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Abstract. We give a characterization of inter-model sets with Euclidean internal space.
This characterization is similar to previous results for general inter-model sets obtained
independently by Baake, Lenz and Moody, and Aujogue. The new ingredients are two
additional conditions. The first condition is on the rank of the abelian group generated
by the set of internal differences. The second condition is on a flow on a torus defined
via the address map introduced by Lagarias. This flow plays the role of the maximal
equicontinuous factor in the previous characterizations.
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1. Introduction

In the 1970s Meyer introduced some Delone sets in R4, now called Meyer sets, in
connection with his work in harmonic analysis. He observed that each Meyer set can be
embedded into another type of Delone set called a model set. This last collection is a
subclass of Meyer sets defined by a simple geometric construction: they are the projection
on the first coordinate of some part of a lattice in R? x H where H, the internal space, is
a locally compact abelian group.

After the discovery of quasicrystals by Gratias et al [DSC84], model sets with
Euclidean internal space were proposed as a geometric model for the atomic positions
in a quasicrystal. Euclidean model sets and their associated dynamical systems played an
important role in the mathematical diffraction theory of quasicrystals. Hof in [Hof95]
proved that every repetitive regular inter-model set (see the definition in §2) has pure
point diffraction, and then Schlottmann in [Sch00] generalized this result to repetitive
regular inter-model sets with arbitrary locally compact abelian group as internal space.
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Euclidean model sets are also important in the theory of Pisot substitution tilings. A central
problem here has been to understand when the space generated by a Pisot substitution is
topologically conjugate to the space generated by a Euclidean model set [ABB™'15, BKO06,
BST10].

In [Sch98], Schlottmann gave a necessary and sufficient condition for a Delone set to be
a general non-singular model set in terms of the recurrence structure of the Delone set, and
he asked for a characterization of non-singular model sets with well-behaved internal space
such as R”. We recall that every non-singular model set is a repetitive inter-model set (see
Definition 2.4). A dynamical characterization of repetitive regular inter-model sets was
given by Baake, Lenz and Moody in [BLMO07], and then Aujogue [Aujl6a] extended this
characterization to arbitrary repetitive inter-model sets not necessarily regular. Both results
apply to general repetitive inter-model sets but left open the question of characterizing
repetitive inter-model sets with Euclidean internal space. In this paper, we answer this
question by adding an algebraic and a dynamical property to the previous characterizations
in [Aujl6a, BLMO07]. The first condition is given in terms of the rank of the abelian group
generated by the set of differences of the Delone set, and the second condition is written
in terms of a flow on a torus constructed from the address map introduced by Lagarias in
[Lag99]. We call this flow the address system. We recall that every inter-model set is a
Meyer set, and all the previous characterizations of inter-model sets are written in the form
of what we need to add to a Meyer set in order to have an inter-model set. Our result states
that all the information needed for being an inter-model set with Euclidean internal space
is encoded in the rank of the group of differences and the dynamical relation between the
dynamical system associated to the Meyer set and the address system.

In order to give a more detailed statement of our results we recall some definitions; see
§2 for details.

A discrete subset A of R? is a Delone set if it is uniformly discrete and relatively
dense. It is finitely generated if the abelian group generated by A — A is finitely generated,
and it is repetitive if every pattern in A appears with bounded gaps. Given a Delone
set A, its hull Q2 is defined as the collection of all Delone sets whose local patterns
agree with those of A up to translation. If A has finite local complexity, then the hull
can be endowed with a topology which is metrizable and compact. The subset of the
hull of all Delone sets containing O is called the canonical transversal of Q2 and we
denote it by E,. The group R acts on the hull continuously by translation, given a
(topological) dynamical system (24, R?). Some combinatorial properties of the Delone
set translate into dynamical properties. For example, repetitivity of A is equivalent to
minimality of (€24, R?). It is well known in dynamical systems theory that there is a
dynamical system with an equicontinuous action of R? that is a factor (semi-conjugacy)
of (24, R?) and it is maximal with to respect these properties. This dynamical system is
unique up to topological conjugacy and we call it the maximal equicontinuous factor of
(24, RY).

It is known that repetitivity implies finite local complexity (see, for instance, [BG13])
and that finite local complexity implies finitely generated (see [LLag99]). A Delone set A
in R? is a Meyer set if the set of differences A — A is a Delone set.
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Let A be a finitely generated Delone set in R?. The rank of A is the rank of the abelian
group generated by A as a subset of R?. We denote this group by (A), and its rank by s.
Let B be a basis of (A). Then the address map for A associated to B is the coordinate map
with respect to the basis B from (A) to Z°.

Notice that since (A) is an abelian group and (A — A) C (A), if (A) is finitely
generated then (A — A) is finitely generated. On the other hand, for every x in A one
has that (A) € ({x} U (A — A)). Thus, if (A — A) is finitely generated then (A) is also
finitely generated. Moreover, we get that rank(A — A) < rank(A) < rank(A — A) + 1.
Also observe that for every Ag in 5 we have 0 € Ag and thus

(Ao) = (Ao — Ao). (1.1

In particular, if A is a repetitive Meyer set in R then all Delone sets A’ in €24 have the
same patterns and the set A’ — A’ does not depend on A’ and is the same for every Delone
setin 2,.

Assume that A is a repetitive Meyer set in R?. Given a basis B of (A — A), let
¢ : (A — A) — Z° be the coordinate map with respect to the basis B. By (1.1), we have
that for every Ag in E, the address map of A is equal to ¢.

Lagarias proved in [Lag99] that if A is a Meyer set then there is a linear map from R?
to R® whose distance to the address map of A is uniformly bounded on the points of A.
In fact, this property characterizes Meyer sets. Our first result gives the existence of one
linear map that approximates the address map of all Delone sets in E 4, and it also gives a
linear flow on a torus that we use to characterize inter-model sets with Euclidean internal
space.

Put ||x||s for the Euclidean norm of x in R¥.

PROPOSITION 1.1. (Address system) Let A be a repetitive Meyer set in RY and let s be the
rank of (A — A). Let B be a basis of (A — A) and let ¢ : (A — A) — Z° be the coordinate
map with respect to the basis B. There are an injective linear map £ : R* — R® and a
constant C > 0 such that for every Ao in E and everyt € Ao we have

o) —£@®lls = C.
Moreover, there is a linear flow (T*, R?) defined by
(w, 1) € T x R — w + [£(1)]zs,

and there is a homomorphism wpaq : Qa — T such that for every A’ in Qp and every t in
R? we have mag(A' — t) = wag(A') + [€(1)]zs.

Notice that the dynamical system (T*,RY) and the homomorphism maq in
Proposition 1.1 depend on the basis B chosen. However, if we change the basis, then
the new system is topologically conjugate to the previous one. We call any of these
dynamical systems an address system of A, and the map waq an address homomorphism
of A, which are well defined up to topological conjugacy. Observe that each coordinate of
mad in Proposition 1.1 gives a topological factor of (24, R4 ) onto the circle T; however,
(T*, R?) is not necessarily a topological factor of (€25, R?). The minimality of (2, RY)
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implies that (T*, R9) isa topological factor of (24, R9) if and only it is minimal. Indeed,
minimality of (24, Rd) implies that (waq(S24), Rd) is minimal, and then waq(27) = T
if and only if (T*, R¢) is minimal. Finally, applying a well-known criterion for minimality
of linear flows on the torus [KH95, Proposition 1.5.1], we have that if we denote by A the
representative matrix of £ in the canonical basis and by A7 the transpose then we have
that (T*, RY) is minimal if and only if Ker(AT) N Z* = {0}, which gives a simple way to
check minimality of the address system (T¢, R?).

The next theorem is the main result of the paper; it characterizes inter-model sets with
Euclidean internal space.

THEOREM A. A repetitive Meyer set A in R? is an inter-model set with Euclidean internal
space if and only if rank((A — A)) > d and there is an address system of A that is a
topological factor of (2a, RY) such that there is one point with a unique preimage under
the factor map.

By [Pa76, Proposition 1.1] (see also [ABKL15, Lemma 3.11]) and the previous theorem,
an address system of a repetitive inter-model set A with Euclidean internal space is the
maximal equicontinuous factor of (24, RY).

From Theorem A and [BLLM07, Theorem 5] we obtain the following characterization for
regular inter-model sets with Euclidean internal space. Observe that if an address system
of A is minimal then it is also uniquely ergodic, since it is an equicontinuous system.

THEOREM B. A repetitive Meyer set A in R? is a regular inter-model set with Euclidean
internal space if and only rank((A — A)) > d and there is an address system of A that is
a topological factor of (Qn, RY) such that the set of points in the address system with a
unique preimage under the factor map has full measure for the unique ergodic measure.

For the proof of Theorem A, given a Meyer set, we construct a cut and project scheme
(CPS) with a Euclidean internal space and a window, which we call the ‘Lagarias CPS’
and the ‘minimal window’, respectively. What we actually prove in Theorem A is that if
A satisfies the necessary condition then it is an inter-model set generated by the Lagarias
CPS and the minimal window. Using [BLM07, Theorem 5] again, we can give a more
explicit version of Theorem B.

THEOREM C. A repetitive Meyer set A in R? is a regular inter-model set with Euclidean
internal space if and only rank((A — A)) > d, there is an address system of A that is a
topological factor of (2a, RY) such that there is one point with a unique preimage under
the factor map and the boundary of minimal window of A has measure zero.

In order to put our results in context we mention an application to the theory of
unimodular Pisot irreducible substitution tilings. For this purpose, given a tiling 7 of R by
intervals, we identify 7 with the Delone set A(7) in R obtained from the extreme points
of the tiles in 7. It is well known that the hull of 7 with the action by translation of R
is topologically conjugate to the hull of A(7) with the action by translation of R. When
T is a periodic point of a unimodular Pisot irreducible substitution with the length of the
tiles given by the coordinates of the eigenvector of the largest eigenvalue, one has that
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T (A) is a Meyer set [BK06]. Using that the substitution is Pisot and irreducible, it is not
difficult to prove that the length of the tiles forms a basis for the group of differences
generated by A(7) and that the address system associated to this basis is a factor of
(2a(7)» R). We call this address system the canonical address system of A(T). Moreover,
from [BK06, Theorem 1] it is not difficult to deduce that the canonical address system
is the maximal equicontinuous factor of (€25 (7, R). One has that the Lagarias CPS (see
§4.2.1) constructed from A(7T) is exactly the geometric construction that gives rise to the
Rauzy fractal modulo a linear change of coordinates, and the Rauzy fractal corresponds
to the minimal window in the Lagarias CPS. Since it is known that the Rauzy fractal has
zero measure boundary (see, for instance, [BST10]) we get that the minimal window has
zero measure boundary. Then, using Theorems A and C, one can give another proof of the
following known characterization of pure point unimodular Pisot irreducible substitution
tilings as regular model sets with Euclidean internal space, and by the condition that the
canonical address system has a point with unique preimage.

THEOREM 1.1. [BK06, Theorem 7.3, Corollary 9.4, and Remark 18.6] Let Q7 be the hull
of a unimodular Pisot irreducible substitution tiling T in R. The following assertions are
equivalent.
(1) Q27 has pure point dynamical spectrum.
(i) QA7) is the hull of a regular model set with Euclidean internal space.
(iii)  There is a point in the canonical address system of A(T) with a unique preimage
under the factor map.

To prove Theorem 1.1, observe that (i) implies (iii). By Theorem C, we have that (iii) and
the fact that the minimal window has zero measure boundary implies (ii). Finally, it is well
known that the hull of a regular model set has pure point dynamical spectrum [Hof95].

There are constructions of Euclidean CPSs for Pisot type substitution in higher-
dimensional Euclidean spaces; see, for instance, [ILANI18]. It is a current subject of
research to study the relation of those constructions and the Euclidean CPS proposed in
this paper.

Finally, we remark that from Proposition 1.1, for every repetitive Meyer set A in R?,
the dynamical system (24, RY) has d continuous linearly independent eigenvalues in R9.
This was first proved by Kellendonk and Sadun in [KS14] using pattern equivariant
cohomological methods. Our proof relies on dynamical methods. Both proofs are basically
the same and involve proving that some cocycles are coboundaries. But in our case we use
a groupoid version of the classical Gottschalk—-Hedlund theorem in dynamical systems, and
in [KS14] the authors prove by hand that the cocycles that they define are coboundaries.

1.1. Strategy of the proof of Theorem A.  The first step is to define an address system. This
is done in Proposition 1.1 where we show that an address map on the canonical transversal
minus the linear approximation defines a continuous cocycle on the transverse groupoid.
This cocycle is bounded. Then we apply a groupoid version of the Gottschalk—-Hedlund
theorem [Renl2] to prove that the cocycle is a coboundary. Using this coboundary,
we define the homomorphism. For the necessary condition we show that the maximal
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equicontinuous factor of the hull of an inter-model set with Euclidean internal space is
topologically conjugate to the address system. To show that the condition is also sufficient
is much more complicated. The first step is to prove that for a repetitive Meyer set
the construction of an inter-model set given by Lagarias in [Lag99] gives a CPS that
we call the Lagarias CPS+; see the definition in §2.4. Then we show that the maximal
equicontinuous factor of the hull associated to the Lagarias CPS (for any window) is
topologically conjugate to the address system. Then we use [Aujl6b, Proposition 3.3] to
prove that the closure of the projection in the internal space of the lifting of the Meyer set
to the product space is a window for the Lagarias CPS. Finally, elaborating on the ideas in
[Aujl6a, Theorem 6.1], we show that if there is a point with a unique preimage under the
maximal equicontinuous factor map of the hull of the Meyer set then the Meyer set is an
inter-model set.

1.2. Organization. In §2 we give some definitions and results about the theory of aperi-
odic order related to Delone sets and the dynamical systems associated to the Delone sets.
In §3 we prove Proposition 1.1. In §4.1 we prove the necessary condition of Theorem A. In
§4.2.1, we describe the Lagarias CPS. The proof of the sufficient condition in Theorem A
is in §4.2.2 and uses a result that we prove later in §5, the main technical lemma.

2. Preliminaries
Let R? be the Euclidean d-space endowed with its Euclidean norm that we denote by || - |14

2.1. Delone sets. A subset A of R? is called a Delone set if it is uniformly discrete,
meaning that there is r > 0 such that every closed ball of radius r intersects A in at most
one point; and relatively dense, which means that there is R > 0 such that every closed
ball of radius R intersects A in at least one point.

Let A be a Delone set in RY. For every ¢ € R¢, we denote by A — ¢ the Delone set
{x —t]|x e A}

For every p > 0 and every ¢ in R4 denote by B(t, p) the open ball in R? of radius p
and center £. A p-patch of A centered at t € RY is the set A N B(z, p). We consider two
notions of long-range order for Delone sets: the first states that a Delone set A has finite
local complexity if for every p > 0 it has a finite number of p-patches up to translation;
and the second says that A is repetitive if for each p > 0 there is a number M > 0 such
that each closed ball of radius M contains the center of a translated copy of every possible
p-patch of A. Observe that every repetitive Delone set has finite local complexity; see
[BG13, Proposition 5.6].

2.2. Meyer sets and address map. Let A be a Delone set in RY. We say that A is a Meyer
set if there is a finite set F in R? such that

A—ACA+F.

In [Mey72], Meyer proved that every model set is a Meyer set. The following
characterization of Meyer set is used in the proofs of Proposition 1.1 and the main theorem.

+ In the terminology of Lagarias, what we prove is that repetitivity implies that the CPS is irreducible; see §4.2.1.
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THEOREM 2.1. [Lag99, Theorem 3.1] Let A be a finitely generated Delone set in RY with
rank s. Then A is a Meyer set if and only if every address map

(A — Z°,

is almost linear, that is, there are a unique linear map ¢ : RY — RS and a constant C > 0
such that for every x in A we have

lox) — L)y < C. 2.1

Remark 2.1. In the proof of [Lag99, Theorem 3.1] it was proved that £ is some kind of
‘ideal address map’ in the sense that if {vy, ..., v} is the basis of (A) that we used to
define the address map of A then for every 7 in RY we have

PRACEESS (2.2)
i=1

2.3. Dynamical systems and transverse groupoid. Let A € R¢ be a Delone set with
finite local complexity. The hull of A is the collection of all Delone sets in RY whose
p-patches, for every p > 0, are also p-patches of A up to translation. We denote this set
by ©24. There is a natural metrizable topology on 2. Roughly speaking, two Delone sets
are close in this topology if they agree on a large ball around the origin up to a small
translation. In particular, for every A’ in Q2 a basis of open neighborhoods for A’ is given
by the following sets. First, for every R > 0 put

T(A',R):={A € Qx| ANB@O, R) = A'NB(O, R)},
and for every 0 < ¢ < R/2 we define the open neighborhood N (A, €, R) of A’ by

N(A', &, R) = {A" € Qp | there exists A € T(A', R),
there exists t € B(0, ¢), A” = A —t};

for more details see, for example, [FHK02, KL.13, LMO06, Sch00]. If A has finite local
complexity then its hull €2, is compact. Observe that the action by translation of R¢ on
Q4 is continuous. Thus, we obtain a topological dynamical system denote by (24, RY).
The orbit of x in Q4 is the set {x — ¢ | ¢ € R?}, and a subset A of Q4 is called invariant if
it is invariant by the action of R¢. The dynamical system (24, R?) is minimal if and only
if the only closed invariant sets are the empty set and the whole space. It is well known
that minimality is equivalent to the fact every point has a dense orbit, and in the context of
Delone sets repetitivity is equivalent to minimality.

We recall that every topological dynamical system admits a maximal equicontinuous
factor, that is, a topological factor with an equicontinuous action such that any other
equicontinuous factor is a topological factor of it; see, for instance, [BKS12, BK13,
Kur03]. For a topological dynamical system (X, G), where X is a compact metric space
and G alocally compact abelian group, we denote by (Xp,e, G) its maximal equicontinuous
factor. Given two minimal dynamical systems (X, G) and (Y, G), and a factor map r :
(X, G) = (Y, G), we say that 7 : (X, G) — (Y, G) is an almost automorphic extension
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or that (X, G) is an almost automorphic extension of (Y, G) if there is a point in Y with a
unique preimage under .
The transversal of the hull is the closed subset

Ea={xreQp|0ex}CQ,.

In general, the restriction of the action of Réto & A 1s not defined. For this reason, to study
the dynamical properties of the transversal we introduce the transverse groupoid,

Gr={(x,1) € Ean xRY | x —1 € Ep} C Ep x RY.

This set, endowed with the induced topology from the product space E5 x R?, has the
structure of a topological groupoid; see [Ren80] for the abstract definition of topological
groupoids. Two elements (x, ¢) and (z, s) in &, are composable if and only if x — ¢ = z,
and the composition of (x, ¢) and (z, s) is defined by

()C, t) : (Z’ S) - (-x7 r+ S).

The inverse map LBy — &, is defined by (x, 1)~ = (x —t, —1) and the domain
d:®\ — Ep and ranger : &, — B, maps are defined by

d(x,t) =x and r(x,t)=x—t.

Notice that d(Bp) =r(Gp) = Ex. In this context, the set E, is called the unit
space of & .

We say that a subset E of the unit space is invariant by the groupoid & if
E =r(d~"(E)). We recall the following definition from [Ren80].

Definition 2.2. A groupoid is minimal if the only open invariant subsets of its unit space
are the empty set and the unit space itself.

The following result relates the minimality of (24, R?) to the minimality of the
transverse groupoid.

PROPOSITION 2.3. The topological groupoid & p is minimal if and only if the dynamical
system (24, R9Y is minimal.

Proof. First, observe that for every subset E of E, we have
rd Y E)={x—teBy|x€e€E,tex) (2.3)

Assume that the dynamical system (24, Rd) is minimal. Suppose, by contradiction, that
E C E, is invariant by the groupoid & 4. Define

E={x—teQx|xecE,tecR}

We have that E is open in 2, and by (2.3) it is invariant for the R?-action on . Then
the complement of E is an invariant non-empty closed set strictly contained in €2, which
contradicts the minimality of (€25, RY).
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Conversely, suppose that (2 A, R9) is not minimal. Let C € Q4 be an invariant
non-empty closed set strictly contained in Q4. Put E = C° N E,. By (2.3), we have

E Crd " (E)).

Since C is an invariant R?-action, we get (d~'(E)) = E. So, E is a non-empty open set
strictly contained in E 5 invariant by the groupoid, and thus & is not minimal. O

2.4. Cut and project scheme and inter-model sets. A cut and project scheme over R¢
is the data (H, L) of a locally compact o-compact abelian group H, and a discrete set
L € R? x H with compact quotient (R? x H)/L whose first coordinate projection on R¥
is one-to-one and whose second coordinate projection on H is dense. A compact subset W
of H that is the closure of its interior is called a window for the CPS. In the CPS the space
R? is called the physical space, the locally compact abelian group H is called the internal
space and the set L the lattice. Following [Aujl6b], a CPS can also be described as a
triple (H, I', sg) where H is a locally compact o-compact abelian group, I a countable
subgroup of R? and s : I' — H a group homomorphism with range sy (I') dense in H
such that the graph

GGsu) = {(y,su(y) eR! x H|y €T}

is a lattice, that is, a discrete and cocompact set. When H is a Euclidean space R", for
some positive integer n, we say that (H, I', sy) is an Euclidean CPS.

Let (H, T, si) be a CPS with window W. For every w in H, the projection on R? of the
set G(s) N (RY x (w 4+ W)) is called a model set. More generally, for every subset V of
H and every w in H denote by A (w + V) the set

AMw+V)={tel |sy@)ew+V}.

Definition 2.4. Let (H, T", sy) be a CPS over R4 with window W. A Delone set A C RY
is called an inter-model set if there exist 1 € R? and w € H such that

A(w +int(W)) —t C A C A(w + W) — 1.

We say that an inter-model set A is non-singular or generic if there is (r, w) in R x H
such that

Alw+int(W)) —t=A=A(w+ W) —rt.

Observe that this is equivalent to the fact that the boundary of w + W does not intersect the
projection of G(sg) in H. Additionally, if the boundary of w + W has zero Haar measure
we say the inter-model set is regular.

Remark 2.5. Notice that by Baire’s theorem, the fact that 9 W has empty interior and sy (I")
is countable, the set

NS=H\ |J y*-ow
y*esy ()
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is a dense Gg-set in H. Moreover, for every w in H, the boundary of w + W does not
intersect the projection of G(sy) in H if and only if w € N S. In particular, for every (¢, w)
in R? x H, the set A(w + W) — ¢ is a non-singular inter-model set if and only if w € N S.

We say that W’ is irredundant if the equation W’ + w = W’ holds only for w = 0 in H.
The following two results are well known in the theory of model sets and will be used
in the proof of Theorem A.

PROPOSITION 2.6. Let (5, £, sg) be a CPS over R4 with window W. The class of generic
model sets generated by (9, £, sg) and window W gives a unique hull, denoted by Qus,
and the dynamical system (Qms, R?) is minimal. Moreover, every element in Qs is a
repetitive inter-model generated by (9, £, sg) and the window W. If the window W is
irredundant then every repetitive inter-model set generated by (9, £, sg) and the window
W belongs to Qus. In particular, for every repetitive inter-model set A generated by
(9, £, sg) and the irredundant window W we have that Q5 = Qus.

The first part of Proposition 2.6 follows from [Rob07, Proposition 5.18, Corollary 5.10]
and [LM06, Proposition 4.4]. The part that assumes that the window is irredundant follows
from [Rob07, Theorem 5.19] and the idea of the proof of [LM06, Proposition 4.6].

Let (H, T, sy) be a CPS in R? and consider the set Tg = (R x H)/G(sy) with an
action of R? given by translation on the first coordinate. More precisely, for every s € RY
and every [(¢, w)] € Tg the action of s on [(, w)] is

[z, w)] -5 = [, w)] + [(s, 0)].

THEOREM 2.2. Let (9, £, sg) be a CPS over R4, let W be an irrendundant window, and
let Qs be the hull of the repetitive inter-model sets generated by (9, £, sg5) and W. Then
every point in Qs is an inter-model set, and there exists a factor map 7w : Qms — Tg
such that for every A’ in Qs there is (t, w) in R? x H such that w(A') = [(t, w)] if and
only if

Aw+int(W) —t CA C A(w+ W) —1t. (2.4)

Moreover, the map m is injective precisely on the subset of non-singular inter-model
sets in Qms and the dynamical system (Tg, R?) is the maximal equicontinuous factor
of (Qus, RY).

The proof of Theorem 2.2 is mainly in [Sch00]. The proof that (Tg, RY) is the
maximal equicontinuous factor of (s, R%) follows from the fact that (Tg, R?) is an
equicontinuous factor and from the existence of points where m is injective; see, for
instance, [ABKL15, Lemma 3.11].

2.5. Torus parametrization. Let X be a compact space and let (X, R?) be a topological
dynamical system. Consider a compact abelian group K with a minimal action of R¢
coming from group multiplication via a group homomorphism from R¢ into K. A
torus parametrization is a factor map 7 : (X, RY) — (K, R). A section of 7 is a map
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s : K — X such that w o s is the identity on K. A point x € X is called singular if the fiber
7717 (x)) contains more than one element. Otherwise, x € X is called non-singular. The
set of non-singular points of X for 7 is denoted by R (X). The following proposition was
proved in [BLMO7].

PROPOSITION 2.7. [BLMO7, Proposition 3] Let w : X — K be a torus parametrization
and let s be a section of w. Then s is continuous at all points of T (R (X)).

3. The address system

In this section we prove Proposition 1.1. Given a repetitive Meyer set A in R¢, we start
by defining a continuous and bounded cocycle in the transverse groupoid of A (see
Definition 3.1 below). We use a version of the Gottschalk—Hedlund theorem for groupoids
to show that this cocycle is a coboundary. We use this cocycle and the map defining the
coboundary to construct an equicontinuous dynamical system and homomorphism from
(2, R?) into this equicontinuous system.

3.1. Defining a cocycle on the groupoid. Let A € R? be a repetitive Meyer set. Let
B={vi,...,vs} CR? be a basis for (A —A) and let ¢ : (A — A) — Z¢ be the
coordinate map with respect to the basis 3. Recall that by the repetitivity of A for every
x € Ep we have that (x — x) = (A — A), and thus the address map of x associated to B
is equal to ¢. Note that for all # and 7’ in (A — A) we have

et +1) =) + o). (3.1)

From Theorem 2.1, for every x € E 4 there is a unique linear map £, : R — R® such that

&x 1= sup [lo(r) — Le(D)ls < Fo00. (3.2)

tex

Definition 3.1. Let H be an abelian group. A cocycle on the topological groupoid &, with
values in H is a map ¢ : &, — H such that for all composable pairs (x, ¢) and (z, s) in
& A one has

c((x, 1) - (z,8) = c((x, 1) + c((z, 5)).
We define the maps @ : &, — Z* and L : &, — R’ as follows: for every (x, 1) € B4,
D(x,t) ;=) and L(x,1) = £,().

The aim of this subsection is to show that L — @ defines a continuous cocycle on & 4.
For this, we first prove that L does not depend on the first coordinate. The proof of the
continuity is at the end of the subsection.

PROPOSITION 3.2. There is a linear map £ : RY — R such that for all (x,1) € Gx we
have L(x,t) = £(t).

The proof of this proposition is given at the end of this subsection after some lemmas.
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LEMMA 3.3. Let A’ be a relatively dense set in RY. The set {t/||t|la | t € A} is dense in
the boundary of the Euclidean unitary ball centered on the origin. In particular, for all
linear maps T : RY — R* we have that
()
Iela )1l

Proof. Put D := {t/||t]la | t € A’}. By contradiction, suppose the set D is not dense in the
boundary of B(0, 1). So there exists an open set in the relative topology which contains
no elements of D. If we project this open set towards infinity, it generates a cone that
contains Euclidean balls of size arbitrarily large and where there are no points of A’. This
contradicts the fact that A’ is relatively dense. O

IT{lop = sup

tex

where | - ||op is the operator norm.

LEMMA 3.4. Forall (x,t) € G, we have £y = £y_;.

Proof. Fix (x,t) in B,. Letu € R4 be such that u € x —¢. In particular, # + u € x. By
(3.2), we have

lo) — b (@)lls < &x—r and  |lo@) — €t +u)lls < &x.
Using these inequalities and (3.1), we get

1€x (@ +u) = £t W)lls < o +u) = £ Fw)lls + @7 +u) — Lxr (W)l

<&+ lle@) + @) — Lx—r ()5
<&+ lle®lls + &x—.

Dividing both sides of this last inequality by ||| 4, we obtain

zX(L> HX(L) —~ zx_t( . ) _ St leOlls + &
llulla llulla lluella /1l

llulla
Taking the limit as |[u#||; — 400, we have

Hul\d—>+oo H( A ’)<II ||d>

This, together with Lemma 3.3, implies that [|£; — £x|lop = 0, and thus concludes the
proof of the lemma. ]

Proof of Proposition 3.2. Fix y in E. We prove that for every x in EA we have £, = £,.
By (3.1), (3.2) and Lemma 3.4, for ¢’ in y we have

Ey—rr = sup lo@) —£,_r@®ls

tey—t’

= sup o) —£,(@)lls
tey—t'

= sup ot +1) — @) — £, (3.3)
t+t'ey
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sup lo(r +1) — (") — £y (t +1 — 1)
t+t'ey

= sup |l +1)— @) — L, +1)+£,")s
t+t'ey

< 2§y.

Fix x in E 5. By minimality, there is a sequence (), N in R4 such that y — t, converges
to x in E,. Fix ¢t € x and consider € > 0 such that ||¢|| < 1/e. There is N € N such that

for all n > N we have
1 1
(y—t)NB(0,— | =xNnB(0, -]
€ €

In particular, for alln > N we gett € y — t,,. Then, using Lemma 3.4 and (3.3), for every
t in x we have

@) =€, s = llo@) = £y—, (DIls < 2§).

By uniqueness of the map £,., we conclude the proof of the proposition. [
LEMMA 3.5. The map L — ® is a continuous cocycle on & 4.

Proof. By (3.1) and Proposition 3.2, we have that L — @ is a cocycle. Now we prove the
continuity of L — ®. Consider a sequence {(x,, #;)},eN in &, that converges to (x, t) in
® A . By definition of convergence in the groupoid, we have that {x, },en € EA converges
to x € Ep, and {f, },eN converges to ¢ in R?. Let € be a positive real number less than the
uniformly discrete radius of A such that ||z]|; < 1/2¢. There is a positive integer N such
that for all n > N we have

1 1 1
Xn N B(O, g> =xN B(O, Z), Ity —tllg <€ and |ty]la < . 34

By definition of the groupoid &4, for all n in N we have that #, € x,,, and also ¢ € x. By
(3.4), for every n > N we get t, = t. Then, for every n > N, we have

L(ty) =£(1) and  ®(xy, 1) = @(tp) = @(1) = P(x, 1),
which implies the continuity of L — ®. O
3.2. Proof of Proposition 1.1. We use the following version of the Gottschalk—-Hedlund

theorem, due to Jean Renault, to find continuous eigenvalues of & 4. This version is adapted
to our context from [Ren80, Theorem 1.4.10] and appears in [Ren12].

THEOREM 3.1. Let G be a minimal topological groupoid with compact unit space X. For
a continuous cocycle ¢ : G — R< the following properties are equivalent.

(1) There exists a continuous function g : X — RY such that
c=gor —god.

(2)  There exists x € X such that c(d~1(x)) is relatively compact.
3) ¢(G) is relatively compact.
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Proof of Proposition 1.1. Let A € R¥ be a repetitive Meyer set. Let B = {v, . .., v;} C
R? be a basis for (A — A) and let ¢ : (A — A) — Z? be the coordinate map with respect
to the basis B. Let L and ® be as in §3.1. We check that & and the cocycle L — ® : &, —
R* verify the hypotheses of Theorem 3.1. By Proposition 2.3, the groupoid is minimal. By
Lemma 3.5, the map L — & is a continuous cocycle. Let £ be the linear map given by
Proposition 3.2. By (3.2), for every x € E, the set

(L — ®)(d™"(x)) = (£(t) — (1) | t € x}

is bounded. By Theorem 3.1, there is a continuous map F : 5 — R® such that for every
(x, 1) in G5 we have

€t) —(t) = L(x,1) — ®(x,1) = For(x,t) — Fod(x,t) = F(x —t) — F(x).
3.5)

Since F is continuous and the space E , is compact there is a constant C > 0 such that the
inequality in the first part of Proposition 1.1 holds.

Now we check that ¢ is injective. By contradiction suppose that the kernel of £ has
dimension greater than 1. Hence, there is an infinite subset of A such that the address map
is bounded on this infinite set, which gives a contradiction.

Finally, we construct the address system. Denote by T* the torus R* /Z*. Since ¢ is linear
the following map defines an equicontinuous action of R¢ on T*:

(w, 1) € T x R —> w + [£(1)]z.

Now we define maq : 24 — T as follows. For every y € Q2 there exist x € E and
t € R? such that y = x —¢. Put

7ad(Y) = [F(0)]zs + [€(0)]zs.

We verify that waq is well defined. Indeed, suppose that for y € 2, there are x1, xy € Ex
and t1, 1 € R4 such that y=x1 —t1 = x3 —t. Thus, x1 = x3 — (f — #1), and by (3.5)
we have that

F(x1) = F(x2) + L2 — 11) — o2 — 11),
which is equivalent to
F(xp) + L) = F(x2) + £(2) — @(2 — 11).

Together with the fact that () — #1) € Z°, this implies that waq is well defined. Now we
prove the continuity of waq. Fix y € Q2 and suppose that y = x — ¢ for some x € E, and
t € R?. For every y’ close to y there is x” in 24 close to x and there is ¢’ close to ¢ such
that y = x’ — r’. By the continuity of F and ¢, the map 7 aq defined in a sufficiently small
neighborhood of y by Taq(y’) = F(x’) + £(¢) is continuous. By the continuity of the
canonical projection of R* onto T* we conclude that waq is continuous at y. It remains to
check that for every y in Q4 and every ¢ in R? we have mad(y —t) = wad(y) + [£(#)]zs.
Fix y in Q4 and fix ¢ in R?. There are x1 and x; in E4 and £ and 1, in RY such that
y=x1—tand y —t = xp — tp. Then xp = x1 — (t; — 1 + t). Using this, (3.5) and the
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fact that ¢ (t; — 1 + 1) € Z*, we get that

Tad(y — 1) = [F(x2)zs + [£(t2)]zs
=[F(x) +4t1 —n+1) — oty —ta + )]zs + [£(2)]zs
= [F(x1) + £(t)]zs + [L(D)]zs = mwaa(y) + [L()]zs,

which concludes the proof of the proposition. O

4. Proof of Theorem A

In this section we prove Theorem A. First, we prove a characterization of the maximal
equicontinuous factor for a Euclidean CPS, and then we prove the necessary condition.
Having done so, we use the address map to construct a Euclidean CPS that we use in the
proof of the sufficient condition. Finally, we prove the sufficient condition assuming the
main technical lemma. This lemma is stated in §4.2 and proved in §5.

4.1. Necessary condition. Let A be an inter-model set for a Euclidean CPS over R? with
internal space R", lattice L and window W. Denote by Qs the hull of the non-singular
model sets generated by these data. Repetitivity of A and Proposition 2.6 imply that
QMms = Q4. By [Aujl6a, Theorem 8.1], the associated dynamical system (2Mms, Rd) is
almost automorphic (see also [Sch00, FHKO02]). The remaining part of the proof of the
necessary condition follows directly from the following proposition.

PROPOSITION 4.1. Let Qms be the hull of the non-singular model sets generated by a
Euclidean cut and project scheme (R", T', sgn) over R¢ and a window W. Then, for every
A in Qums, we have that the group (A — A) is equal to T and its rank is d + n. Moreover,
the maximal equicontinuous factor of (Qms, RY) is topologically conjugate to an address
system of A.

Proof. Denote by p; and by p, the orthogonal projections from R? x R” onto R and
R”, respectively, and put L := G(sgn). Fix A in Qps. By [M0097, Proposition 2.6(ii)], for
every w in R" we have that

(AMw+ W)) =T.

In particular, (A(w + W) — A(w + W)) = I'. By Proposition 2.6, there is w in N.S such
that A (w + W) is in Qpms, and thus by repetitivity

(A—A)=(A(w+W)—A(w+W))=T.

We now prove that the maximal equicontinuous factor of (Qys, R?) is topologically
conjugate to the address system of A. Fix a basis B = {1}, ..., Us} of L. Let £ be the
linear map given by the Proposition 1.1 applied to A with the basis p;(B) for I' and let
(T*, R?) be the corresponding address system. Denote by ¥ : RS — R¢ x R” the linear
isomorphism sending the canonical basis of R* onto {v7, . . ., Us}, that is,

w(uh""us):ul?jl‘i_' . '+u_y§_y.
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By (2.2), for every t € R¢ we have

(Y ®)) =t 4.1

Define the map ¥ : T* — Tg by W([wlzs) = [ (w)]r. Note that W is a homeomorph-
ism. By (4.1), forall € R? and [w] € T*, we have

Y(lwlzs + [ED)]zs) = W([w + £(1)]z)
= [ (w+ L)L = [yl + [Y(E)]L
= [y )] + [(p1 (¥ (£())), p2(Y (L)L
= [y )] + [, p2(Y (E(@)))]L.

To prove that W conjugates the address system with the maximal equicontinuous factor
(R? x R" /L, R%), we need to show that for every ¢ € R,

p2(Y(£(1))) = 0.

By Remark 2.5, Proposition 2.6 and the fact that the window W has non-empty interior,
there is win N S such that 0 € w + W and the set A (w + W) isin Qums. Put Ag := A(w +
W). We have that Ag is in E 5. Observe that ¢ is also the address map for A associated to
the basis p;(B). By Proposition 1.1, there is a constant C > 0 such that for every t € Ag
we have

I p2(¥ (@ (1)) — p2(W(EO))lla < C.

Together with the fact that p (¥ (¢(Ao))) = p2(srr(Ag)) € w + W, this implies that the
map p2 o ¥ o £ is uniformly bounded on A. Using that Ag is relatively dense in R¢
and that p; o ¢ o £ is linear, we get that pz(w(ﬁ(Rd))) is bounded, which implies that
p2 (Y (£(RY))) = 0. We conclude that (T*, R?) and (Tg, R?) are topologically conjugated,
finishing the proof of the lemma. O

4.2. Sufficient condition

4.2.1. The Lagarias cut and project scheme. Let A be a repetitive Meyer set in R? and
suppose that (A — A) has rank s > d. Let 15 be a basis of (A — A) formed by vectors
{vi,..., v} CR? and let ¢ : (A — A) — Z? be the coordinate map with respect to the
basis B. Fix Ag in E,. Remember that since 0 € Ag, we have (A — A) = (Ag — Ag) =
(Ao) and that ¢ is also the address map for Ag. Let £ : RY — R be the linear map given by
Proposition 1.1. Define ¢ : R® — R4 by ¢(u1,...,us) =ujvy + - - -+ usvs. By (2.2),
for every t € RY we have

ol (t) =1t. 4.2)

In particular,
Ker(¢) = {0} and Im(¢) =R (4.3)
Put n := 5 — d and note that the dimension of Ker(¢) is n. Let B := {ky, ..., k,} be an

orthonormal basis for Ker(¢). Notice that for every 1 < j < s we have that the vector
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w; = £(v;j) — e; belongs to Ker(¢), where e; is the jth canonical coordinate vector. For

every j € {1,...,s}denote by ()1, ...«a;,) the coordinates of w; in the basis ', and
define for every j € {1, ..., s} the vectors
vi = (s aj,) and V= (vj, vY).

In the proof of [LLag99, Theorem 3.1], Lagarias proved that the set B = {Vi...,05) is
Z-linearly independent in R x R” and generates a full-rank lattice. Denote by L the lattice
generated by B. Denote by p1 and p; the orthogonal projections of R? x R” onto R and
R”, respectively. By construction, p; is injective on L and its image is (A — A). Denote
by ¥ : R — R? x R” the linear isomorphism sending the canonical basis of R* onto
{V1, ..., 7y}, that s,

1/f(1/l1,...,us)=u151+'"+MST;5.

In the proof of [LLag99, Theorem 3.1], it was proved that for every 7 in (A — A) we have
P2 (@Dl = llg(r) — €@ ls- (4.4)

LEMMA 4.2. Let A be a repetitive Meyer set in RY. If the address system of A associated
with B is a topological factor of (Q, RY), then py(L) is dense in R”.

Proof. The proof is by contradiction. Assume that pz(Z) is not dense. Then there is a
non-empty closed ball V C R” such that po(L) NV = {@}. In particular,

LN@RY x V)= {g). 4.5)
By Proposition 1.1 and (4.4), there is a constant C > 0 such that for every t € Ao we have

max{|| p2 (¥ (@) ln» | P2 (@(1)) = p2(¥ (LE)]In} < C.

Therefore the linear map p; o ¥ o £ is uniformly bounded on A, which is relatively dense.
Then, for all 1 € R, we have

prool(t) =0. (4.6)

Consider the dynamical system defined on the space (R? x R") /Z with the following
R¢-action: for every € R? and every w € (R? x R")/L,

w-t=w+ [ 05

Define the map ¥ : T — (RY x R")/Z by W([wlzs) = [Y¥(w)ly for every [w]zs in
(R4 x R™) /Z. By (4.6), the map W is a topological conjugacy between the address
system of A and the dynamical system just defined ((RY x R")/ L, R?). Let maq be the
address homomorphism defined in Proposition 1.1. Since we are assuming that waq is
a factor of (Qa, R?), we have that the map W o mag is also a factor from (€24, R%)
to ((R? x R") /Z, RY). By the repetitivity of A we have that (24, R?) is minimal, and
then the factor ((Rd x R™")/ Z, R4 ) is also minimal. But the set [Rd x V] is closed and
R4-invariant, and by (4.5), it is strictly contained in (R x R™) / L , which is a contradiction
to the minimality of (R? x R")/L, RY). O
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Put s; == prorop on (A — A). By Lemma 4.2 if the address system of A is a
topological factor of (24, R?) the triple (R", (A — A), sp) is a CPS and we call it the
Lagarias CPS for A.

Recall that a window is irredundant if its redundancies group is trivial (see §2.4).
By compactness, every window in R” is irredundant. By Theorem 2.1 and (4.4), the set
sr.(Ag) € R™ is a compact. Together with Proposition 5.2 we obtain the following result.

LEMMA 4.3. Let A be a repetitive Meyer set in R and let (A — A) be the subgroup of R?
generated by A — A. Put n = rank({A — A)) — d and assume that n > 0. Also assume
that some address system of A is a topological factor of (25, R?). Let (R", (A — A), s1)
be the Lagarias CPS for A. For every Aq in E the set sp (Ao) is an irredundant window.

From the proof of Lemma 4.2 and by Lemma 4.3 we obtain the following lemma.

LEMMA 4.4. Let A be a repetitive Meyer set in R and let (A — A) be the subgroup of R?
generated by A — A. Put n = rank({(A — A)) — d and assume that n > 0. Also assume
that some address system of A is a topological factor of (Qa, R?). Let (R", (A — A), s1)
be the Lagarias CPS for A. For every Ao in Ea, let Qms be the hull of the generic
inter-model sets generated by (R", (A — A),sp) and the window sp(Ao). Then the
maximal equicontinuous factor of (Qms, RY) is topologically conjugated to each address
system of A.

4.2.2. Proof of sufficient condition. ~The main technical step in the proof of the sufficient
condition is the following lemma, proved in §5.

MAIN TECHNICAL LEMMA. Let A CR? be a repetitive Meyer set and let T be the
subgroup of R¢ generated by A. Let (H', T, sy) be a CPS and suppose that W' = sy (A)
is a window. Let Qs be the hull of the generic model sets generated by (H', T, sy/) and
W'. Then there is a factor map

7T QA — QMS mes

such that if (Q2a, R?) is an almost automorphic extension of (2MS,me> RY) for %, then
there are Ay in Qp and a non-singular inter-model set A1 in Qvs such that Ay = Aj.

Proof of sufficient condition in Theorem A. Let A be a repetitive Meyer set in R and let
(A — A) be the subgroup of R4 generated by A — A. Assume that rank((A — A)) =5 >
d, that some address system of A is a topological factor of (24, R?) and that (25, RY)
is an almost automorphic extension of this address system. Since the address systems
are topologically conjugated among them we have that every address system of A is a
topological factor of (24, R9) and that (24, R9) is an almost automorphic extension of
every address system of A.

Let (R", (A — A), sp) be the Lagarias CPS for A where n =5 —d. Fix A, in Ep
and recall that by the repetitivity of A we have that Q2 = Q,,. By Lemma 4.3, the set
W’ = s1(Ay) is an irredundant window. Denote by Qs the hull of the generic inter-model
sets generated by (R”, (A — A), s;) and W’. By Lemma 4.4, the maximal equicontinuous
factor of (Qms, R?) is topologically conjugated to every address system of A which
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agrees with the address systems of A, by Proposition 1.1. By hypothesis, the dynamical
system (25, , R?) is an almost automorphic extension of every address system of A, and
then it is also an almost automorphic extension of (£2ms me, Rd). By the main technical
lemma applied to A, and (R", (A — A), sp), there are Ag € 24, and A; € Qs such that
Ao = A1. By the minimality of (24, ]Rd) we have that 24, is equal to the hull of Ag
which is equal to the hull of the generic model sets generated by a Euclidean CPS. Since
Qp = Q4, by Proposition 2.6 we conclude that A is an inter-model set generated by a
CPS with Euclidean internal space, finishing the proof of the sufficient condition. O

5. Proof of main technical lemma
In this section we prove the main technical lemma used in the proof of Theorem A. Indeed,
we prove a more detailed version of the main technical lemma for future reference.

MAIN TECHNICAL LEMMA’. Let A C R? be a repetitive Meyer set and let T the subgroup
of R4 generated by A. Let (H', T, sg’) be a CPS and suppose that W = sy/(A) is a
compact, irredundant window in H'.

Let Qs be the hull of the generic inter-model sets for the CPS (H', T, sy) and window
W'. Let 7o be the maximal equicontinuous factor map from Qms 10 QMs.me, and denote
by Ry (Q2ms) the set of non-singular points in Qws for mo. Then there is a factor map

T QA —> QMSme-
Put 529\ =71 (70 (R (2Mms))). There is a continuous map
71 Q% = Ry (M)
such that for every Ao € 9(1)\ we have
mi(Aog —1t) =m(Ag) —t and T (Ao) = mo o m1(Ao).

Moreover, for every A1 in Ry, (2ms) we have

Al = U A (5.1)
Aex (o (A1)
In addition, if T : Qx — QMS.me IS an almost automorphic extension then
70 (R (R2ms)) N T (R7(24))
is a residual set in QMs me, and for every Ay in Ry, (2Mms) such that mo(A 1) € T(R7(24))

we have that A is in Q(I)\.

The proof of the lemma will be given in §5.2 after recalling the definition of the optimal
CPS of a Meyer set introduced in [Aujl6a].

5.1. The optimal CPS and the optimal window.  Let A be a repetitive Meyer set in R¢ and
let ' be the subgroup of RY generated by A. Define E as the collection of all A’ € Q4
having support in I'":

Bl ={A eQy | AN CT)
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Observe that 2, € E''. We consider the combinatorial topology on 2 5, which is obtained
from the distance

1 R -
dist(A’, A") = {R—H‘A’ N B(0, R) = A" N B(0, R)}.

The combinatorial topology is always strictly finer than the usual topology on €24, and
on the transversal E, both topologies coincide. We endow g with the combinatorial
topology. We say that A" and A" in Q4 are strongly regionally proximal, denoted A’ ~gp

A", if for each R > 0 there are A, Ay € Q4 and ¢ € R? such that

A'NBO, R) = A; NBO, R),
A”NB(, R) = A, N B(0, R),
(A —1)NB(@, R) = (A2 — 1) N B(O, R).

Since A is a repetitive Meyer set we have that the strongly regionally proximal relation
is a closed R?-invariant equivalent relation on 25, and moreover, it agrees with the
equicontinuous relation; see [BK13]. In particular, the quotient 25/ ~gp gives the
maximal equicontinuous factor.

In the following proposition we recall some results in [Aujl6a] which allow us to
introduce the optimal CPS and optimal window for a Meyer set. More precisely, part (1)
is deduced by [Aujl6a, Proposition 4.4 and Lemma 4.5], part (2) comes from [Aujl6a,
Proposition 6.1 and Definition 6.2], and part (3) is in [Aujl6a, Theorem 7.1].

PROPOSITION 5.1. Let A be a repetitive Meyer set in R? and let T' the subgroup of R?

generated by A.

(1) IfA’ € BT then its equivalence class [A'lsep is contained into al.

(2) Theset H = El/ ~stp With the quotient topology admits a locally compact abelian
group structure such that [ Alsp is the identity element, the map sy : I' — H defined

by su(y) = [A — ylswp is a group morphism and sy (I') = H.

We remark that Aujogue defined sz in [Aujl6a] with a plus sign instead of a minus as
we do. So some results that we use from [Aujl6a, Aujl6b] look slightly different since
we need to make a sign correction. From Proposition 5.1, the triple (H, I", sg) is a CPS.
Moreover, by [Aujl6a, Theorem 6.3], the set [ E 4 |srp is a window for (H, ', sg). The CPS
(H, T, sy) and the window [E 4 ]srp are called the optimal CPS and the optimal window for
A, respectively. Indeed, in [Auj16b], the author proved that the model set that it defines,

A={y eRY [ su(y) € [Ealsp)s

satisfies that for every model set M that includes A we have A C A C M.
Finally, we recall some results in [Auj16b] that we use in the proof of the main technical
lemma’. The first result allows us to prove that a compact and irredundant set is a window.

PROPOSITION 5.2. [Auj16b, Proposition 3.3] Let A be a repetitive Meyer set in R? and
let T the subgroup of R? generated by A. Let (H, T, sy) and W be the optimal CPS and
window for A, respectively. Suppose that (H', T, sy’) is a CPS such that the closure W'
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of the set sy () is compact and irredundant in H'. Then there is a continuous open and
onto morphism

6:H — H
such that sg' =0 o sy on I'. Moreover, the set W' is a window in H and W' =6 ([E p Jsrp)-

In the following result we recall the definition of a map that we use to construct the
maps 771 and 7 in the statement of the main technical lemma’.

LEMMA 5.3. [Aujl6b, Lemmas 3.4, 3.5, 3.6] Let A be a repetitive Meyer set in RY and
let T be the subgroup of R¢ generated by A. Suppose that (H', T, sp) is a CPS such that
the closure W’ of the set sy (A) is compact and irredundant in H'. We have that each A’
in B defines a unique element w'y through

wit= ) sury)—W'.

yeN
Define the map

w:8' > H'

A = wp.

We have that w is uniformly continuous for the combinatorial topology, and for all
A € EV and y € T we have:

1) o\ —y) =) —sp(y);
(2)  w(A) = —0([A')sep), where 0 is the morphism in Proposition 5.2.

5.2. Proof of main technical lemmd’. Let A CR¢ be a repetitive Meyer set and let
I" be the subgroup of R generated by A. Let (H', T, sp/) be a CPS and assume that
W’ = sy (A) is a compact and irredundant window in H'. Let Qus be the hull of
inter-model sets generated by (H’, T", sy) and W’. Recall that the maximal equicontinuous
factor Q2ms,me can be obtained by the quotient (RY x H) /G (sy’) and denote by ¢ be the
maximal equicontinuous factor map from Q2ms to 2Ms me-

5.2.1. Construction of . We now construct the map 7 : Q25 — QMs me. For every
(t, w) in RY x H' we denote by [(z, w)] its equivalent class in £2ms me. For every A in
Q, there is t € R? such that A — 7 is in E', and we define 7 (A) by

Z(R) = [(=1, o(A = )] € Qs me-
We verify that 77 is well defined. Assume that there is s in R such that A —sisin EF.

Observe that t — s is in I". By part (1) in Lemma 5.3, we have that

(—t,o(A—1)=(—t+s—s,0A — (I +s—15)))
= (=5 —(t—35), 0(A —5)— syt —s))
= (=5, 0(A —5)) — (t — 5, st —9)).
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Since (t — s, s/ (t — s)) belongs to G(sg), we have that
[(—t, (A = )] = [(=s, o(A — 5))],

and hence 7 is well defined.

We now check that ¥ commutes with the R? action on €2, and on QMs,me- Let A be in
Q4 and tbe in R. There are s and s’ in RY such that A — sand (A — 1) —s' = A — (t + )
are in . Notice that # + s/ — s belongs to I'. Again, by part (1) in Lemma 5.3 we have
(=" (A —1) =) = (=5, (A —5) = (t +5' =)

= (=5, wA —5)—spt+s —s))
=(—s'"+(t+5 —9), a)(K —s) —(+s —s,sp+s —5)
=(t—s,0A—35)—(@t+s —s, syt +s —5)).

Since (t +s' — s, sy (t +s" — s)) isin G(sy’) we have
FA—1)=[(—s", 0((A —1) —sN] = [(—s, ©(A — s)] + [(, 0)] = F(A) + [(z, 0)].

Now we prove that 7 is continuous. Let A’ be Qg and let U be a neighborhood of
0 in 2ms me. We can assume that U = [B(0, rg) x Uy/] where ro > 0 and Uy is a
neighborhood of 0 in H’. There exists ¢ € A’ such that A’ —¢' € E5 € E''. For r > 0,
denote

Cr = N sewn-Ww,
ye(A'—t")NB(0,r)

and observe that for r > r’ we have C, C C,». By Lemma 5.3,

ﬂ Cr = (oA — 1)) (5.2)

r>0

Now we prove that there is #’ > 0 such that for every r > r/,
Cr ColAN —t)+Upy. (5.3)

By contradiction, suppose that there is an increasing sequence (7;); N of positive real num-
bers converging to infinity as i goes to infinity, such that (C, — w(A’ — ")) N U, # @.
Then, for every i € N, there is

xi € (Cr — (N =) NUS,

since for every i, j in N with j > i we have C,j C C,,. By compactness of C;, there is an
accumulation point X of (x;);en in Uy, and thus ¥ # 0. But X also belongs to Ny~0 Cr —
w (A —t") which is {0} by (5.2), giving the desired contradiction.

Put R := ||t'||¢ + #’ + ro and consider the set

T :={AecQr|ANBO R =ANB®O, R)}.
For every ¢ > 0 sufficiently small the set

Ve :={A” € Qx| there exists A € T, there exists 7 € B(0, ), A” = A — 1}
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is an open neighborhood of A’. Fix ¢ < rg. By the definition of R, for every A” in V, there
are t in B(0, ¢) and A in T such that

(A" — @' —1t)) N BO,r) = (7\ —t)NBO,r) = (A —1t)N B, r).

Put " .=t —t. We have ||t' —t"|lq4 < ro and since A’ — ¢’ is in E, we also have that
A” —t"isin 85 C EL. Then

ﬂ spi(y)— W = ﬂ sp(y) — W,

ye(A”—t")NBO,) ye(A'—t")NB(O,r)

Together with (5.3), this implies w(A” —t") € w (A’ —t') + Upy. Therefore, 7 (A”) =
[—t”, w(A” — t")] is included in

[+ —1"), (A —1) +Uy] S [+ B(0,8), o(A" —1") + Up']
= [, (A" =]+ [B(0, 8), Unl,

showing the continuity of 7 at A" in Qs.
Finally, since the R4-action on QMs.me is minimal we have that 77 is surjective, which
concludes the proof that 7 is a factor map.

5.2.2. Definition of m;. Recall that R(Q2yms) denotes the set of non-singular points of
Qms for mp as defined in §2.5. By definition, all sections of mp agree on mo(R(2Mms))-
Let 5 : QMs.me —> Q2Ms be a section of 7p. Put Q([)\ = 7~ (mo(R(SMs)), and define the
surjective map 7y : Q(z)\ — R(QMms) by :=5oT.

By the continuity of 7 and Proposition 2.7, the map 7 is also continuous. Since ¥ is a
section of 7, for every A’ in 99\ we have

T(A') =mgom(A). 5.4

Since ¥ commutes with the action of R? on the set 7o(R(Qms)), we get that for every A’
in Q% and ¢in RY,

Ti(A—1t) =m(A) —t.

5.2.3. Proofof (5.1). Fix Ay in Ry (S2Mms). We prove that (5.1) holds. First, we assume
that A isin 711(529\ N ). By Theorem 2.2, if mo(A1) = [(f, w)] then
Aw +int (W) = A+t = A(w + W). (5.5)

Observe that, by definition of 7, for every A’ in 99\ N ET we have T(A) = [(0, w(A))].
In addition, if A’ satisfies 1 (A”) = A1 then, using (5.4), we get

mo(A1) = 7o o i (A') = F(A) = [0, w(A))].

Together with (5.5), this implies that for every A’ € Q([)\ N ' such that 71 (A") = A1, we
have

A ={y el |syy) cwl)+ W} (5.6)
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By Proposition 5.2 and part (2) of Lemma 5.3, we have
~w(Ep) = 0([Eplsp) = W' (5.7)

Since A’ € E'', and forevery y € A’ we have A’ — y € E,, using part (1) of Lemma 5.3,
we get w(A’ — y) = w(A’) — sy (y). Together with (5.6) and (5.7), this implies that for
every y in A’ we have

(A —y) e w(Bp) = sgr(y) € w(A) — w(Ep)
S spy) eo(N)+ W &y e Al
Therefore, for every A’ € Q?\ N 2 such that 71(A") = A we have
A C Ay (5.8)

On the other hand, fix y in A1. By (5.6), for every A’ € SZ([)\ 2L such that 71 (A') = A4
we have

s (y) €w(A)+ W & w(A) € w(En +y).

Thus, there is A” in E4 4+ y € E such that w(A”) = w(A’). Then A” — y isin E,, and
thus y is in A”. Therefore,

A C U A (5.9)

A€ NET st w(A)=w(A)

Observe that for every A’ € Q([)\ N E" and every A” € E' such that w(A’) = w(A”)
we have that T(A") = T(A"”), and thus A” € Q([)\ N &L, In particular, 71 (A') = m1(A”),
which, together with (5.9), implies

NI (5.10)
(A=A

We now prove that for every A’ € Q4 N E and every A” € Q9 such that 1 (A") =
w1(A"), we have that

A e g, (5.11)

First, observe that for all A’ and A” in Q(/)\ we have that T (A") = 11 (A”) & T(A") =
F(A'). Now let A’ € Q4 N E and A” € Q¥ be such that 7(A”) = 7 (A’). By definition
of 77, this holds if and only if there exists 7 in R? such that A” — ¢t € E and [(—1, w(A” —
1))] = [(0, w(A"))], which is equivalent to the existence of y in " such that

(—t,0(A" = 1)) — (0, 0(A")) = (v, sa(¥))-

Then —¢ =y € T’ and we get A” C T' — y =T, which proves (5.11). By (5.8), (5.10) and
(5.11), we conclude that

m= A

T (A=A

https://doi.org/10.1017/etds.2022.113 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.113

Model sets with Euclidean internal space 3921

which is equivalent to

A = U A (5.12)

Ne T my(Ar)

If Ay isnotin (Q(z)\ N ") then there is 7 in R? such that A — ¢ is in 7 (529\ neh.
By (5.12), we have that
Al —t= U A.

Re 71 (mo(A1—1))
Since 7 (A) = mo(A; — t) if and only if # (A — (—1)) = mo(A1), we conclude that

Al = U A—(-1)= U A, (5.13)

Re 71 (mp(A1—1) Ae 7 (m(A))

which finishes the proof of (5.1).

5.2.4. (Qa, Rd) almost automorphic extension of (2Ms.me» Rd). Finally, suppose that
7 is an almost automorphic extension of (2Ms me» Rd). By [Vee70, Lemma 4.1], we have
that the set

7(Rz(Q4)) = {x € Qusme | 7~ (x) is a singleton}

is a residual set in Qs me, and by [Aujl6a], the set o (R, (2ms)) is also a residual set in
QMS,me- Then

710(Ry (2Mms)) N T (Rz(Q4))

is also a residual set in Qs me. By (5.13), for every Ay in Ry, (R2ms) such that mo(Ay) €
T(R%(25)) we have that Ay is in 99\, which concludes the proof of the main technical
lemma’.
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