, growth
retardation and apoptosis (Dennerlein et al., 2010). The MELK
gene is mainly involved in cell cycle regulation (Davezac
et al., 2002), apoptosis, proliferation (Lin et al., 2007) and intracel-
lular signal transduction (Gaudet et al., 2011). Both the
LOC105378740 and LINC02506 genes are transcribed to long non-
coding RNAs and their biological functions are currently unclear.

We also conducted a bivariate GWAS stratified by gender. The
MIR144 gene was also significant in male subjects, but was not in
female subjects. And in female participants, we did not obtain
genes that were previously found to be associated with obesity
or lipids, or significant biological pathways. On the one hand, it
may be due to gender differences in the genetic factors affecting
BMI and blood lipids; on the other hand, the sample size of the
female subjects was too small (n= 155) to find true positive asso-
ciations. So the gender differences in genes are still worthy of fur-
ther exploration.

Compared to other research, this study offers deeper insight
into the genetic association between obesity and blood lipids from
both macro and micro perspectives using data from the Chinese
Twin Registry. This study had several strengths. Sex differences
could be explored by including opposite-sex twins in this analysis.
A GWAS was conducted using a mixed linear model, which can
effectively control the population stratification and relatedness.
However, this study had some limitations. First, the study

participants were not randomly selected from the twin population
cohort. Therefore, the results of the SEM cannot be generalized.
The heritability obtained for BMI and HDL-C in females was
smaller than in a previous study. Whether sex differences play a
role in the variation and covariation of obesity and lipid pheno-
types requires further investigation. Second, the sample size may
be too small and may result in high false-negative rates in
GWAS analyses. We did not acquire any positive results at the sig-
nificance level of 5E-8 even when we combined the two stage sub-
jects. Furthermore, combining GWAS results of the two groups of
twins who were genetically similar using the METAL program and
performing enrichment analysis with these suggestive genes would
introduce bias. Two bivariate analysis methods (CPASSOC and
GEMMA) were used to ensure that the findings were robust,
and the results of the first stage were externally validated.
Cautions should be still exercised when extrapolating these find-
ings to the general population. Third, the influence of X and Y
chromosomes were not taken into consideration in gene analysis.
Therefore, further replication stages and more extensive analyses
are needed to confirm these findings, and we can pay attention
to other obesity phenotypes and lipid metabolism components.

In this study, BMI was confirmed to be genetically correlated
with serum lipid levels in a Chinese population. The genetic
mechanism underlying this association is complex and involves
multiple genes, and appears to differ slightly by sex. Obese patients
may also have dyslipidemia; therefore, it is important to consider
changes in metabolic status as well as sex differences during the
process of clinical diagnosis and treatment. Given that there
may be a shared genetic background between obesity and blood
lipids, a larger cohort research is required to reveal the biological
processes involved in obesity and lipid metabolism disorders to
confirm molecular therapeutic targets and make plans for preven-
tion and treatment.
Supplementary Material. To view supplementary material for this article,
please visit https://doi.org/10.1017/thg.2022.39.
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