ON THE 4-DIMENSIONAL POINCARE CONJECTURE FOR MANIFOLDS WITH 2-DIMENSIONAI, SPINES

BY
R. P. OSBORNE

We shall work in the piecewise-linear category, so that all manifolds and subsets thereof, as well as all maps are assumed to be piecewise-linear. If M is a manifold, denote by $\#_{k} M$ the k-fold connected sum of copies of M and by $2 M$ the double of M, that is the manifold obtained by sewing two copies of M together by the identity map on their boundaries. $P \subset M$ is pointlike in M if $M \sim P$ is homeomorphic with the complement of a point. B^{n} denotes an n-ball. Our principal theorems are the following.

Theorem. If M^{4} is a regular neighborhood of a contractible 2-complex then M^{4} can be embedded in $\#_{k}\left(S^{2} \times S^{2}\right)$ for some k.

See [6] for a different proof of this theorem for differentiable manifolds.
Theorem 2. If M^{4} is a compact contractible 4-manifold with a 2-dimensional spine then $2 M^{4} \sim B^{4}$ is homeomorphic with a pointlike subset of $\#_{k}\left(S^{2} \times S^{2}\right)$ for some k.

Corollary 1. If the 3 -dimensional Poincarè conjecture is false then a counterexample can be constructed in $\#_{k}\left(S^{2} \times S^{2}\right)$.

Corollary 2. If M^{4} is a compact contractible 4-manifold with a 2-dimensional spine then for some $k, \#_{k}\left(S^{2} \times S^{2}\right)$ contains a countable infinity of disjoint homeomorphic images of M^{4}.

1. Transforming group presentations. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and let $F(X)$ be the free group on the alphabet X. If $\left\{r_{1}, \ldots, r_{m}\right\}$ is a set of words in $F(X)$, we define a Q-transformation of the set $\left\{r_{1}, \ldots, r_{m}\right\}$ to be the result of a finite sequence of transformations of the following types: for any i between 1 and $m\left\{r_{1}, \ldots, r_{i}\right.$, $\left.\ldots, r_{m}\right\} \rightarrow\left\{r_{1}, \ldots, r_{i}^{\prime}, \ldots, r_{m}\right\}$ where $r_{i}^{\prime}=u v, v$ being a conjugate of $r_{i}^{ \pm 1}$ and u being a consequence of the relators $\left\{r_{1}, \ldots, r_{i-1}, r_{i+1}, \ldots, r_{m}\right\}$. Two presentations $\phi_{1}=\langle X \mid R\rangle$ and $\phi_{2}=\langle Y \mid S\rangle$ are Q-equivalent if there is a Q-transformation of R onto S.

The reader should note that we are interested in presentations of groups and not just the groups presented. Thus $\langle x \mid x\rangle,\langle x \mid x, 1\rangle$ and $\left\langle x \mid x x^{-1} x\right\rangle$ all present the

[^0]trivial group but are different presentations. In this sense we think of the relators in a presentation as elements of the free semigroup on $X \cup X^{-1}$.

Theorem 3. If $\phi_{1}=\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{m}\right\rangle$ presents the trivial group then $\phi_{2}=\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{m}, 1_{1}, 1_{2}, \ldots, 1_{k-1}\right\rangle$ is Q-equivalent with $\phi_{3}=\left\langle x_{1}, x_{2}\right.$, $\ldots, x_{k}\left|x_{1}, x_{2}, \ldots, x_{k}, 1_{1}, 1_{2}, \ldots, 1_{m-1}\right\rangle$ where 1_{i} denotes the empty word.

Proof. The theorem follows immediately from the fact that $\left\{r_{1}, \ldots, r_{m}, 1\right\}$ is Q-equivalent with $\left\{r_{1}, \ldots, r_{m}, w\right\}$ where w is any consequence of $\left\{r_{1}, \ldots, r_{m}\right\}$.

If ϕ is a finite presentation, we define a 2 -dimensional cell complex K_{ϕ} in the usual way; that is, if $\phi=\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{m}\right\rangle$ then K_{ϕ} is obtained from ϕ by taking an oriented bouquet of circles $\gamma_{1} \vee \gamma_{2} \vee \cdots \vee \gamma_{k}$ and attaching disks d_{1}, \ldots, d_{m} to this bouquet by the formulae given by the words r_{1}, \ldots, r_{m}.

The crucial link between the algebraic theorem on Q-transformations and the geometry is given by the following.

Theorem 4. If ϕ_{1} and ϕ_{2} are Q-equivalent and $K_{\phi_{1}}$ is a spine of a compact 5-manifold, M^{5} then $K_{\phi_{2}}$ is also a spine of M^{5}.

Proof. Let N be a regular neighborhood of the 1 -skeleton of $K_{\phi_{1}}$ in $M^{5} . M^{5}$ is obtained from N by attaching 2-handles along simple closed curves on ∂N. The homotopy class of each of these curves is determined by the homotopy class obtained by collapsing N onto the 1 -skeleton of $K_{\phi_{1}}$. Now homotopic simple closed curves in a 4-manifold are ambient isotopic. It follows that if r is a relator of ϕ_{1} and N^{\prime} is a regular neighborhood of $K_{\phi_{3}}$, where ϕ_{3} is ϕ_{1} with the relator r omitted, then a simple closed curve in ∂N^{\prime} representing r is homotopic in ∂N^{\prime} with a simple closed curve in ∂N^{\prime} representing $u v$, where u is any consequence of the relators of ϕ_{3} and v is a conjugate of $r^{ \pm 1}$. It follows that a regular neighborhood of $K_{\phi_{1}}$ is also a regular neighborhood of $K_{\phi_{2}}$ if ϕ_{2} is obtained from ϕ_{1} by replacing the relator r of ϕ_{1} by the relator $w r$. But these are exactly the moves that can be accomplished by Q transformations.

Andrews and Curtis have proved Theorem 4 implicitly in their proof of Theorem 2 of [1].
2. Sums of manifolds with boundary. Let M_{1} and M_{2} be n-manifolds with nonempty boundary and let B_{1}^{n-1} and B_{2}^{n-1} be ($n-1$)-balls in the boundaries of M_{1} and M_{2} respectively. We define the sum $M_{1} \triangle M_{2}$ to be $M_{1} \cup_{f} M_{2}$ where $f: B_{1}^{n-1} \rightarrow$ B_{2}^{n-1} is a homeomorphism. If ∂M_{1} and ∂M_{2} are connected, this sum is independent of the choice of B_{1}^{n-1}, B_{2}^{n-1} and depends only on the orientation class of f.

Lemma 1. If K_{i} is a spine of $M_{i}(i=1,2)$ then $K_{1} \vee K_{2}$ is a spine of $M_{1} \triangle M_{2}$.
Notation. We denote by $\nabla_{k} S^{2}$ the wedge of $k 2$-spheres.
The following lemma is an easy consequence of uniqueness of regular neighborhoods.

Lemma 2. If $f: \vee_{k} S^{2} \rightarrow E^{n}$ is a p.l. embedding and $N^{n}\left(f\left(\vee_{k} S^{2}\right)\right)$ is a regular neighborhood of $f\left(\mathrm{~V}_{k} S^{2}\right)$ in $E^{n}, n \geq 5$, then $N^{n}\left(f\left(\mathrm{~V}_{k} S^{2}\right)\right)$ is homeomorphic with $\triangle_{k}\left(S^{2} \times B^{n-2}\right) .\left(\triangle_{k}\left(S^{2} \times B^{n-2}\right)\right.$ denotes the k-fold \triangle sum. $)$
3. Proof of Theorems 1 and 2 and their corollaries. Let M^{4} be a compact contractible 4-manifold with a 2-dimensional spine $K_{\phi_{1}}$. Let $Q=M^{4} \times I$, then $M^{4} \subset \partial Q$. Suppose $\phi_{1}=\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{m}\right\rangle$ presents the trivial group. Then by Theorem $3, \phi_{2}=\left\langle x_{1}, \ldots, x_{k} \mid r_{1}, \ldots, r_{m}, 1_{1}, \ldots, 1_{k-1}\right\rangle$ is Q-equivalent with $\phi_{3}=\left\langle x_{1}, \ldots\right.$, $x_{k}\left|x_{1}, \ldots, x_{k}, 1_{1}, \ldots, 1_{m-1}\right\rangle$. Now note that $K_{\phi_{2}}$ is a spine of $Q \Delta N^{5}\left(v_{k-1} S^{2}\right)$. It follows from Theorem 4 that $K_{\phi_{3}}$ is a spine of $Q \triangle N^{5}\left(V_{k-1} S^{2}\right)$. Collapsing disks, we see that $Q \triangle N^{5}\left(\vee_{k-1} S^{2}\right)$ is a regular neighborhood of some embedding $f: \mathrm{v}_{k-1} S^{2} \rightarrow \operatorname{Int}\left(Q \triangle N^{5}\left(\mathrm{~V}_{k-1} S^{2}\right)\right)$. However, since Q is contractible, $Q \triangle N^{5}\left(\mathrm{v}_{k-1} S^{2}\right)$. can be embedded in E^{5}. From this it follows that $Q \triangle N^{5}\left(V_{k-1} S^{2}\right)$ is a homeomorphic with a regular neighborhood of $f\left(\vee_{k-1} S^{2}\right)$ in $N^{5}\left(\vee_{k-1} S^{2}\right) \subset E^{5}$. By Lemma 2, $Q \Delta N^{5}\left(\vee_{k-1} S^{2}\right)$ is homeomorphic with $N^{5}\left(\vee_{k-1} S^{2}\right)$.

We see that M_{4} can be embedded in $\partial N^{5}\left(\mathrm{~V}_{k-1} S^{2}\right)$. Now note that $N^{5}\left(\mathrm{~V}_{m-1} S^{2}\right)=$ $N^{5}\left(\vee_{m-2} S^{2}\right) \Delta N^{5}\left(\vee_{1} S^{2}\right)$ so that $\partial N^{5}\left(\vee_{m-1} S^{2}\right)=\#_{m-1}\left(S^{2} \times S^{2}\right)$. To prove Theorem 2 note that if M^{4} is contractible and $K_{\phi_{1}}$ is its spine, then ϕ_{1} must have the same number of generators as relators (if there were more relators than generators then $\left.H_{2}\left(K_{\phi_{1}}\right) \neq 0\right)$. It follows that $Q \Delta N^{5}\left(\vee_{m-1} S^{2}\right)=N^{5}\left(\mathrm{~V}_{m-1} S^{2}\right)$; thus $2 M^{4} \#\left(\#_{m-1}\left(S^{2} \times\right.\right.$ $\left.\left.S^{2}\right)\right)=\#_{m-1}\left(S^{2} \times S^{2}\right)$. This shows that the complement of $2 M^{4} \sim B^{4}$ in $2 M^{4} \#$ (\# $\#_{m-1}\left(S^{2} \times S^{2}\right)$) is homeomorphic with the complement of a ball in $\#_{m-1}\left(S^{2} \times S^{2}\right)$ and so $2 M^{4} \sim \dot{B}^{4}$ is pointlike.

Proof of Corollary 1. Let P^{3} be a contractible 3-manifold with 2-sphere boundary. Then $P^{3} \times I$ is a contractible 4-manifold with a 2-dimensional spine, thus $2\left(P^{3} \times I\right) \sim$ \dot{B}^{4} can be embedded in $\#_{k}\left(S^{2} \times S^{2}\right)$. Now $P^{3} \subset \operatorname{Bd}\left(P^{3} \times I\right) \subset 2\left(P^{3} \times I\right) \sim \dot{B}^{4} \subset$ $\#_{k}\left(S^{2} \times S^{2}\right)$.

Proof of Corollary 2. This follows from Theorem 2 and Lemma 8 of [3].
4. General comments. We would have a cross category version of the Poincarè conjecture for 4-manifolds with 2-dimensional spines if we knew the following

Conjecture 1. A pointlike subset of $\#_{k}\left(S^{2} \times S^{2}\right)$ is cellular for every k.
From this conjecture would follow:

1. If M^{4} is a homotopy 4 -sphere with a 2 -dimensional spine then M^{4} is 4 -sphere.
2. A homotopy 3-ball can be embedded in E^{4}.
3. If the 3-dimensional Poincarè conjecture is false then a counterexample can be constructed in E^{4}.
4. A regular neighborhood of a contractible 2 -complex in a 5 -manifold is a topological 5-ball.
The author has patterned this paper after the paper of Andrews and Curtis [1] that was his original source on the subject of Q-transformations. Andrews and

Curtis prove consequences 1-4 of Conjecture 1 based on the conjecture that every presentation of the trivial group is Q-equivalent with an obviously trivial presentation of the form $\left\langle x_{1}, \ldots, x_{n} \mid x_{1}, \ldots, x_{n}, 1, \ldots, 1\right\rangle$. This conjecture seems quite difficult to handle and may well be false. Although the author and B. Levinger have devoted much effort to it they have not been able to show that the presentation $\left\langle a, b \mid a^{-3} b^{-1} a^{2} b, b^{-3} a^{-1} b^{2} a\right\rangle$ is Q-equivalent with the trivial presentation $\langle a, b \mid a, b\rangle$.

Implicit in Andrews' and Curtis' paper is the following theorem.
Theorem 5. If ϕ_{1} is Q-equivalent with the obviously trivial presentation and $K_{\phi_{1}}$ is the spine of a contractible 5-manifold N^{5} then N^{5} is a combinatorial 5-ball.

References

1. J. J. Andrews and M. L. Curtis, Free groups and handlebodies, Proc. A.M.S., 16 (1965), pp. 192-195.
2. J. J. Andrews and M. L. Curtis, Extended Nielson Operations in free groups, Amer. Math. Monthly 73 (1966), pp. 21-28.
3. C. O. Christenson and R. P. Osborne, Pointlike subsets of a manifold, Pacific J. 24 (1968), pp. 431-435.
4. A. A. Markov, Insolubility of the problem of homeomorphy, Proc. Intern. Congress of Math. 1958, Cambridge Univ. Press, 1960, pp. 300-306.
5. E. Rapaport, Groups of order 1; some properties of presentations, Acta Math. 121 (1968) pp. 127-150.
6. C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. Lond. Math. Soc. 39 (1964), 131-140.
7. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. Lond. Math. Soc. (2) 45 (1939), pp. 243-327.

[^0]: Received by the editors October 16, 1972.

