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Abstract

Generating functions are used to derive formulas for the number of representations of a positive integer
by each of the quadratic forms x12 + x22 + x% + ZxZ, x12 + Zx% + 2x§ + 2x§, x12 + x22 + 2x§ + 4xf and
x12 + 2x22 + 4x§ + 4x£. The formulas show that the number of representations by each form is always
positive. Some of the analogous results involving sums of triangular numbers are also given.

2000 Mathematics subject classification: primary 11E25; secondary 05A19, 11D85, 33E05.
Keywords and phrases: sum of squares, sum of triangular numbers, quadratic form, theta function, elliptic
function, Lambert series, Lagrange’s four squares theorem.

1. Introduction

Lagrange’s four-squares theorem says that every positive integer may be expressed as
a sum of four squares. Jacobi went further and used elliptic functions to prove that the
number of solutions of

x%—i—x%—}—x%—{-xi:n

SZd.
d|

n
d#0 (mod 4)

in integers is

Since d =1 is a divisor of any positive integer n, the sum in Jacobi’s theorem is
positive and Lagrange’s theorem follows immediately.

Fine [6, pp. 74-76] proved an analogue of Jacobi’s theorem for the quadratic form
x12 + x22 + x32 + 2x£, and showed that the number of representations of any positive
integer by this form is always positive. The purpose of this paper is to present a short
and simple proof of Fine’s result, and to obtain analogous results for the quadratic
forms x12 + 2x22 + 2x32 + fo, x12 + x22 + 2x32 + 4x§ and x12 + 2x% + 4)c32 + 4x£. The
proof depends on simple properties of theta functions and a well-known formula which
expresses a difference of two Weierstrass elliptic functions as an infinite product.
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2. Notation and lemmas

Let g be a complex number that satisfies |¢| < 1. Ramanujan’s theta functions ¢(q)
and ¥ (¢q) are defined by

=Y q".

n=—oo

o0
n=0

Some of their basic properties are summarized in the following three lemmas.

LEMMA 2.1.
9(@) +9(—q) = 20", 2.1)
9(q) — 9(=q) = 49 (¢"), (2.2)
0@ +¢(=)* =20(*). (2.3)
0@ = 9(=9)* = 8q¥ (4", (2.4)
PROOF. These can be proved using series manipulations. A complete proof is given
in [3, pp. 40-41]. O
LEMMA 2.2.
00 N2
(I—-4g7)
(=)= || 77~ (2.5)
JDI (1 —q%)
(1 —g%)?

(2.6)

v =[]

ha=ah

PROOF. These are consequences of the Jacobi triple product identity.  See

[3, pp. 36-37] for proofs. O
LEMMA 2.3.
2\2
(=q7)" = ¢(@)¢(=q), 2.7)
V(@) =@V (2.8)
PROOF. These are consequences of Lemma 2.2. See [3, p. 40] for proofs. O

The final lemma in this section, and the main tool for this work, is a classical
result that expresses a quotient of Weierstrass sigma functions as a difference of two
Weierstrass elliptic functions.
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[3] Representations of integers by quadratic forms 131

LEMMA 2.4. Let x, z and q be any complex numbers satisfying |q| < |x|, |z < |q|™",
and x, z # 1. Then

(1 —=x2)(x —2)
(1 —x)2(1 —2)?
9 lo—o[ (1 —xzg)(1 — q/x/2)(1 — g/z/x)(1 — ¢/ /(x2))(A — ¢/)*
il (1 —xq7)2(1 — zg7)*(1 — qJ /x)*(1 — q/ /2)?

x P I B
U= (1—z>2+Z —g T E e

PROOF. There are many proofs of this result in the literature. For a simple one,
see [5]. For an equivalent statement in terms of the Weierstrass functions, see
[7, p. 451, Exercise 1]. For generalizations, see [4]. O

We shall use the following special values of Jacobi’s symbol:

2 1 ifn=1or7 (mod8);
<_>: —1 ifn=3o0r5 (mod8);

n .
0 otherwise;

where n is a positive integer. The Jacobi symbol is multiplicative, that is,
2\ [(2)\/(2
mn)  \m)\n
for all positive integers m and n.

3. Theta function identities
The results in this section all hinge on the following result.

THEOREM 3.1.

o(=)p(=aH)p(—q") —1—2Z< )1]_6161]

i@’ —q% 5’+q71)
qv (@ (@Y = Z T,
Jj=
PROOF. Let w = exp(in/4) and take x = w3, z = w, in Lemma 2.4 to get
2’ — w) l°—°[ (1+¢)* (1 +¢*H(1 —g/)*
(1 —w)2(1 — w?)? i (= wg)*(1 = 3q))?(1 — w3g/)2(1 — »’q/)?
3 00 L
B I ¥ 1w o — i 31
T—oy (1_0))2*;1—511(“’ +o ™ —ol —w7). @)
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By straightforward calculations,

20 — w) _ »’ _ w .
(1-0)?(1-0?? (1-0? (1-w)?

Next, using the algebraic rearrangements

1 —x2
l4+x=
1—x
and g
1—
(1= wox)(1 — 0*0)(1 — 0’ x)(1 — w'x) = 1—x4
the left-hand side of (3.1) simplifies to
00 i\2 2j 4j\3
(1 —q’)y(1—q*)(1 —q"7)
V21l (1—¢%)? ’
j=1
which, by (2.5), equals
V20 (-)p(—qH)p(—¢*). (3.2)

Furthermore, by checking the residue classes modulo 8, we find that
3 13— gl — i 2
ol t+to —w —w =—2«/§7 .
J

Therefore, the right-hand side of (3.1) simplifies to

V2-2v2 i(z) i’ (3.3)
=

iJ1—qi

Combining (3.2) and (3.3), we complete the proof of the first result.
Now let us prove the second result. In Lemma 2.4, replace (¢, x, z) with 4%, q, 9
to get

1°—°[ (1—g¥ =21 = g% =51 - ¢¥ =21 — ¢¥)*

izl (1 — g8i=T)2(1 — ¢%=5)2(1 — ¢8i-3)2(1 — ¢8/—1)2

3 00 8j
q q J4 i —j 3j —3j
= - +) g/ +q7 =g —q7). (B4
—_a)2 —_ 3 _ 8
=g 1-¢° Z1-q%¥

The left-hand side of (3.4) simplifies to

00 1 — 2j31_ 4j 1 — 872
‘11_[( q=)y’ (1 —q™)(1 —q*)
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which, by (2.6), equals

9V @’V (@) (g*). (3.5)
The right-hand side of (3.4) is
Z j(g’ — q3j) 4 Z Z j{q(8k+l)1 + q(8k—1)1 — q(8k+3)J _ q(8k—3)1}
j=1 j=1k=1
oo o0
_ Z Zj{q(gk_7)j 4 gBD) _  B=9)) _ B=3)])
j=1k=1
o @' — a7 = +47)
=y % : (3.6)
j=1 1
Combining (3.5) and (3.6), we complete the proof of the second result. O

The next theorem gives Lambert series expansions for four different products of
theta functions.

THEOREM 3.2. Let

(2 g’ o Jjla! =g =g +47)
f1<q)=1—2z<7>1_qj and @)= vy :
j=1 j=1

Then

0(@)’0(@®) = fi(q) + 8 f2(q),
(@D = filg) +412(q),
2(@*0aMe(ah) = filg®) +4f2(q),
2(@e@Deah? = filg®) +2f(q).

PROOF. By (2.4) followed by two applications of each of (2.7) and (2.8),

2(@*0(g) = 0@ e@Hp(—q)* + 8q¥(ghH*)
= o(—)p(—g>*0(q*) + 8q0 (¥ (¢*)* ¥ (g*)
= o(—=) (=g p(—q"* + 8qv (@) ¥ (gD ¥ (gh). (3.7)

Similarly, by (2.3) and (2.4), followed by two applications of each of (2.7) and (2.8),

2@ = (@ e@He(—q)* +4qv (g}
= o(—=)p (=g *0(q®) + 490V (@*) V(")
= o(—) (=g (—gh* + 4q¥ (@ ¥ (@D v (gh). (3.8)
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134 S. Cooper [6]
By (2.2) followed by three applications of each of (2.7) and (2.8),

(@)@ Y = @@ e(@)p(—q) + 4qv (g%)}
= 0(—g)%0(qHeqh) + 490 @@V (@*)?
= o(—gH)e(—g"p(g") + 490V @D *¥ (¢
= 0(—qM)e(—q (=) + 4q¥ (@ ¥ (gD V(@Y. (3.9)

Similarly, by (2.1) and (2.2), followed by three applications of each of (2.7) and (2.8),
we have (omitting some details which are similar to the above)

2 @e@)e@H?* = o @@ e(@He(—q) +2q¥ (¢*)}
= 0(=¢Hp(—gMHo(—¢®* + 29 ()Y (gH ¥ (gh). (3.10)

Substituting the results of Theorem 3.1 into the right-hand sides of (3.7)—(3.10), we
complete the proof. O

Results involving the function 1/ (¢) (and sometimes ¢(g) as well) can be obtained
by dissecting one of the results in Theorem 3.1. These are given in the following result.

THEOREM 3.3.

8 8\3 _ S E 8n+1
a¥(g*)e(q®) —Z( > (d>d)q :

n=0 “d|8n+1
e 2
V@ o) = - Z( > (g)d)qg"”,
n=0 d|8n+3
1 & 2
Y@ V@) =~ Z( > (3)d>qg"+5,
n=0 \d|8n+5
1 & 2
0@ = (X (3)a)a
n=0 \d|8n+7

PROOF. If f(q) =Y noyc(n)q™, let us define [¢; a, b] f(g) by

o0

[g:a.b1f(g) =) _ clan + b)g™" ™.
n=0
By Lemma 2.1,
o(—)p(—gHp(—g*?
={o(g") — 2qv @ He(@®) — 2¢*¥ (@' He@®? — 4¢* v (¢')?).
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[7] Representations of integers by quadratic forms 135

8n+1 ,8n+3 ,8n+5
b 9

q and q8n+7

If we expand and extract terms of the form ¢ q , We obtain

[4; 8. Np(—)e(—gH)e(—g")? = —2q¥ (¢*)p(q®)*, (3.11)
[4; 8. 3lo(—)p(—qHe(—q*)* = 4> ¥ (g ¥ (¢')p(¢®)*
=4°v(@® 0@ by(28), (312
[4; 8, 5lp(—)p(—gHe(—g? = 8¢° ¥ (¢®)p(¢®) ¥ (¢'9)?
=8¢°v(¢®v(q'®) by(28)  (3.13)

and
g3 8. T ()¢ (—q")p(=4*)* = =16¢7Y (4" (¢ ')’ (3.14)
respectively. Next, by the first part of Theorem 3.1,
X 2
P(—)p(—qHp(—g* =1-2 Z(Z(g)d)ﬂf- (3.15)
n=1 “dn
Therefore, for 1 <k <8,
> 2
[4: 8, Klp(—=)p(—gH)p(—¢")* = =2 Z( > (—)d)f”*’ﬂ (3.16)
n=0 “d|8n+k

Using (3.16) in (3.11)—(3.14) we complete the proof. d

4. Combinatorial interpretations

In this section, we give combinatorial interpretations of the results in
Theorems 3.1-3.3. We begin with a lemma.

LEMMA 4.1. Let n be a positive integer and write n = 2“m, where m is odd and « is
a nonnegative integer. Then:

(1) the coefficient of q" in p(—q)p(=q*)o(—q*)? is =2 34, (2/d)d;
(2)  the coefficient of q" in ¥ (q)*¥ (q*) ¥ (g*) is 2*(2/m) Yy, (2/d)d.

PROOF. The first result is immediate from (3.15), together with the fact that (2/d) =0
if d is even. To prove the second result, observe that from Theorem 3.1,

© iai — a3 — gSi 4 g7 x o\
W@ V@ =3 R v L) lkil(;>jqfk.
j= j=1 k=
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136 S. Cooper [8]
The coefficient of ¢" is therefore

()

jk=n

I |
—_—
i I
~

o ~.

B

where the multiplicative property of the Jacobi symbol was used in the penultimate
step. U

Let a, b, ¢ and d be positive integers. Let 74 ¢,4)(n) denote the number of
solutions of a)cl2 + bx22 + cx32 + dxf =n in integers (positive, negative and/or zero).
The generating function is

o0

> rabeamq = oMo o))
n=0

THEOREM 4.2. If n is a positive integer, write n = 2°m, where m is odd and o is a
nonnegative integer. Then

2
re1,1,1(n) = 2“+3< - 2} Z(g)d’

dlm

)
)2 2(5)e
)

2
ra21nn) = 2"‘“<m -1- (—1)”} Z(g)d’

d|lm

2 2
= (2) - £

dlm

2
m
2
rea2n(n) = 2% (-
m
2

PROOF. Use Lemma 4.1 to extract the coefficient of ¢” from each of the results in
Theorem 3.2. a

THEOREM 4.3. Let o and e denote an odd integer and an even integer, respectively.
For a positive integer n, let A(n), B(n), C(n), D(n) and E (n) denote the number of
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[9] Representations of integers by quadratic forms 137

solutions of
o} +2e3 + Ze% +2e3 =n,
0%—!—0%—!—0%4—2@21 =n,
0%—1—0%4—0%4—20% =n,
0%+20%+20%+20§ =n
and
of-l-o% +20%+4042‘=n,
respectively. Then
1A®m) ifn=1(mod8),

5 —%B(n) ifn =3 (mod 8),
( )d: 4.1)

~lcm) ifn=5mod8),

D) ifn=7 (mod8).

Since A(n), B(n), C(n) and D(n) are zero unless n =1, 3, 5 or 7, respectively, (4.1)
completely determines the values of A(n), B(n), C(n) and D(n).
If we write n =2%m, where m is odd and « is a nonnegative integer, then

atl( 2 ) (E) ,
E(n)=2 < dgln p d ifn=0 (mod8), 4.2)
and E (n) = 0 otherwise.

PROOE. Observe that

i An)g" = i q(2x1+1)2+2(2x2)2+2(2x3)2+2(2x4)2 (4.3)
n=0 X1,X2,X3,X4=—00
=2qv (¢®e(¢®)’.
Similarly, we find that
o0
B(n)q" = 8¢° v (¢®) o (g®), (4.4)
n=0
o0
C(m)q" = 16¢°¥ (g ¥ (¢'®), (4.5)
n=0
o0
Y Dmq" = 160"y (q* ¥ (q'®), (4.6)
n=0
o0
E(m)q" = 16¢°¥(¢** ¥ (¢'O)v (™). 4.7)
n=0
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138 S. Cooper [10]

The identity (4.1) follows from these by comparing coefficients using Theorem 3.3,
while (4.2) follows from Lemma 4.1. 0

The results for C(n), D(n) and E(n) in Theorem 4.3 may be re-expressed in
terms of sums of triangular numbers. Let a, b, ¢ and d be positive integers, and let
Y(a,b,c,a)(n) denote the number of solutions in nonnegative integers of

axl(x21 +1) n bxz(xzz + 1) n cx3(x; + 1) n dx4(x; + 1) .

The generating function for t(4 p ¢ 4) (1) is

e

Habe.dy(WG" = Y (@)Y @V ()P ().

n=0

THEOREM 4.4. Let n be a positive integer and write n = 2*m, where m is odd and o
is a nonnegative integer. Then

1 2
feran ) =—7 > (Z)d

d|8n+5
1 2
fe22,nm) = 3 dZ (E)d’
|8n+7
2 2
ta21nyn —1) =2% (—> Z(_)d_
m/) g \d

PROOF. From the generating function for #3,1,1,1)(n) and (4.5),
(0.¢] 1 o
Y ity =@ v e') =) g™
16
n=0 n=0
Equating coefficients and applying Theorem 4.3, we find that
1 1 2
t(2,1,1,1)(”) =—C@8n+5=— Z (—)d.
16 4 d|8n+5 d
The other two results may be proved similarly. O
Analogues of Lagrange’s theorem can be deduced from Theorems 4.2 and 4.3.

THEOREM 4.5. Let n be a nonnegative integer. Then rp 1,1,1)(n), r2,2.2,1)(),
r@4.2,1,1)(n) andru 42,1y (n) are all positive, as are A(8n + 1), B(8n + 3), C(8n +5),
D@n +7) and E(8n + 8).
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PROOF. Let m be an odd integer, and let m =] | » p%r be its prime factorization. By

geometric series,
2 2 ap+1 2 ap+1
<_)Z(_)d=]—[P” (2/p)*r ,
m d p—(2/p)

dim P

which is clearly positive. The truth of the theorem follows from this, together with the
results in Theorems 4.2 and 4.3. The trivial observation

r21,1,0(0) =r2221)0) =ru21,1)(0) =rg421)0)=1

takes care of the case n = 0. a

REMARK 4.6. Itis interesting to compare the results for ry (n) with the corresponding
results for ¢, (n) in Theorem 4.4. We find that

2
ra11n@n+5)=-10 > (—)d =401¢2,1,1,1)(n)
d|8n+5

and

2
ra22n@n+7N=2 Y (-)d =1612,2,2,1)(n).
di8n+7

These are instances of a theorem in [1], which says thatrg,, 5, )8n + A1 + -+ Ay)
is a constant (independent of n) multiple of #;,,... x,)(n), provided A1 + - - - + A < 8.
Furthermore,

2 2
ra2.1.1y8n) —ra21n2n) = 2*F — 2‘”3)(%) Z<E>d

dim

2 2
=24 x 2"’(—) Z(—)d

m) g d
=24tu21,1H(m —1),

and this is an instance of a theorem in [2].
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