
9
Gravity and the geometrization of
physics

There exist excellent textbooks on Einstein’s theory of gravity, ranging from non-technical intro-
ductions [329, 469, 187, 10, 231] to technically detailed ones [264, 367, 390, 55, 205, 414,
103, 548, 210, 131, 164, 66, 135, 96, 398, 506, 272, 315, 380, 342], as well as on tensor dif-
ferential calculus in curved spaces [☞ [508, 62, 563, 210] to begin with], which is typically
regarded as a prerequisite for a technical mastery of the material. The purpose of this chapter then
cannot compete with these rich and detailed sources nor with textbooks on black holes and worm-
holes [103, 543], gravity in general and cosmology [418, 481, 419, 28, 558], and the interested
Reader is wholeheartedly directed to this literature.

Complementing these resources, the general theory of relativity as a theory of (classical,
i.e., non-quantum) gravity is here presented in comparison with Yang–Mills gauge theories from
Chapters 5–8, thus continuing the unifying guiding idea that led us to this point; approaches to
quantum gravity will be addressed in Chapter 11.

9.1 Einstein’s equivalence principle and gauge symmetry

Most books that discuss general relativity and gravity – regardless of the technical level – start
off with A. Einstein’s principle of equivalence. Complementing this historically standard approach,
gravity and general relativity may also be described and even “discovered” by (1) carefully ex-
amining the possible spacetime geometries as frameworks for real physical observations as done
by R. Geroch [205]; (2) exploring the appearance and use of multi-valued fields [☞ magnetic
monopole, Section 5.2.3] in a variety of physical models as done by H. Kleinert [315]; or (3) mod-
eling the familiar gravitational and inertial phenomena from the point of view of a particle theory
virtuoso as done by R. P. Feynman [164].

Borrowing from these approaches, we do start with Einstein’s equivalence principle, but show
that it is conceptually identical to the idea of gauge symmetry employed in Chapters 5 and 6. Thus
it fits perfectly in the unifying “business card” of Nature, Table P.1 on xiii. Using the same concepts
developed in Chapters 5 and 6, this lets us identify the analogue of the gauge vector potentials,
construct a Lagrangian for them and derive Einstein’s equation (9.44), below.

https://doi.org/10.1017/9781009291507.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.013


316 Gravity and the geometrization of physics

9.1.1 Inertial vs. gravitational mass
It was pointed out in Digression 8.1 that the full Lorentz transformations (including rotations and
boosts; see Section 3.1.1) are a symmetry of the well-established Maxwell equations (5.72), while
the Galilean group is a symmetry of Newtonian mechanics. While the Galilean group is the c → ∞
limit of the Lorentz group, it is not a subgroup, and the two frameworks cannot be coherently
combined, so as to describe the electrodynamics of moving electric charges. As is well known, the
c → ∞ limit of the Maxwell equations (so they would exhibit the Galilean group of symmetries)
is unphysical: light propagates at finite speed. We are thus left with Nature’s choice, relativistic
physics.

The framework of relativistic physics, however, leaves a curious dichotomy regarding the
concept of mass: On one hand, we have a simple mathematical result (3.36), which equates the
Lorentz-invariant magnitude of its 4-momentum with the mass of an object, which is in turn iden-
tified (3.28)–(3.30) with the “inertial mass” familiar from non-relativistic mechanics. This mass is
the ratio m = |�F|

|�a| , where �F is a force applied to an object, �a its resulting acceleration, where all
observations are made in a coordinate system where the object was initially at rest, and we may
even consider the limit where �F and so also�a are arbitrarily small.

On the other hand, in Newton’s universal law of gravity, the mass of an object determines
how strongly the gravitational attraction acts upon it – and there is no a-priori reason for this
“gravitational mass” to be the same as the “inertial mass.” That is to say, there remains the logical
possibility that inertial effects upon an object may not be proportional to the same “mass” as are
the gravitational effects, which is something Nature can – and does – decide for us: They are indeed
one and the same.
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Figure 9.1 The classic Eötvös experiment: balancing the dumbbell horizontally compares the grav-
itational forces, while balancing it in the obtuse upward direction (grey arrows) compares inertial
forces.

Experiments to this end have been carried out since around 1885, at first by Eötvös Loránd,
where two substantial masses connected by a rod are balancing, suspended by a thin thread. The
gravitational force acts towards the center of the Earth, while the inertial (“centrifugal”) force due
to Earth’s rotation acts away from the axis of rotation, at an obtuse angle from the gravitational
force. By aligning the horizontally balanced dumbbell initially in the east–west direction, all forces
acting on each massive object are perpendicular to the connecting rod, and any difference in the
sum of forces acting on one object vs. the other will produce a torque and twist the dumbbell from
the initial east–west alignment. No matter what variety of the “eastern” and the “western” object
in this torsion dumbbell were tried, the gravitational and the inertial forces were always found to
be in the same proportion, thus proving the equality of the “inertial” and the “gravitational” mass,
by now to the precision (relative error) of 10−11 [462].

Another logical possibility, that antiparticles [☞ Section 2.3.7] and particles repel each other
by gravity, is easily dispelled in similarly high-precision experiments with elementary particles
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9.1 Einstein’s equivalence principle and gauge symmetry 317

such as the neutral kaons [☞ Section 4.2.3]: Since the decay eigenstates (4.65), |K0
S〉 :=

1√
2
(|K0〉−|K 0〉), and |K0

L〉 := 1√
2
(|K0〉+|K 0〉), are linear combinations of the particle and its an-

tiparticle and beams of K0
S and K0

L propagate in Earth’s gravitational field between creation and
detection, a difference in the sign of the masses of K0 and K0 would have to show. The experiments
indeed do have the requisite precision, and indicate that K0 and K0 have a positive (attracting)
“gravitational” mass [164].

Between his seminal papers on special and general relativity, 1905–16, Einstein of course did
not know about kaons, but must have been aware of the Eötvös-type experiment and its variations.
He must have also been aware of the physically unnatural restriction to inertial coordinate systems
within the special theory of relativity, as well as the fact that changes in the gravitational field
could not propagate faster than the speed of light. To all of these issues, he came up with a single
and elegant solution:

Conclusion 9.1 (Principle of Equivalence) Not only are the “inertial” and the “gravitating”
masses equal, but inertial and gravitational physical effects are in fact identical .

Tracing Einstein’s line of thought in the popular as well as most standard textbook presentations
repeatedly brings up the example of a person in an enclosure such as an elevator with no windows.
While at rest at the ground floor, the person in the elevator feels Earth-normal gravity. While the
elevator accelerates upward, the inertial effect is added to the gravitational effect, and the person
experiences an increase in their weight – which a scale will readily verify is quite real. During
the constant motion between the floors, the weight experienced returns to Earth-normal. Finally,
while the elevator decelerates when reaching the destination floor above, the person experiences a
decrease in their weight. In fact, this much can be easily reasoned simply from Newton’s third law:
the force measured by the scale on which the person in the elevator stands doesn’t care whether
the reaction (with which it holds the person from falling through) balances the gravitational or the
kinematic acceleration.

Extrapolating from these very familiar experiences, one can easily imagine a person within
an enclosure, who would not be able to tell whether the experienced weight (or lack thereof)
is a consequence of the gravitational force of some nearby planet, or the fact that the enclosure
(perhaps a rocket ship) is moving in an accelerated fashion. Indeed, this is clearly true as long
as the considered accelerated motion and related inertial forces and the gravitational forces are
confined to one direction.

Even certain simple arrangements with additional forces and accelerations in additional di-
rections easily permit such a dual interpretation. Consider for example a person at the North Pole,
observing the motion of a so-called “spherical” pendulum, such as a bundle of keys attached to
a keychain that the person holds firmly. With the Earth’s rotational axis passing through the per-
son’s hand holding the keychain, the keys would be moving under the influence of three types of
forces:

1. the gravitational force (�Fg), vertically downward to a very good approximation;
2. the horizontal “centrifugal” force (�Fcf), directed away from the axis of Earth’s rotation;
3. the horizontal Coriolis force (�FC), at every instant perpendicular to both the axis of Earth’s

rotation and to the direction of motion of the keys.

Exactly the same effects would be observed by a person in an accelerating rocket ship that addi-
tionally rotates about the direction of its linear motion – such “co-rotating” non-inertial coordinate
systems were considered on p. 84, so as to exclude them from the Definition 3.1 on p. 84 of inertial
coordinate systems; see the left-hand pair of illustrations in Figure 9.2.

https://doi.org/10.1017/9781009291507.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.013


318 Gravity and the geometrization of physics

�cf

�g

�C

Accelerate
&

rotate

Helicoidally
accelerating

path

Figure 9.2 Two rotating pendula and the corresponding co-rotating accelerating coordinate systems.

Finding an appropriately accelerating coordinate system to be equivalent to an arrangement
with more and more complicated systems of forces and accelerations of course becomes more and
more complicated. For example, if the person with the swinging keychain were to move away from
the North Pole, the direction of the gravitational acceleration would no longer coincide with the
axis of Earth’s rotation – as is the case with Foucault’s pendulum in Paris, France. Effectively, the
direction of gravitational acceleration for that person co-rotates about the axis of Earth’s rotation,
with which it also forms a nonzero angle. The corresponding accelerating coordinate system would
then have to accelerate in a direction that forms the complementary angle with the Earth’s axis of
rotation, and precesses about it, thus accelerating along an expanding helicoidal path; see the
right-hand pair of illustrations in Figure 9.2.

Any mechanical system under the influence of a homogeneous gravitational field is already
perfectly equivalent in Newtonian mechanics to making the same mechanical system uniformly
accelerate. Einstein’s equivalence principle (Conclusion 9.1) is, however, fully general and applies
to all physical phenomena, not just mechanics. W. Pauli then showed in his inimitable swift (and
parsimonious) fashion, that this principle implies [414, Section 53]:

1. The influence of Newtonian (weak-field) gravity on a slowly moving object is determined by
a scalar potential.

2. The gravitational field of stars causes a red shift in their spectral lines.
3. Even in a static gravitational field, light rays do not follow a geodesic in the 3-dimensional

sense, but in the 4-dimensional spacetime sense: light rays are bent by gravity.

We will discuss the first of these results below, after introducing the requisite technical details.

9.1.2 Spacetime geometry and general coordinate transformations

As Geroch shows in detail [205, pp. 67–165], for every arrangement and scenario of particles mov-
ing in gravitational fields, there is a co-moving spacetime geometry. These are coordinate systems,
each with four coordinates xμ, μ = 0, 1, 2, 3, and a specified metric, gμν(x) of signature (1, 3);
see Definition 3.2 on p. 89, we will explore some of the more interesting ones in some detail in
Section 9.3. However, unlike in Chapter 3, these coordinates are inherently curvilinear in most
applications, as should be clear from the example in the right-hand illustrations of Figure 9.2.

Away from certain exceptional locations (singularities) to be discussed in Section 9.3 and
in sufficiently small regions (so-called patches) of spacetime, these inherently curvilinear coor-
dinates can always be related to the Cartesian coordinates, much as every smooth curve can be
approximated by its tangent. In Cartesian coordinates, the generalization of Pythagoras’ theorem
to spacetime [☞ relations (3.15)–(3.17)] defines the (spatial) so-called line element:
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9.1 Einstein’s equivalence principle and gauge symmetry 319

ds2 := −c2dτ2 = dxμ(−ημν)dxν. (9.1)

The relation (3.11c) then provides the expression in arbitrary coordinates xμ �→ yμ = yμ(x):

ds2 := dxμ(−ημν)dxν = dyρ
(∂xμ

∂yρ
)
(−ημν)

( ∂xν

∂yσ

)
︸ ︷︷ ︸ dyσ = dyρ gρσ(y) dyσ, (9.2)

gρσ(y) :=
(∂xμ

∂yρ
)
(−ημν)

( ∂xν

∂yσ

)
, the metric tensor. (9.3)

Comment 9.1 Note that the overall sign of the metric tensor (9.2) is opposite from the
overall sign of the metric tensor (3.19). This unfortunate difference in conventions stems
from the fact that the metric tensor (9.2) in general relativity defines a distance , while the
expression (3.17) defines the proper time of a particle that moves in spacetime.

The analogous computation for an arbitrary invertible coordinate substitution yμ → zμ(y)
produces

gμν(y) =
∂zρ

∂yμ
∂zσ

∂yν
gρσ(z), (9.4)

proving that the metric tensor gμν is a rank-2, type-(0, 2) tensor.1 More precisely, we define:

Definition 9.1 Coordinate system transformations xμ → yμ(x) that are (1) unambiguously
invertible, and (2) preserve the space/time character (signature) of spacetime [☞ Defini-
tions 3.2 on p. 89 and 3.3 on p. 90] are general coordinate transformations .

Unless otherwise stated, we only consider coordinate transformations that belong to this class.
Using the matrix notation, relation (9.4) may be written as

[
g..(x)

]
=

[ ∂z
∂x

][
g..(z)

][ ∂z
∂x

]T, (9.5)

where the superscript T denotes matrix transposition.2 Computing the determinants produces

g(x) =
(

det
[ ∂z
∂x

])2
g(z), where g(x) := det

[
g..(x)

]
. (9.6)

Since the metric tensor in spacetime has an odd number of negative eigenvalues,3 it follows that
the determinant of the metric tensor is negative, and√

−g(x) = det
[ ∂z
∂x

]√
−g(z) (9.7)

1 According to definition (9.2) of the quantity ds as a distance – which for purely spatial 4-vectors must agree with the
familiar notion of the Euclidean distance – and owing to the “particle” convention (3.19) features the relative difference
in the overall sign between ημν and gμν: in flat spacetime, gμν → −ημν. Both quantities are, however, called metric
tensors, and the Reader is expected to read from the context which of the two conventions are used.

2 The careful Reader will note that in the matrix representation of the components gρσ(z) one of the two indices must
be counting rows while the other then must be counting columns. In the contraction with the matrices of partial
derivatives in relation (9.4), the upper index (on the z-coordinate) in one of these two matrices must count columns
(being contracted with the rows of [gρσ ]), but in the other it must count rows, whence the matrix representation of one
of these matrices of partial derivatives is necessarily transposed in comparison with the other one.

3 The general coordinate transformations, by Definition 9.1, preserve the signature, i.e., the numbers of positive and
negative eigenvalues of the metric matrix.
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320 Gravity and the geometrization of physics

is a real scalar density of weight −1. The weight of
√−g being −1 signifies that it transforms

oppositely from the 4-fold differential (which then is a scalar density of weight +1):

d4x = det
[∂x
∂y

]
d4y, (9.8)

which is computed straightforwardly (B.37) in Appendix B.2.1.

Conclusion 9.2 The result (9.7) and the computation (B.37) in Appendix B.2.1 then imply
that √

−g(x) d4x =
√
−g(z) d4z (9.9)

is an invariant with respect to the general coordinate transformations [☞ Definition 9.1 on
p. 319], and provides the invariant (differential) 4-volume element .

Given the metric tensor gμν(y), the inverse metric tensor is defined by matrix inversion:

gμν(y) : gμν(y) gνρ(y) != δ
μ
ρ

!= gρν(y) gρμ(y), (9.10)

point-by-point y = (y0, . . . , y3) in spacetime. Since

0 = ∂σ
(
δ
μ
ρ

)
= ∂σ

(
gρν gρμ

)
=

(
∂σgρν

)
gρμ + gρν

(
∂σgρμ

)
, (9.11)

it follows that
(∂σgλμ) = −gρμgλν(∂σgρν). (9.12)

In turn, derivatives of the determinant g = det[g..] are computed using the Jacobi relation:

∂ρg = g gμν ∂ρgμν, (9.13)

from which it follows that

∂ρ
√−g = − 1

2
∂ρg√−g

= − 1
2

√−g
(

gμν ∂ρgμν
)

= 1
2

√−g
(

gμν ∂ρgμν
)
. (9.14)

For more detail, see Appendix B.2.3.

9.1.3 Einstein’s equivalence principle as a gauge principle
Reconsider an object such as Ψ(x), the wave-function used to describe an electron in Chapter 5. As
discussed in detail in Section 5.1 and employed throughout Chapters 5–7, the (complex) function
Ψ(x) perforce contains unphysical information and is physically equivalent to eiϕ(x)Ψ(x), where
the phase ϕ(x) is an undetermined function over spacetime. Consequently, the rate of change of
Ψ(x) in spacetime is computed not using partial derivatives, but using gauge-covariant deriva-
tives (5.13), i.e., (5.117): Dμ := ∂μ + i

h̄ c AμQ. Since Ψ(x) depends on the spacetime point both
explicitly and also through the undetermined phase ϕ(x), the partial derivative in Dμ computes
the rate of change in spacetime owing to the explicit dependence on spacetime, while the i

h̄ c AμQ
terms provides the “correction” owing to the indirect dependence via the undetermined phase,
ϕ(x).

The discussion in Section 9.1.1 showed that Einstein’s principle of equivalence is itself equiv-
alent to the statement that the difference between gravitational and inertial effects is purely a
difference in the mathematical description, i.e., a difference in the choice of the coordinate system.
Section 9.1.2 then formalizes the notion of spacetime geometry, as a spacetime coordinate system
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9.1 Einstein’s equivalence principle and gauge symmetry 321

together with the corresponding metric, and changing this choice is accomplished by means of a
general coordinate transformation.

As discussed by Pauli [414, p. 150], besides the technical aspects of the general coordinate
transformations as formalized by tensor calculus, the key physical import of Einstein’s principle of
equivalence as provided in Conclusion 9.1 on p. 317 is its universal nature. That is, the equality
of the various gravitational and inertial effects holds not only for certain (say, mechanical) phe-
nomena, but for all physical phenomena. Therefore, there can be no physical distinction between
them, and gravitational and inertial effects are not merely equal, but identical.

However, this insistence on universality is implied by the completely general (applicable to
all of fundamental physics!) first, “conceptual” notion of unification as specified in part (a) of
Conclusion 8.1 on p. 300. Under the umbrella of this overarching unifying principle, Einstein’s
equivalence principle is equivalent to

Conclusion 9.3 (Gauge principle of coordinate equivalence) General coordinate transforma-
tions [☞ Definition 9.1 on p. 319] can have no physically measurable consequences – and
so must be symmetries [☞ Appendix A.1.3].

In turn, this is conceptually identical to the gauge principle as employed in Chapters 5–7, except
that the principle is here applied to the parametrization of spacetime, rather than to the abstract
phases of wave-functions as in Chapters 5–7. Also, general coordinate transformations are typically
nonlinear; this renders any gauge theory relating to general coordinate transformations intrinsi-
cally more complicated than the gauge theories considered in Chapters 5–7. We will explore the
parallels and the differences between Yang–Mills gauge theory as discussed in Chapters 5–7 and
general relativity, and will develop a selection of topics within general relativity specifically to that
end. The Reader should, however, be aware of other possible approaches to gravity (some of them
not entirely unrelated to the approach adopted herein), such as “gauge gravity” [451, 276] or
“emergent gravity” [486, 315], to name a few.

Nevertheless, the conceptual similarity between the gauge principle as employed in Chap-
ters 5–7 and the gauge equivalence principle (Conclusion 9.3 on p. 321) is striking:

1. Positions (in space of phases vs. in spacetime):
(a) The choice of the overall phase of a wave-function is not observable; relative phases of

different summands in a linear combination of wave-functions are observable.
(b) The position of an object in spacetime is not observable; relative positions of different

objects – distances between them – are observable.
2. Local (gauge) symmetry (changing the “position”):

(a) Changing the choice of the overall phase of a wave-function locally in spacetime, i.e.,
by amounts that differ from point to point in spacetime.

(b) Changing the choice of the coordinate system locally in spacetime, i.e., by (nonlinear)
general coordinate transformations.

3. Gauge-covariant derivative operators (see below):
(a) Correct the computation of the rate of change in spacetime to compensate for the

spacetime variations in the choice of the undetermined phase.
(b) Correct the computation of the rate of change in spacetime to compensate for the

spacetime variations (nonlinearity) in the spacetime coordinate system itself.
4. Gauge interactions and curving trajectories (see below):

(a) Gauge potentials and fields interact with test particles and curve their trajectories.
(b) Spacetime is curved by the presence of matter, and curves the trajectories of test

particles (including light).
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9.1.4 Exercises for Section 9.1

✎ 9.1.1 Show that, when yμ are also Cartesian spacetime coordinates, the relation (9.3)
implies that gρσ(y) = −ηρσ.

✎ 9.1.2 Show that, when both xμ and yμ are Cartesian spacetime coordinates, ∂xμ
∂yρ must be a

Lorentz transformation as discussed in Section 3.1.1.

✎ 9.1.3 Prove (9.9).

✎ 9.1.4 Prove the result (9.14).

9.2 Gravity vs. Yang–Mills interactions
Having identified in Section 9.1.2 the key elements by which tensor algebra as used in Chapter 3
generalizes to the general spacetime geometries (Appendix B.2 has more details), we turn to em-
ploying the gauge symmetry concept from Chapters 5–7 to general coordinate transformations. In
particular, given a 4-tuple of contravariant components Aμ(x) of a vector field as well as a 4-tuple
of covariant components Bμ( x) of another vector field, we quote the definition of the covariant
derivatives:

result (B.55): DμAρ :=
[
∂μAρ + ΓρμνAν

]
and DμBν :=

[
∂μBν − ΓρμνBρ

]
. (9.15)

As shown in Appendix B.2, the second term in these derivatives compensates for the fact that the
frame of reference, i.e., system basis vectors in a curvilinear coordinate system, varies point-to-
point in spacetime. They also ensure that these derivatives are covariant with respect to general
coordinate transformations:( ˜DμAρ(y)

)
=
∂xν

∂yμ
∂yρ

∂xσ
(
DνAσ(x)

)
and

( ˜DμBρ(y)
)

=
∂xν

∂yμ
∂xσ

∂yρ
(
DνBσ(x)

)
, (9.16)

and covariant derivatives of vectors transform as rank-2 proper tensors. That is, these covariant
derivatives behave with respect to general coordinate transformations identically as do the gauge-
covariant derivatives (5.7), (5.117) and (6.6) with respect to the local (gauge) symmetry of Yang–
Mills type models described in Chapters 5–7.

It should then present no surprise that the necessary introduction of the Γρμν-dependent “cor-
recting” terms in the covariant derivatives (9.15) – to accommodate for the spacetime variable
coordinatization of the spacetime geometry – will result in a gauge interaction. Furthermore, the
results (9.48)–(9.49) below will identify this interaction as gravity.

9.2.1 The metric connection and the Christoffel symbol
The formal characterization (B.66) of the covariant derivative is formally identical to the general
form (5.10), i.e., (6.6); its action on a type-(p, q) tensor is given by the general relation owing to
the definition (B.40):

(Dμ T)ν1···νp
ρ1···ρq = (∂μT

ν1···νp
ρ1···ρq ) +

p

∑
i=1

Γνi
μσi T

ν1···σi ···νp
ρ1·········ρq −

q

∑
i=1

Γσi
μρi T

ν1·········νp
ρ1···σi ···ρq ; (9.17)

see also Appendix B.2.3. The well-known special cases are (9.15) and the rank-2 case:

(Dμ T)νρ = ∂μTνρ − ΓσμνTσρ − ΓσμρTρσ. (9.18)
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Notice: the precise index notation of the covariant derivative action on tensor densities depends
on the rank and type of those tensor densities, as then also does the action of the Levi-Civita
connection 4-vector IΓμ, i.e., the Christoffel symbol Γρμν.

It follows that the symbol Γρμν transforms inhomogeneously – and so is not a tensor:

Γρμν(y) =
∂xσ

∂yμ
∂xτ

∂yν
∂yρ

∂xκ
Γκστ(x) +

∂yρ

∂xσ
∂2xσ

∂yμ∂yν
, (9.19)

exactly as in the case of gauge 4-vector potentials in the (abelian) electrodynamics (5.89) and
non-abelian chromodynamics (6.6b). At a first glance, the inhomogeneous term in the expres-
sions (5.89) and (6.6b) is proportional to (∂μϕϕϕϕ) = (∂μU)U−1, which may seem different from the
second term in the result (9.19). However, using the matrix notation

[U ]ρσ =
∂yρ

∂xσ
, we have

∂yρ

∂xσ
∂2xσ

∂yμ∂yν
= [U ]ρσ

∂

∂yμ
[U−1 ]σν, (9.20)

which then fully agrees with (∂μϕϕϕϕ) = (∂μU)U−1 = −U(∂μU−1), up to a conventional sign of the
phase “angle” ϕϕϕϕ.

Comment 9.2 The transformations U =
[ ∂y
∂x

]
employed here are general coordinate trans-

formations [☞ Definition 9.1 on p. 319], which form a (gauge) group only in a restricted
sense.4 The physical manifestations of the theory in which IΓμ is the gauge potential and U
the gauge transformation will be identified below as gravity; see equations (9.48)–(9.49).

One may also construct the so-called the connection (differential) 1-forms5

AAAA := dxμAμ, i.e., IΓIΓIΓIΓ := dxμIΓμ. (9.21)

Since AAAA = dxμ Aa
μ Qa and Qa are elements of the algebra of the gauge group, one says that AAAA

is valued in the gauge algebra. Similarly, IΓIΓIΓIΓ is a differential 1-form with values in the algebra of
the group of transformations (B.41); the covariant differential dxμDμ is also-called the Levi-Civita
connection.

Conclusion 9.4 As the algebra of a group is essentially specified by linearizing (A.9), it
follows that IΓIΓIΓIΓ may be regarded as a differential 1-form that takes values in the algebra of
transformations of the tangent 4-plane (at any given spacetime point) into itself, which is
the algebra of the Lorentz group, Spin(1, 3). Although no spinor appears in this discussion,
the Lorentz group of course must act unambiguously on spinors also, whereupon we write
Spin(1, 3) instead of SO(1, 3) [☞ discussion about relations (5.45)–(5.48)].

However, note the difference: For the Yang–Mills gauge symmetries in Chapters 5–7, the
unitary operator of the symmetry transformation, U := exp{igcϕ

a(x)Qa/h̄}, depends on (the co-
ordinates of) the spacetime point x = (x0, . . . , x3) but describes a change in parametrizing another,
abstract space of generalized phases of wave-functions. Within our present context, [U ]ρσ = ∂yρ

∂xσ
depends on the spacetime point x, but simultaneously describes the change in the coordinate
parametrization (basis elements) of that very same spacetime. Besides, the coordinate transfor-
mations xμ → yν = yν(x) are nonlinear in general. This conceptual as well as literal nonlinearity

4 The binary combination of two transformations exists only when they “concatenate”: ∂xμ
∂yν

∂zρ
∂xμ = ∂zρ

∂yν and ∂xμ
∂yν

∂yν

∂zρ = ∂xμ
∂zρ ,

but a product such as ∂xμ
∂yν

∂zν
∂wρ does not simplify as a closed binary operation. This structure curiously reminds us of the

so-called “renormalization group,” see Section 5.3.3 on p. 210 ☞ .
5 Instead of dxμ, one may of course use any arbitrary basis elements, eμ, resulting also in 1-forms, albeit not differential.

The use of the dxμ-basis is however standard, as it provides a connection with differential and integral calculus.
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provides the root of all differences between (Yang–Mills) gauge theories and the general theory of
relativity, viewed as a gauge theory.

This difference also reflects in the following: The gauge vector potential (6.6c) has a matrix
representation:

Aμ := Aa
μ Qa → [Aμ]αβ. (9.22)

The gauge vector potential for general coordinate transformations (9.20) is the Levi-Civita
connection 4-vector,

IΓμ → [IΓμ]νρ, (9.23)

that acts upon a vector according to the relations (9.15), in perfect analogy with the action of the
chromodynamics gauge vector potential (9.22) upon a quark wave-function:

[Aμ · Ψ]α = [Aμ]βα Ψβ ↔ [IΓμ · V]ρ = Γρμ ν Vν. (9.24)

Note, however, that the chromodynamics gauge potentials are matrices in the abstract space of
(color) phases and covariant vectors in real spacetime. By contrast, the Christoffel symbol is a
matrix in the very same spacetime wherein it is also a connection 4-vector. What is more, it is not
hard to show that (see, e.g., the derivation of (B.59) in Appendix B.2.3)

Γρμν = 1
2 gρσ

[∂gσν
∂xμ

+
∂gμσ
∂xν

− ∂gμν
∂xσ

]
. (9.25)

That is, the gauge potential for general coordinate transformations, the Levi-Civita connection
4-vector IΓμ, can be derived from the metric tensor (9.3),6 which thereby serves as a gauge
“ pre-potential.” In Yang–Mills gauge theories, no such thing exists.

In turn, relation (9.25) is equivalent to the result

Dμ gνρ = 0 ⇔ Dμ gνρ = 0. (9.26)

That is, the metric tensor and its inverse are “covariantly constant,” so (9.25) may just as well be
derived from either of the two relations (9.26). Again, Yang–Mills gauge theories contain no such
nontrivial “covariantly constant” object.

Thus, while the electric and magnetic fields may be obtained as derivatives of an electromag-
netic potential (5.15)–(5.73) Aμ, this potential cannot be obtained as a derivative of some more
fundamental prepotential. Similarly, chromodynamics fields Fμν = Fa

μνQa can also be expressed in
terms of a chromodynamics potential (6.15) Aμ = Aa

μQa, but these potentials cannot be expressed
in terms of something more fundamental yet. In sharp contrast, the Christoffel symbol Γρμν may be
and is expressed in terms of a derivative of the metric tensor (9.25) and the inverse metric tensor.
From relations (9.25) it also follows that the Christoffel symbol is symmetric with respect to the
exchange of the indices

Γρμν = +Γρνμ. (9.27)

In the Yang–Mills gauge vector potentials [Aμ]αμ, an analogous symmetrization (here, for μ ↔ α)
simply makes no sense at all: μ and α indicate basis elements in completely different spaces.

6 Strictly speaking, this is true only in the absence of fermions. With fermions present, one uses the so-called Palatini
formalism, wherein the metric tensor and the Levi-Civita connection 4-vector IΓμ are independent.
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Digression 9.1 Some useful consequences of the relations (9.25)–(9.26) are
∂gμν
∂xσ

= Γρμσgρν + Γρνσgρμ,
∂gμν

∂xσ
= −gμρΓνσρ − gνρΓμσρ, (9.28a)

Γμμν =
∂

∂xν
ln

(√−g
)
, g := det[g..]; g < 0 because of signature (1, 3), (9.28b)

where we used the relation
∂g
∂gμν

= g gμν, so that
∂g
∂xρ

= g gμν
∂gμν
∂xρ

. (9.28c)

The signature is the number of positive and negative eigenvalues of the metric
tensor [☞ discussion about the expression (3.19) and Definition 3.3 on p. 90].

Digression 9.2 Also, definition (9.17) produces the following oft-used results:

grad( f )μ := Dμ f = (∂μ f ); (9.29a)

curl(V.)ρσ := εμνρσDνVμ = εμνρσ(∂νVμ); (9.29b)

curl(V.)ρσ := εμνρσDμ(gνλVλ) = εμνρσ∂μ(gνλVλ); (9.29c)

div(V.) := DμVμ =
1√−g

(
∂μ(

√−g Vμ)
)
; (9.29d)

div(V.) := Dμ(gμνVν) =
1√−g

(
∂μ(

√−g gμνVν)
)
; (9.29e)


 f := Dμ(gμνDν f ) =
1√−g

[
∂μ

(√−g gμν(∂ν f )
)]

. (9.29f)

Note that, in 1+3-dimensional spacetime, the curl of a 4-vector is a rank-2 tensor. On the
other hand, the spacetime analogue of �∇2 �A ≡ �∇(�∇·�A) − �∇×(�∇×�A) may be used to
compute


Aμ =
[

gμν∂ν

(
∂ρ

(√−g Aρ
)

√−g

)
+

1√−g
εμνρσεαβκλ∂ν

( (∂αAβ)√−g
gκρgλσ

)]
. (9.29g)

9.2.2 The curvature of spacetime
Finally, just as the gauge field Fμν is defined in relation (6.15) as the commutator of covariant
derivatives, so too may the Riemann curvature tensor be defined:

Rμνρσ :=
[

Dμ , Dν
]
ρ
σ =

[(
δσλ∂ν + Γσνλ

)
Γλμρ

]− [(
δσλ∂μ + Γσμλ

)
Γλνρ

]
= ∂νΓσμρ − ∂μΓσνρ + ΓσνλΓλμρ − ΓσμλΓλνρ. (9.30)

Note the formal similarity of the defining expression (9.30) and the definition of the gauge field for
non-abelian gauge symmetry (6.15). However, unlike Fμν which is an antisymmetric rank-2 tensor
and the components of which are matrices in the abstract space of phases, the Riemann tensor is a
rank-4, type-(1, 3) tensor. Besides, it may be shown that [508, 62, 367, 548, 66, 96]

Rμνρρ = 0, (9.31)
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and that the closely related tensor

Rμν ρσ := Rμνρλ gλσ (9.32a)

satisfies the relations:

Rμν ρσ = −Rνμ ρσ, (9.32b)

Rμν ρσ = −Rμν σρ, (9.32c)

Rμν ρσ = +Rρσ μν, (9.32d)

ελνρσRμν ρσ = 0, 1st Bianchi identity, (9.32e)

εκλμνDλRμν ρσ = 0, 2nd Bianchi identity. (9.32f)

This 2nd Bianchi identity (9.32f) is both formally and conceptually analogous to the Bianchi
identity (5.87) in electrodynamics and (6.19) for non-abelian gauge fields.

Relation (9.31) is analogous to the requirement that in the expansion Fμν = Fa
μν Qa, the

generators Qa of non-abelian factors in the gauge group are traceless: Tr[Qa] = [Qa]αα = 0. This
is certainly true of the gauge field of the SU(3)× SU(2)w group, and is not true precisely for the
abelian electromagnetic U(1) field Fμν. The Riemann tensor Rμνρσ may be regarded as a special
rank-2 and type-(0, 2) tensor, the components of which are matrices and traceless rank-2 and type-
(1, 1) tensors, Rμνρσ = [Rμν]ρσ, subject to the additional constraints (9.32b)–(9.32f). The fact that
both Fμν and Rμνρσ are defined as commutators of appropriate covariant derivatives then guar-
antees the first of the relations, (9.32b). This similarity permits the interpretation of the Riemann
tensor as a general coordinate transformation analogue of the tensor Fμν. The components Rμνρσ

are then interaction fields associated with general coordinate transformations, and in fact represent
the general-relativistic generalization of the gravitational field; see below.

The very existence of the definition (9.32a) points to the difference between Rμνρσ and
[Fμν]αβ. For orthogonal and symplectic gauge groups,7 their invariant quadratic forms would play
the role of gλσ and produce [Fμν]αβ. Unitary groups (such as SU(3)c) have no such tensor, and for
them there can exist nothing analogous to definition (9.32a). Also, for unitary gauge groups there
exist no analogues of the relations (9.32c)–(9.32e).

Furthermore, for Yang–Mills gauge fields, [Fμν]αβ, there is no way to perform the contraction
between one of the “matrix” indices α or β and one of the “tensor” indices μ or ν. In turn, the
contractions that can be performed,

gμνFμν ≡ 0,
{

Tr[Fμν] = [Fμν]αα = 0, for semisimple Lie groups,
Tr[Fμν] = Fμν, for U(1) factors,

(9.33)

are trivial: The first equality holds owing to the fact that gμν = + gνμ but Fμν = −Fνμ. The second
one follows from the fact that Tr[Qa] �= 0 only for U(1) factors.

The situation is, however, different for the Riemann tensor: neither is

the Ricci tensor: Rμρ := Rμνρν, (9.34)

trivial, nor is its trace,

the scalar curvature: R := gμρ Rμρ = gμρ Rμνρν. (9.35)

7 Orthogonal and symplectic groups may be defined as the groups of linear transformations of some specified real vector
space that preserve a (pseudo-)Euclidean, i.e., symplectic quadratic form, respectively [☞ Appendix A]. However, this
invariant quadratic form does not determine the gauge potential of Yang–Mills theories with orthogonal and symplectic
group of symmetries, unlike the fact that the relation (9.25) does determine the Christoffel symbol in terms of the
metric.

https://doi.org/10.1017/9781009291507.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.013


9.2 Gravity vs. Yang–Mills interactions 327

It is also useful to know that, following Conclusion 9.4 on p. 323, we have that the differential
2-form8

RRRR :=
[

dxμDμ , dxνDν
]
, i.e., [RRRR]ρσ := dxμ dxν Rμνρσ (9.36)

also has values in the algebra of the Lorentz group Spin(1, 3).
Definition (9.30) shows that the components of the Riemann tensor Rμνρσ are derivatives

of the second order (or are quadratic in derivatives of the first order) of the metric tensor com-
ponents,9 but it contains also the inverse metric tensor. Rμνρσ is therefore a nonlinear function
of the metric tensor components, gμν, but precisely of second order in spacetime derivatives of
those components.10 The same is then true also of the Ricci tensor (9.34), as well as the scalar
curvature (9.35).

Yang–Mills gauge theories have nothing analogous to the expressions (9.34)–(9.35). There,
the Lagrangian density (6.23) is found in the form − 1

4 Tr[Fμν Fμν], which is quadratic in the deriva-
tives of Aμ. This Lagrangian density then yields equations of motion (6.24) that are analogous to
Gauss’s law for the electric field and Ampère’s law for the electromagnetic field (6.37).

Analogously to the expression − 1
4 Tr[FμνFμν] in the Lagrangian density (6.23), the Hamilton

action with the Riemann tensor would be proportional to the integral∫ √−g d4x Rμνρσ gμκgνλ Rκλσ
ρ. (9.37)

Since both
√−g d4x and Rμνρσ gμκgνλ Rκλσρ are scalar quantities, this integral is invariant un-

der general coordinate transformations. Varying this action by the components of the Christoffel
symbol would, in the standard fashion, produce Euler–Lagrange equations of the second order in
derivatives of the Christoffel symbol, IΓ. However, the Christoffel symbol is itself a derivative of
the metric tensor, and varying this action by components of the metric tensor (which is more fun-
damental than the Christoffel symbol) would produce Euler–Lagrange equations of motion for the
metric tensor components that are of the fourth order in spacetime derivatives, which agrees with
neither classical (non-quantum) theory of gravity nor with experimental facts about gravity.

Fortunately – and completely unlike in Yang–Mills gauge theory – with the Riemann tensor it
is possible to define another, so-called Einstein–Hilbert action:

c3

16π GN

∫ √−g d4x R, where R (9.35)= gμρ Rμνρν. (9.38)

The powers of the natural constants c, h̄ and GN in the prefactor are determined:

1. by requiring the Hamilton action to have the dimensions ML2

T
[☞ Sections 1.2.3 and 1.2.2],

2. by definition (3.10) whereby [d4x] = L4 (note: d4x = cdt d3�r ),11

3. by definitions (9.2), (9.25) and (9.30), from which it follows that [gμν] = 1,
[Γρμν] = L−1 and [Rμνρσ] = L−2, respectively.

The conventional numerical prefactor 1
16π simplifies many derivations and many final results.

Varying this action by the metric tensor components produces [508, 62, 367, 548, 66, 96]
8 When defining differential p-forms, one automatically uses the antisymmetric product of basis elements and without

any notational distinction: (· · ·dxμdxν· · ·) = −(· · ·dxνdxμ· · ·).
9 All told, every summand in the defining expression (9.30) contains precisely two spacetime derivatives.

10 Unlike the quadratic, cubic or another expression of a relatively low degree, the components of the inverse metric tensor
are by definition ratios of the determinants of various cofactors and the determinant of the entire metric tensor. A Taylor
expansion in the components of the original metric tensor is then an infinite series, containing arbitrarily high powers
of the components of the original metric tensor. This makes the inverse metric tensor, and then also the Riemann and
other curvature tensors, very nonlinear.

11 Some Authors imply d4x := dt d3�r, so that the prefactor in the action (9.38) has c4 instead of c3 as given here.
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Rμν − 1
2 gμνR = 0. (9.39)

This system of differential equations, the Einstein equations, determines the metric tensor com-
ponents as functions of the spacetime coordinates, and in the absence of all matter, i.e., in empty
space. The combination Gμν := Rμν − 1

2 gμνR is called the Einstein tensor.
Already, writing the Einstein equations (9.39), with definitions (9.30) and (9.25), indicates

the essential differences from Yang–Mills gauge theories: The differential equations (6.37) are at
most cubic in the 4-vector potentials Aμ, while the Einstein equations (9.39) are very nonlinear in
the metric tensor components. The definition of the Christoffel symbol and the scalar curvature in-
volve the inverse metric tensor, the components of which are ratios of cubic polynomials in the com-
ponents gμν and the determinant det[gμν]. This much more radical nonlinearity of the differential
equations (9.39) – and also the action (9.38) from which the Einstein equations follow – is the root
of the technical differences between the general theory of relativity and Yang–Mills gauge theories.

9.2.3 Coupling of gravity and matter
Finally, the operations so far defined may be combined and produce a relevant result for our present
purposes:

Conclusion 9.5 In the general case, Hamilton’s action is

S[φi(x)] :=
∫ √−g d4x L

(
φi(x), (Dμφi(x)), . . . ; x

)
, (9.40)

g := det[g(x)], d4x := 1
4! εμνρσdxμdxνdxρdxσ, (9.41)

where L is the “Lagrangian density” (in the sense of “Lagrangian per unit 4-volume”). In
turn, both

√−g d4x and L are scalars, i.e., invariants with respect to general coordinate
transformations [☞ Definition 9.1 on p. 319].

Comment 9.3 Lagrangian densities L
(
φi(x), (∂μφi(x)), . . . ; x

)
constructed within the

special-relativistic field theory may continue to be used, but “covariantizing” the deriva-
tives, ∂μ �→ Dμ := ∂μ + IΓμ, where IΓμ is the formal Levi-Civita connection 4-vector, which
when acting on tensors may be represented by the Christoffel symbol (9.17).

In the general case, the covariant derivative is Dμ = ∂μ + IΓμ + ∑k
igk
h̄ c A(k)

μ ·Q(k), where
Q(k)

ak
are generators of the kth factor in the Yang–Mills group of gauge symmetries with the

coupling parameter gk and gauge 4-vector potentials A(k) ak
μ .

In the general case, let LM be the Lorentz-invariant Lagrangian density for any type of mat-
ter – here, “matter” denotes everything except the metric tensor gμν, the Levi-Civita connection
4-vector potential IΓμ, and the Riemann tensor Rμνρσ and quantities constructed from these. The
corresponding model that is invariant with respect to general coordinate transformations has the
Hamilton action ∫ √−g d4x

[ c3

16π GN
R −LM

]
, (9.42)

where all the derivatives in the Lagrangian density LM are “covariantized” as discussed in Com-
ment 9.3 on p. 328. Varying this action by the components of the inverse metric tensor yields

δR
δgμν

+
R√−g

δ(
√−g)
δgμν

= −16π GN

c3
1√−g

δ(
√−g LM)
δgμν

, (9.43)

that is [508, 62, 367, 548, 66, 96],

Rμν − 1
2 gμνR =

8π GN

c4 Tμν, (9.44)
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where the rank-2 and type-(0, 2) tensor

Tμν := − 2c√−g
δ(
√−g LM)
δgμν

(9.45)

has the physical meaning of the energy–momentum tensor density for the physical system
described by the Lagrangian density LM.

Digression 9.3 Note that the inverse metric tensor and the metric tensor of course are
not independent quantities, since the inverse metric tensor is defined so as to satisfy

gμν gρν = δ
ρ
μ, gμν = +gνμ ⇒ gμν = +gνμ. (9.46a)

It then follows that varying the inverse metric tensor is not independent of varying the
metric tensor itself:

0 = δ(δρμ) = δ(gμν gρν), (9.46b)

⇒ δgμν = −gμρgνσ (δgρσ), and
δ

δgμν
= −gμρgνσ

δ

δgρσ
. (9.46c)

Varying the action (9.42) by various fields that represent various “matter” degrees of free-
doms produces the Euler–Lagrange equations of motion for these fields. As all the derivatives in the
Lagrangian density LM are covariantized, the resulting Euler–Lagrange equations of motion will,
in the general case, depend on the Levi-Civita connection 4-vector IΓμ as well as on the metric gμν.
The Euler–Lagrange equations of motion and the Einstein equations (9.44) then form a coupled
system of differential equations, which are certainly nonlinear in the metric tensor components.

Although such coupled systems of differential equations most often are not soluble in closed
form, the geometric meaning of the Einstein equations (9.44) is very clear:

1. On the left-hand side, Rμν− 1
2 gμνR is a nonlinear expression in the metric tensor components,

which is of precisely second order in spacetime derivatives; the left-hand side depends only
on the metric tensor components and their spacetime derivatives.

2. On the right-hand side, Tμν is the energy–momentum tensor density, which describes the
spacetime (and general-relativistic) generalization of mass of the matter.

The differential equation (9.44) thus determines the metric tensor, for which the energy–
momentum tensor density plays the role of the “source” – just as the differential equation
representing Gauss’s law determines the electric field for which electric charge density plays the
role of the source, and Ampère’s law determines the electromagnetic field for which the electric
current density plays the role of the source.

What’s more, comparing the Einstein equations with the differential equations representing
the Gauss–Ampère laws is more than suggestive: it may be shown that the energy–momentum
tensor density, Tμν, is indeed the Noether “current” density that corresponds to the continuous
symmetry of spacetime translations.

Since the metric tensor is the quantity that determines the spacetime geometry, we have:

Conclusion 9.6 Conceptually, the Einstein equations are perfectly analogous to Gauss’s law
for the electric field and Ampère’s law for the electromagnetic field, and they determine the
spacetime geometry, for which the energy–momentum tensor density of the present matter
is the “source,” i.e., the “driving force.”

That is: by virtue of its presence, matter curves spacetime.
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Digression 9.4 Relation (9.24) gives a formal correspondence between Yang–Mills gauge
theories and the general theory of relativity:

[Aμ]αβ ←→ Γρμν, and so also [Fμν]αβ ←→ Rμν ρσ. (9.47a)

This formal correspondence is also qualitatively correct, and foremost in its geometric
sense, where the tensors Fμν and Rμν ρσ represent the curvature of the effective spacetime
for the purposes of field propagation and particle motion.

However, in a strictly practical sense – the so-called “engineering” spirit of Sec-
tion 9.3.4 that also permeates the discussion leading to Conclusion 9.6 – the formal
correspondence (9.47a) is not appropriate.12 The Einstein equations (9.44) identify the
differential expression that is of second order in spacetime derivatives of the metric tensor
with the energy–momentum tensor density Tμν for that distribution of matter:{

Rμν− 1
2 gμν R = 1

2 gρσ(∂μ∂ρgνσ + ∂ν∂ρgμσ) + · · ·
}

=
8π GN

c4 Tμν. (9.47b)

That system of differential equations is formally analogous to the Gauss–Ampère
laws (5.88), expressed in terms of the gauge potential:{

(
Aμ) − ημν(∂ν∂ρAρ)
}

=
1

4πε0

4π
c

jνe . (9.47c)

Comparing equations (9.47b) and (9.47c) implies the correspondence

Aμ ←→ gμν, Fμν ←→ Γρμν, jμe ←→ Tμν, (9.47d)

which better fits this “engineering” sense. The differences between the correspon-
dences (9.47a) and (9.47d) stem from the already mentioned differences, and foremost
from the following facts:

1. Both in Yang–Mills gauge theories and in the general theory of relativity,
the covariant derivative is defined so that Dμ − ∂μ ∝ Aμ, i.e., Dμ − ∂μ ∝
IΓμ. However, Aμ cannot be expressed as the derivative of anything “more
fundamental,” whereas IΓμ can: see equation (9.25).

2. Both in Yang–Mills gauge theories and in general theory of relativity, the
curvature is defined as the commutator [Dμ, Dν]. However, the Hamilton ac-
tion for Yang–Mills gauge theory is quadratic in the curvature, while the
Einstein–Hilbert action is linear in the (scalar) curvature (9.35).

Finally, the identity

R = −gμν
(
ΓσμρΓρνσ − ΓρμνΓσρσ

)
+ ∂μKμ (9.47e)

shows the Einstein–Hilbert Lagrangian to be quadratic in IΓμ, making it similar – though
definitely not identical – to the Yang–Mills type Lagrangians (5.76) and (6.23), in further
support of the “engineering” correspondence (9.47d).

12 This practical sense is regarded “engineering” in the sense that the Gauss–Ampère laws may be used to find the desired
electromagnetic field, by constructing the appropriate distribution of charges and currents. Analogously, the Einstein
equations (9.44) may be used so that by constructing a particular distribution of matter one produces the desired
gravitational field, and so also the spacetime of the desired curvature.
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9.2.4 Geometry and Newtonian limit

In turn, if we take LM = m
√

gμν ∂xμ
∂t

∂xν
∂t ,13 which is the Lagrangian density [☞ definition L0 in

Digression 3.7 on p. 93, and defining equation (9.2)] for a particle that moves in spacetime with
the metric tensor gμν, then varying the action (9.42) by xμ yields

d2xρ

dt2 + Γρμν
dxμ

dt
dxν

dt
= 0. (9.48)

These are the differential equations that determine the so-called geodesic (extremal) lines. In flat
spacetime, gμν = −ημν and the Christoffel symbol vanishes, so equation (9.48) gives

..
xμ = 0,

i.e., xμ = xμ0 + vμ0t gives straight lines in spacetime. Rearranging the second term we obtain the
analogue of Newton’s second law:

m
d2xρ

dt2 = Fρgrav := −m Γρμν
dxμ

dt
dxν

dt
, (9.49)

where the right-hand side provides the gravitational force that curves the trajectory of the particle,
the acceleration of which appears on the left-hand side.

Conclusion 9.7 The possibility of reinterpreting essentially geometric information as essen-
tially physical information

spacetime curvature
appearing in equation (9.48)

}
⇔

{
definition of the force and
interaction in equation (9.49)

(9.50)

points to the fundamental equivalence of these two ways of thinking and explaining natural
phenomena.

Of course, this is merely one of the simplest examples, but it should be clear that now even in the
most general context – including also the Yang–Mills type of gauge interactions14 [☞ Chapters 5
and 6] – the coupled system of the Einstein equations and the general-relativistically covariant
Euler–Lagrange equations of motion may be reinterpreted:

1. either in a purely geometric sense, where objects move along geodesic (extremal) trajectories
defined by the (charge/color/isospin-sensing) curvature of spacetime,14

2. or in a purely “physicsy” sense, where objects move under the influence of forces with which
these objects affect one another.

It behooves us to keep in mind that this latter way of interpreting natural phenomena implicitly
presupposes the existence of an “empty” spacetime in which these objects move. Therefore, the
first, geometric way of interpretation is more economical, and represents the basis of “geometriz-
ing” physics: the notion of force may be replaced by the notion of curvature in the (appropriately
generalized) spacetime; see also Comment 3.2.

Starting from (9.48), following Pauli [414], we focus on a spatial component of x, xρ → xk,
use that x0 = ct, and assume that gμν deviates only slightly from its flat-space value, −ημν, and
obtain

d2xk

dt2 ≈ −c2 Γk
00, (9.51)

13 Here, t denotes an arbitrary parameter of the dimension of time, which grows monotonously along the worldline of the
given particle.

14 From this “geometrized” point of view, the various phases that are subject to gauge transformation are to be included in
the “total spacetime.” Since these phases vary over the usual spacetime, the resulting structure is a called a fiber bundle,
where the spacetime-variable phases span the fibers over the base spacetime. The fiber-wise curvature is measured by
the Fμν-type tensors, and is detected only by particles that have the appropriate type of charge: electromagnetic, weak
isospin or chromodynamic color.
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where terms quadratic in the small deviations γμν := (gμν+ημν) have been dropped. Assuming fur-
thermore that the components of the metric gμν are slowly varying in time so that time derivatives
may be neglected,

Γk
00 = 1

2 gkσ(∂0gσ0 + ∂0g0σ − ∂σg00
) ≈ − 1

2 gk�(∂�g00). (9.52)

In fact, since we must keep ∂�g00 = ∂�(γ00−1) = (∂�γ00), where γ00 is the small deviation,
dropping terms that are second order in γμν allows us to drop the (also small) contributions from:

1. off-diagonal terms from the �-summation, and
2. the deviations in gkk from (−ηkk = 1), whereby gkk → 1.

This produces

d2xk

dt2 ≈ 1
2 c2(∂kγ00), i.e.,

d2�r
dt2 ≈ 1

2 c2(�∇γ00)
!= −�∇ΦN, (9.53)

and allows us to identify − 1
2 c2γ00 := − 1

2 c2(g00+1) with Newton’s gravitational potential, such as
ΦN = −GN

M
r for a point-like source of gravity of mass M, so the potential energy of the considered

particle with mass m at a distance r from the gravitational source is mΦN = −GN
mM

r .
Much more detailed derivations of the Newtonian weak-field limit of gravity may be found

in the literature; see for example Refs. [96, 95, 271, 58].

9.2.5 Exercises for Section 9.2

✎ 9.2.1 Prove the relations in Digression 9.1 on p. 325.

✎ 9.2.2 Prove the relations in Digression 9.2 on p. 325.

✎ 9.2.3 Prove that the Riemann tensor has 20 independent degrees of freedom. (Hint: the rank-
4 tensor itself of course has 44 = 256 components. Show that the relations (9.32b) reduce this to 36,
the relation (9.32d) further to 21, and relation (9.32e) to 20.)

✎ 9.2.4 Prove the relation (9.32f) using the definition (9.30) of Rμνρσ.

✎ 9.2.5 Prove that the Ricci tensor is symmetric: Rμν = Rνμ.

✎ 9.2.6 Prove that the equations (9.48) are covariant, i.e., that a coordinate substitution
changes these equations only up to a non-vanishing overall multiplicative factor.

✎ 9.2.7 Derive the Euler–Lagrange equations of motion for the n-plet of scalar fields φi(x) with
the Lagrangian density

L [φi] =
1
2

gμνδij (Dμφ
i)(Dνφ

j) − m2c2

2h̄2 δijφ
iφj. (9.54)

(Hint: since φi are Lorentz-scalars, determine first the action of Dμφi from relation (9.17).)

✎ 9.2.8 From the Lagrangian density (9.54), derive the energy–momentum tensor density,
Tμν, and the system of Euler–Lagrange equations from the previous exercise coupled with
the Einstein equations.
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9.3 Special solutions
Solutions of the Einstein equations (9.44) represent various spacetime geometries – various
universes15 – of which each one may serve as the background/arena in which all “other” physics
happens, including the elementary particle physics as analyzed so far. Besides, the Einstein equa-
tions – as a system of differential equations for the metric tensor components – are nonlinear,
making the existence of a growing class of exact solutions all the more interesting.

9.3.1 The Schwarzschild solution
Only a month after the publication of Einstein’s general theory of relativity and gravitation, in
1915, Karl Schwarzschild published the first and best known exact solution to the Einstein equa-
tions. Six years later, the mathematician George David Birkhoff proved a theorem16 whereby any
spherically symmetric solution of the Einstein equations without matter (9.39) must be stationary
and asymptotically flat, i.e., the geometry of the outer region of spacetime must be described by
the Schwarzschild metric tensor (see Refs. [367, 264, 103, 548, 131] and also [128, 587, 127]),
given here in spherical coordinates:

Schwarzschild

{ [gμν] = diag
(− fS(r), 1

fS(r) , r2, r2 sin2(θ)
)
,

ds2 = − fS(r)c2dt2 + 1
fS(r)dr2 + r2(dθ2 + sin2(θ) dϕ2),

(9.55a)

where
fS(r) :=

(
1 − rS

r

)
, rS =

2GN M
c2 . (9.55b)

As the metric tensor (9.55) satisfies the Einstein equations with Tμν = 0, it follows that the
Schwarzschild solution describes empty spacetime, in the sense that this is a possible geometry
of spacetime in the absence of any matter. The mass M := c2rS

2GN
that may be ascribed to the point-

like object at the origin of the coordinate system then does not represent a particle of matter that
is placed there, but is a characteristic of spacetime itself [☞ Digression 9.5 on p. 340], which for
observers outside rS is curved as if there existed an object of mass M.

The meaning of the Schwarzschild radius, rS, is as follows: The well-known expression for
the (first) escape velocity, i.e., the velocity of separation from a planet of mass M at a distance r
from the center of the planet is

v1 =

√
2GN M

r
. (9.56)

It follows that the separation velocity at the Schwarzschild radius becomes v1(rS) = c. This literally
means that Schwarzschild’s solution (9.55) holds for r � rS. For observers that are outside the
Schwarzschild radius, objects that pass through the surface of the sphere of radius rS can no longer
return. This sphere is thus called the “event horizon” and effectively separates the exterior from
the interior. As the same conclusion holds also for light, classical physics predicts that the interior
of this horizon is completely black for observers in the exterior – whence the popular name “black
hole.” Formally, the metric tensor (9.55) is applicable also in the interior of the event horizon, but

15 The distinction between a “spacetime geometry” and a “universe” – as the latter word is used in this chapter – is far from
strict: the latter term is used merely to emphasize its global meaning. A “universe,” after all, has an all-encompassing
ring to it and so allows “spacetime geometry” to have either just a local reference, if desired, or a fully global one.
In recent times however, the terms “multiverse” and “metaverse” came into vogue, denoting a collection – sometimes
infinitely large – of universes [513, 514, 515, 557, for starters]. Especially when these universes within a multiverse are
connected, the connotation of globalness of a single universe is restricted in some way or another, at the least. Herein,
in turn, a “universe” will be used to denote a closed, isolated and geodesically complete spacetime, unless explicitly
stated otherwise.

16 It was recently discovered that this theorem, many years known under Birkhoff’s name, was proven two years earlier
(in 1919) by the Norwegian physicist Jørg Tofte Jebsen [297].
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here the coordinate t becomes space-like and r becomes time-like; the physical meaning of this
change remains uncertain, foremost because – at least within classical physics17 – it is not possible
to design an experiment (even a thought-experiment) with which one could compare the evolution
of physical phenomena outside the event horizon with those unfolding within the horizon.

Singularities
The functional dependence of the Schwarzschild metric on the radius indicates that there exist two
special places within the space with the geometry (9.55):

1. the Schwarzschild radius, where fS(r) = 0, so the metric tensor has a singularity: the
coefficient of the dt2 term vanishes, and the coefficient of the dr2 term diverges;

2. the coordinate origin, where fS(r) diverges, so the coefficient of the dt2 term diverges, and
the coefficient of the dr2 term vanishes.

However, the metric tensor transforms under general coordinate transformations as a rank-2 and
type-(0, 2) tensor, and it is not clear a priori if these special places are indeed singularities. As the
metric tensor is of type (0, 2), this transformation has the form [☞ Definition B.2 on p. 511]

gμν(ξ) =
∂ζρ

∂ξμ
gρσ(ζ)

∂ζσ

∂ξσ
⇐⇒ gggg′ = UT gggg U (in matrix form), (9.57)

which is not a similarity transformation. Thus, neither the characteristic polynomial, det[gggg − λ1],
nor the eigenvalues of the matrix gggg are invariants. The only invariant that can be constructed from
the metric tensor is δρμ = gμνgρν, which produces no information about possible singularities.

However, depending on the first and second derivatives of the metric tensor components,
the Riemann curvature tensor does contain information about their (non)analyticity, and one only
needs to find a way to extract that information in an invariant fashion. The scalar curvature (9.35)
is one such invariant. As the Riemann tensor has 20 independent degrees of freedom [☞ Exer-
cise 9.2.3], this leaves precisely 19 independent invariants, but an explicit listing of such invariants
remains an open problem☞ . Now, there do exist two simple quadratic invariants

‖Rμν‖2 := Rμν gμρgνσ Rρσ and ‖Rμνρσ‖2 := Rμνρσ gμαgνβgργgσδ Rαβγ
δ, (9.58)

of which the second, the so-called Kretschmann invariant for the Schwarzschild metric, equals

‖Rμνρσ‖2 =
48GN

2 M2

c4 r6 , (9.59)

and is indeed divergent at the coordinate origin, r = 0. This proves that the coordinate origin
is really a singularity of the geometry. The fact that neither the scalar curvature (9.35) nor the
quadratic curvature invariants (9.58) diverge on the event horizon does not prove that the location
r = rS is not a singularity. It remains, in principle, to check 17 other independent invariants; the
divergence of any one of those invariants on the sphere r = rS would prove that the event horizon
is a singularity. Unfortunately, as no list of 20 independent invariants is known, such a direct
verification is not available in practice.18

17 The quantum theory of gravity is not a complete theory, and this analysis is not without debate. However, in the early
1970s, Stephen Hawking was among the first to apply the “semi-classical” analysis and so discover that black holes
radiate, emitting the so-called Hawking radiation. The same methods led to the derivation of the Bekenstein–Hawking
formula according to which the entropy of a black hole is proportional to the surface area of the event horizon. A recent
application of stringy methods and the gravity–gauge duality [☞ p. 443] discovered newer, and not just semi-classical
results.

18 Nor may this suffice even in principle: As discussed in Ref. [264, Section 8.1], because of the non-definiteness of the
metric gμν, there could exist singular solutions to the Einstein equations for which all invariant curvature polynomials
(constructed from gμν, gμν, εμνρσ and Rμνρσ) are finite. Also, there do exist special solutions such as the Taub-NUT
(Newman, Unti and Tamburino) solution, where the invariant curvature polynomials remain bounded but the spacetime
contains incomplete geodesics within a compact neighborhood of the horizon.
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Fortunately, Georges Lemâıtre discovered in 1933 that the coordinate substitution (intro-
duced by Arthur Eddington in 1924, without noting the significance)

dτ := dt +
√

rS

r
dr/c

(1 − rS
r )

, d� := dt +
√

r
rS

dr/c
(1 − rS

r )
(9.60a)

changes the appearance of the Schwarzschild metric tensor into

ds2 = −c2dτ2 +
( 2rS

3(�− cτ)

) 2
3
d�2 + r2(dθ2 + sin2(θ)dϕ2) (9.60b)

and so clearly shows that the sphere r = rS, i.e., � = �S :=
( 2

3 rS+cτ
)

is free of singularities.
Thus, the event horizon is a completely non-singular location in spacetime and the unlucky

observer who drifts through it would notice nothing unusual in his immediate vicinity – except that
he would not be able to return outside the event horizon. This phenomenon is often compared with
the fact that fish that arrive too close to a waterfall can no longer return upstream.

In turn, the r = 0 location is indeed a real singularity [☞ equations (9.58)–(9.59)], and its
existence explains the fact that the Schwarzschild solution describes empty space with no mat-
ter located within the event horizon, although the coordinate origin may be ascribed the mass
M = rS c2

2GN
. More precisely, any Gaussian sphere that fully encloses the event horizon will detect

a gravitational field as if within it there existed a mass M. However, such a Gaussian sphere can
be shrunk down only as far as the event horizon; beyond that, no information could be extracted
from the gravitational field detectors (scales) bedecking the Gaussian sphere. Mathematically, this
unusual property stems from the nonlinearity of the Einstein equations and the singularity of the
Schwarzschild solution of those equations. Physically, this indicates the self-interaction of the grav-
itational field – which is conceptually very similar to the self-interaction of non-abelian Yang–Mills
gauge fields [☞ so-called “glueballs,” discussed on p. 239], and this self-interaction mimics a ma-
terial particle located at the origin. In fact, the formation of black holes may be described as a
phase transition [148, 147] and even have a Landau–Ginzburg effective description [149], much
like the Higgs effect [☞ Section 7.1]. However, unlike the fact that black holes have mass, no
self-interacting non-abelian Yang–Mills gauge field configuration could exist that would exhibit a
non-vanishing charge (color, isospin,. . . ) at the origin.

There is, however, another important conceptual difference in describing and modeling Yang–
Mills interactions and gravity:

1. The standard models of Yang–Mills interactions [☞ Chapters 5–7] are formulated in flat and
infinitely large spacetime, which has the geometry of R1,3, i.e., real 4-dimensional spacetime
with the flat metric gμν = −ημν.

2. Models of gravity generally involve a choice of a nontrivial metric gμν �= −ημν, defined on a
spacetime that need not at all have the simple structure of R1,3.

When modeling gravity, we are free to chose a spacetime where portions – such as singular points –
are excised. If all singular points are excised, the remaining spacetime will be singularity-free,
but this typically comes at a price: there will exist geodesic paths, solutions to equations (9.48),
which tend towards the points that have been excised or are otherwise absent from the given
spacetime. It then may or may not be possible to “fill in” (complete) this spacetime in a way that
renders all geodesics complete and also (re-)introduces no singular points. Already this observation
should make it clear that the (non-)singularity of spacetime is a rather delicate issue that cannot
be resolved simply by identifying whether or not all curvature invariants (were one even able to
enlist them all) are (non-)singular.
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In addition, geodesic incompleteness is not the only way of detecting an incompleteness in
the spacetime, and it is standard [367, 264] to distinguish at least three a-priori different notions
of completeness and incompleteness as its logical negative:

Definition 9.2 A spacetime is geodesically complete if every geodesic path can be extended
infinitely within the given spacetime. One may further specify geodesic (in)completeness by
restricting to time-like , null or space-like geodesics.

This permits the logical possibility that a given spacetime with a given choice of metric is both
time-like and null-geodesically complete, but contains incomplete space-like geodesics.

Besides considering geodesic paths as a continuous sequence of points, one may consider any
other (discrete) Cauchy sequence of points; this leads to:

Definition 9.3 A spacetime is metrically complete if every Cauchy sequence converges to a
point within the given spacetime.

For a positive-definite metric, it turns out that the geodesic and metric notions of (in)completeness
are equivalent [317, 318]. However, the physically interesting case involves the Lorentzian metric
of signature (1, 3), which is not positive-definite, and where this equivalence does not hold.

There is also another definition, due to C. Ehresmann (1957) and B. G. Schmidt (1971),
which generalizes geodesic completeness: One considers all possible smooth (once differentiable)
curves in a given spacetime and shows that the length of any such curve is finite in a given
parametrization if and only if it is also finite in any other parametrization obtained by parallel
transport. Variables parametrizing such curves in a 1–1 fashion are called (generalized) affine pa-
rameters. Curves with this class of parametrization define a bundle, which is then used in the
definition [264]:

Definition 9.4 A spacetime is b-complete if every once-differentiable curve of finite length
as measured by a generalized affine parameter is within the given spacetime.

If a finite once-differentiable curve with its end-point(s) contained in the spacetime is a geodesic,
this geodesic is complete in the sense of Definition 9.2. If the metric is positive-definite,
b-completeness coincides with metric completeness.

The metric is of course not positive-definite in the physically interesting Lorentzian spacetime,
in which case it turns out that b-completeness of spacetime implies its geodesic completeness,
but the converse is not true [264]. This prompts Hawking and Ellis to define a spacetime to be
singularity free if it is b-complete, and concede that:

. . . one might possibly wish to weaken this condition slightly, to say that space-time is
singularity-free if it is only non-spacelike b-complete, i.e., if there is an end-point for
all non-spacelike C1 [once-differentiable] curves with finite length as measured by a
generalized affine parameter.

Needless to say, a detailed analysis of singularities in spacetime geometry and the theory of grav-
ity is much more involved than the purely algebraic considerations around equation (9.59) and
certainly beyond our present scope. In addition, the study of gravitation, spacetime geometry, as-
trophysics and cosmology brings up the questions whether a singularity could dynamically develop
within an initially non-singular spacetime, whether an initially singular spacetime could dynami-
cally de-singularize, and how various singularities might interact with each other. The interested
Reader is therefore directed to standard references [367, 264, 548, 66, 96], to begin with.
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9.3.2 Charged and rotating solutions
In 1916–18, Hans Reissner and Gunnar Nordstrøm generalized the Schwarzschild solution to
electrically charged black holes:

Reissner–
Nordstrøm

{
[gμν] = diag

(− fRN(r), 1
fRN(r) , r2, r2 sin2(θ)

)
,

ds2 = − fRN(r)c2dt2 + 1
fRN(r)dr2 + r2(dθ2 + sin2(θ) dϕ2),

(9.61a)

where

fRN(r) :=
(

1 − rS

r
+

r2
q

r2

)
, rq :=

√
q2 GN

4πε0 c4 . (9.61b)

This solution has a horizon at the location where grr → ∞, i.e., where fRN(r) = 0:

r± = 1
2

(
rS ±

√
r2

S − 4r2
q

)
. (9.62)

For 2rq < rS, the concentric spheres of radii r+ and r− are two concentric horizons. When 2rq = rS,
the two horizons coincide, and this case is called the extremal Reissner–Nordstrøm solution. Using
equations (9.55b) and (9.61b), the extremal case is characterized by the relation q =

√
4πε0GN M.

For two extremal Reissner–Nordstrøm solutions of the same-sign electric charge, the gravitational
attraction precisely cancels the electrostatic repulsion and there is effectively no interaction. In the
case when 2rq > rS, i.e., when q >

√
4πε0GN M and the black hole is “overcharged,” there are

no horizons and the singularity at the coordinate origin would be visible to the observer at any
distance.

Comment 9.4 A singularity that is not enclosed by an event horizon is called “naked.” The
existence of naked singularities would violate Roger Penrose’s cosmic censorship hypothesis
(to wit, that every singularity is enclosed within an event horizon and is accessible to no
“outside” observer). In accord with this hypothesis, it is believed that the gravitational
collapse of matter cannot create naked singularities☞ .

The exact solution for a chargeless, static, spinning black hole was discovered by Roy Kerr
only in 1963, and is now most often specified in the coordinates given by Robert H. Boyer and
Richard W. Lindquist in 1967:

Kerr

⎧⎪⎪⎨⎪⎪⎩
ds2 = −

(
1 − rS r

ρ2

)
c2dt2 + ρ2

( 1
Δ

dr2 + dθ2
)

+
(

r2 + �2 +
rS r �2

ρ2 sin2(θ)
)

sin2(θ) dϕ2 − 2rS r � sin2(θ)
ρ2 c dt dϕ,

(9.63a)

where

� :=
L

Mc
, ρ :=

√
r2 + �2 cos2(θ), Δ := r2 − rS r + �2, (9.63b)

and L is the angular momentum. Note that – unlike in the Schwarzschild (9.55) and Reissner–
Nordstrøm (9.61) solutions – the Kerr metric tensor is not diagonal: the (ct, r, θ, ϕ) coordinates
are not orthogonal in the Kerr geometry. This solution possesses two event horizons at the location
where grr → ∞, which gives two concentric spheres of radii

r±H = 1
2

(
rS ±

√
r2

S − 4�2
)

, (9.64)
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of which r+
H is clearly the relevant event horizon for outside observers. In turn gtt → 0 occurs on

the ellipsoids (adopting Visser’s nomenclature [540]):

ergosurface r±E = 1
2

[
rS ±

√
r2

S − 4�2 cos2(θ)
]
. (9.65)

The space between the outer one of these ellipsoids and the outer one of the spherical event
horizons is called the ergoregion. Objects that enter through the outer ergosurface (9.65) must
co-rotate with an angular speed of at least

Ω = − gtϕ

gϕϕ
=

2rS r � c
ρ2(r2 + �2) + rS r �2 sin2(θ)

, (9.66)

even if this implies that they move faster than c, in reference to outside observers. Such superlu-
minal motion, however, does not contradict the theory of relativity, as in a real sense the spacetime
itself inside the ergoregion co-rotates akin to a radially accelerating conveyor belt, and objects
are – in reference to this co-rotating spacetime – not moving faster than c.

However, since the ergosurface (9.65) is not a “one-way” event horizon, objects can dip into
the ergoregion and come back out of it. As the motion during the passage through the ergoregion
is faster than a “parallel” motion outside the ergoregion, such an object will draw energy from the
spinning black hole. Indeed, consider a conveyer belt that passes through the ergoregion but loops
back outside the ergoregion. The co-rotation within the ergoregion will thus drive the conveyor
belt outside the ergoregion and so do useful work. This process of drawing energy from a spinning
black hole is called the Penrose process, after Roger Penrose, who discovered this possibility. Also,
there exist trajectories that pass through the ergoregion, which make it possible to travel backwards
in time.

Two years later, in 1965, Ezra Newman found a generalization of the Kerr metric tensor, for
an electrically charged spinning black hole:

Kerr–Newman

⎧⎪⎪⎨⎪⎪⎩
ds2 = − Δ

ρ2

(
c dt − � sin2(θ) dϕ

)2
+ ρ2

( 1
Δ

dr2 + dθ2
)

+
sin2(θ)
ρ2

((
r2 + �2)dϕ− �cdt

)2
,

(9.67a)

where

� :=
L

Mc
, ρ :=

√
r2 + �2 cos2(θ), Δ := r2 − rS r + �2 + r2

q , rq :=

√
q2 GN

4πε0 c4 , (9.67b)

and L, M, and q are the angular momentum, the mass and the electric charge of the black hole.
Just as the Kerr metric tensor (9.63), the Kerr–Newman metric tensor (9.67) is also not diagonal,
and the (ct, r, θ, ϕ) coordinates are not orthogonal in the Kerr–Newman geometry.

Furthermore, direct computation proves that the location ρ = 0 is a true coordinate sin-
gularity for both the Kerr geometry (9.63) and the Kerr–Newmann solution (9.67), since the
Kretschmann curvature invariant ‖Rμνρσ‖2 defined in equations (9.58) diverges there. Given that
the location r = 0 within the standard interpretation of the coordinates (r, θ, ϕ) is a single point,
the result

ρ = 0 ⇔ r = 0, and
(
θ = π

2 if � �= 0
)
, (9.68)

may appear puzzling, in that the coordinate location “r = 0 and (θ �= π
2 if � �= 0)” is singular

in neither the Kerr geometry nor the Kerr–Newmann geometry. This indicates that the coordinate
locations “within the coordinate origin,”
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O∗ := {r = 0, θ= π
2 , ϕ∈ [0, 2π]} and O◦ := {r = 0, θ �= π

2 , ϕ∈ [0, 2π]}, (9.69)

must be distinguished. This makes it obvious that the coordinates (r, θ, ϕ) must not be in-
terpreted literally as the standard spherical coordinates for the Kerr and the Kerr–Newmann
geometries, (9.63) and (9.67), respectively; R. Wald provides the standard argument for O∗ to be
interpreted as a ring-shaped singularity in these geometries [548, pp. 314–315]; see also [540].
Consequently, the whole coordinate region

O := {r = 0, θ ∈ [0,π], ϕ ∈ [0, 2π], ϕ " ϕ+ 2π} (9.70)

must be regarded as a null 2-sphere standing in the place of the standard coordinate origin, and
the singularity of the Kerr and the Kerr–Newmann geometry is then located on the equator of this
null 2-sphere. This recalls the process of “blowing up a singularity,” where the null 2-sphere is the
“exceptional divisor” [279, for starters].

Not even a decade later, in 1972–3, Akira Tomimatsu and Humitaka Sato discovered a class of
exact solutions [523, 524, 270] [☞ also [200] for a recent review and applications] that generalize
the Kerr solution (with polar coordinates ρ :=

√
x2+y2 and ϕ):

Kerr–Tomimatsu–Sato ds2 = −Fc2[dt−ω dϕ
]2 + F−1[E (dρ2+dz2)+ρ2dϕ2], (9.71a)

where the functions E, F and G are most easily expressed in terms of prolonged spheroidal
coordinates (ξ, η, ϕ):

x = ρ0

√
(ξ2−1)(1−η2) cos ϕ, y = ρ0

√
(ξ2−1)(1−η2) sin ϕ, z = ρ0 ξη, (9.71b)

so ρ = ρ0
√

(ξ2−1)(1−η2):

E(ξ, η) :=
A(ξ, η)

p2δ(ξ2−η2)δ2 , F(ξ, η) :=
A(ξ, η)
B(ξ, η)

, G(ξ, η) :=
2L/mc
A(ξ, η)

(1−η2)C(ξ, η), (9.71c)

where A(ξ, η), B(ξ, η) and C(ξ, η) are polynomials of degree 2δ2, 2δ2 and (2δ2−1), respectively,
and where the constants ρ0 and p are algebraic functions of the mass m, angular momentum L,
the integral parameter δ and the natural constants [523, 524]

ρ0 :=
GN

c2
p
δ

m and p =

√
1 − c2

GN
2

L2

m4 . (9.72)

The Tomimatsu–Sato solutions depend on the parameter δ, so that δ = 1 gives the Kerr solution,
but for δ �= 1 the Tomimatsu–Sato solutions contain naked singularities.

— ❦ —

It is important to understand that the very nontrivial solutions (9.55), (9.61), (9.63), (9.67)
and (9.71) are but a few special – and physically very interesting – representatives of a general
class of solutions of the Einstein equations without matter. In other words, solutions to the Einstein
equations (9.39) include very nontrivial geometries that even contain locations (in the presented
case, the so-called black holes) that have the appearance of a particle: they have a mass, and may
have electric charge and intrinsic angular momentum.
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Digression 9.5 It is reasonable then to inquire whether, e.g., the electron could be simply
a charged black hole. However, with the mass and the charge of the electron, one easily
obtains

rS(e−) = 1.353× 10−57 m � �P and rq(e−) = 9.152× 10−37 m < �P. (9.73a)

Since rS(e−) < rq(e−), this black hole has no event horizon, and represents a naked
singularity. However, as both characteristic radii are smaller than the Planck length,
Conclusion 1.5 on p. 30 indicates that this model is unverifiable. That is, because of Con-
clusion 1.5, it simply is not possible to determine any concretely verifiable consequence
of representing the electron by a charged miniature (classical!) black hole.

Strictly speaking, the complete theory of quantum gravity does not exist,19 so that
only estimates exist that indicate that – contrary to the name – quantum black holes
radiate. This radiation is named after Stephen Hawking, who in 1974 explained the
quantum process that enables this radiation, and without violating the “one-way” nature
of the event horizon. These estimates indicate that black holes lose mass via the Hawking
radiation, and so have an “evaporation time” [403]:

tevap. ≈ 5,120π
GN

2

h̄ c4 M3 ≈ 8.407× 10−17(M/kg
)3 s. (9.73b)

For charged leptons and quarks, electric charge conservation would have to obstruct their
evaporation, but for neutrinos with a mass mν < 2 eV ∼ 3× 10−36 kg the evaporation
time is of the order < 4× 10−127 s, which is some 83 orders of magnitude shorter than
the Planck time. Conservation of angular momentum ( 1

2 h̄) of all fundamental fermions
would also have to obstruct their evaporation – including neutrinos – when represented
by a miniature black hole: Indeed, the Hawking radiation may consist only of particles
that are lighter than the black hole that is evaporating by means of this radiation; only
photons are lighter than neutrinos, but photons have integral spin.

In principle, therefore, miniature black hole models for quarks and leptons would
have to be stable, but such models would seem to be essentially unverifiable owing
to the result (9.73a); see however also Refs. [420, 421, 336, 17, 464, 57, 78, 79].
In particular, it has been known since 1968 [98] that a Kerr–Newmann black hole
has no electric dipole moment, but does have a magnetic dipole moment with a gy-
romagnetic ratio equal to 2, just like the Dirac electron without the field theory O(α)
corrections [☞ Digression 4.1 on p. 132].

Finally, the general solutions to the Einstein equations without matter (9.39), including the
Schwarzschild, the Reissner–Nordstrøm, the Kerr and the Kerr–Newman geometry, define a class
of macroscopic geometries of various possible vacua; i.e., empty spacetimes. In such models, the
central objects such as black holes are not to be treated as matter, but as a geometric property
(defect) of spacetime itself. Even qualitatively, this recalls the “topological” solutions discussed
in Section 6.3.1, including also the Dirac magnetic monopole from Section 5.2.3, other similar
solutions [☞ Conclusion 6.7 on p. 248], and the “glueball” solutions in non-abelian Yang–Mills
gauge theories, discussed on p. 239.

19 String theory is known to be a quantum theory that contains gravity; the technical development of this theory suffices
to confirm these estimates but not yet to compute any corrections.
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9.3.3 Other interesting solutions
This section will explore some known solutions to the Einstein equations. As in the previous section,
the solutions are specified by providing the line element ds2 = gμνdxμdxν. This determines the
“background” spacetime geometry [☞ Conclusion 6.8 on p. 248] in which one may analyze the
motion of particles, the presence of which one supposes is a small perturbation to the energy–
momentum tensor density and so also the Einstein equations, so that the spacetime geometry is
not significantly changed. Such solutions are often called “universes” or “worlds,” understanding
that this is an extremely simplified picture where this “world” consists only of the background
spacetime geometry, the matter/energy required to stabilize this geometry, and the test particles
the effect of which upon the geometry may be neglected. The interested Reader is directed to the
catalogues [497, 372] for starters.

Standard geometries in cosmology
The definition of the geometry that is most often used in cosmology and is understood to be the
standard was provided by Alexander Friedman, Georges Henri Joseph Édouard Lemâıtre, Howard
Percy Robertson and Arthur Geoffrey Walker, and this we will refer to as the FLRW geometry.
(Depending on the historical precision and socio-political accent, Authors in the research literature
not infrequently omit one or more of these names and initials.) The metric tensor of the FLRW
geometry is given in terms of the “reduced-circumference polar coordinates”:

FLRW ds2 = −c2dt2 + a2(t)dΣ2,

{
dΣ2 :=

[ dr2

1 − K r2 + r2dΩ2
]
,

dΩ2 := dθ2 + sin2(θ)dϕ2,
(9.74)

where a(t) is a dimensionless “scale function” of time, and K is the Gauss curvature of the space
at the time when a(t) = 1. Alternatively, one writes k := K

|K| = ±1 a k = 0 when K = 0, whereby
r is a dimensionless variable in the direction of the distance from the coordinate origin and a(t)
has the physical dimensions of length. In the case of positive curvature, space is a 3-sphere and
the coordinates (r, θ, ϕ) cover only half of this space in a single-valued fashion, whereupon they
are called the “reduced-circumference polar coordinates”: in analogy with the cylindrical distance
from the z-axis on the surface of a 2-sphere, the radial variable r grows from the north pole up to
the equator but then decreases towards the south pole and this results in the two-valuedness of
the coordinate system. Instead of (r, θ, ϕ), we may use the hyper-spherical coordinates:

dΣ2 = dr2 + S 2
K (r)dΩ2, SK(r) :=

⎧⎪⎨⎪⎩
1√
K

sin(r
√

K) K > 0,
r K = 0,

1√
|K| sinh(r

√|K|) K < 0,
(9.75)

which do not have this drawback.
This metric tensor solves the Einstein equations in the case when the matter has a homoge-

neous and isotropic energy–momentum tensor density, so that the Einstein equations reduce to the
pair: ( .

a
a

)2
+

Kc2

a2 − Λc2

3
=

8πGN

3
�, (9.76a)

2
..
a
a

+
( .

a
a

)2
+

Kc2

a2 − Λc2 = −8πGN

c2 p, (9.76b)

where � and p denote the density and pressure of matter, and Λ is the cosmological constant. Since
the redefinitions

�→ �− Λc2

8πGN
and p → p +

Λc4

8πGN
(9.77)
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effectively eliminate the cosmological constant, it follows that the presence of the cosmological
constant may be simulated by something that (1) permeates the universe, (2) is homogeneous and
isotropic, and (3) the pressure and the density of which satisfy the relation

p = −�c2. (9.78)

Generally, anything that has a negative pressure (p/� < 0) is called dark energy and its presence in
the FLRW cosmology induces the universe to expand. For an accelerated expansion of the universe
it would suffice were the dark energy to satisfy the relation

p < − 1
3�c2. (9.79)

A scalar field with this property is dubbed quintessence, and the ratio p/� is then not necessarily a
constant. Finally, one obtains an extremely accelerated expansion of the universe if

p < −�c2, (9.80)

which is then referred to as phantom energy. Note that these are phenomenological definitions:

Definition 9.5 Anything homogeneous and isotropic throughout the whole spacetime is
called:

dark energy if the pressure is negative: p/� < 0;
quintessence if the density and the pressure satisfy (9.79): p/� < −c2/3;
cosmological constant if the density and the pressure satisfy (9.78): p/� = −c2;
phantom energy if the density and the pressure satisfy (9.80): p/� < −c2.

Dark energy is thus an umbrella term including its three more specific types. The demarcations
are determined by the qualitative differences in the induced evolution of the universe: The cosmo-
logical constant causes the spacetime geometry to accelerate its expansion, while phantom energy
causes this expansion to diverge in finite time. In turn, models of quintessence typically involve
at least one dynamical field, which then varies over spacetime; moduli fields in superstring theory
are natural and oft-tried candidates [☞ Footnote 34 on p. 443].

Of particular interest are the special cases of the FLRW geometry [367]:

ds2 =

⎧⎪⎨⎪⎩
−c2dt2 + a 2

0 e+2c
√

Λ/3 t d�r 2, de Sitter,

−c2dt2 + d�r 2, Minkowski,

−c2dt2 + a 2
0 e−2c

√
Λ/3 t d�r 2, anti de Sitter,

(9.81)

where H := 2
√

Λ/3 > 0 is the so-called Hubble constant,20 and d�r 2 = d�r·d�r is the familiar
Euclidean norm of the spatial differential d�r. Because of using the familiar (flat) Euclidean norm
for the spatial part of the differential, the coordinates in equation (9.81) are also called the “flat
coordinates.” There also exists the “static” parametrization

ds2 = −c2(1 ∓ 1
3 Λρ2)dτ2 +

(
1 ∓ 1

3 Λρ2)−1dρ2 + ρ2(dθ2 + sin2(θ)dφ2), (9.82)

where ρ is a suitable “radial” coordinate; for a precise relation between equations (9.81)
and (9.82), see Ref. [367]; the upper (negative) sign produces the metric for the de Sitter space-
time, and the lower (positive) sign for the anti de Sitter spacetime. Finally, there also exists the
quotient parametrization

ds2
AdS = L2

z2

(− c2dt2 + dx2 + dy2 + dz2). (9.83)

20 The proposal that the universe is expanding and with a rate now called the Hubble constant was made by Georges
Lemâıtre in 1927, two years before Edwin Hubble confirmed and more precisely determined the expansion rate; see
Refs. [550, 532, 68] and the references therein.
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Expression (9.82) should make it clear that the de Sitter spacetime has a spherical horizon with
the radius ρH =

√
3/Λ. In turn, the z2 → 0 limiting case of the expression (9.83) defines the flat

metric −dz2 = −c2dt2 + dx2 + dy2 on a (2+1)-dimensional space with the Minkowski metric, and
that forms the “conformal limit” of the anti de Sitter spacetime.

Finally, the (n+1)-dimensional de Sitter spacetime may be defined also as the orthogonal
group coset O(1, n+1)/O(1, n), and the anti de Sitter spacetime equals O(2, n)/O(1, n).

— ❦ —

Note that the gμν-trace of the Einstein equations (9.44) produces R = − 8πGN
c4 T. Substituting this

into equation (9.44) yields

Rμν =
8πGN

c4

[
Tμν − 1

2 gμνT
]
. (9.84)

This makes it clear that every solution where the energy–momentum tensor density of matter
vanishes, Tμν = 0, the Ricci tensor also must vanish. And the other way around, the vanishing
of the Ricci tensor, via the Einstein equations (9.44), implies that Tμν = 0 also. The geometries
(choices of the metric tensor) for which the Ricci tensor vanishes (and so Tμν = 0) are called Ricci-
flat geometries. This of course includes the flat geometry, where the metric tensor gμν = −ημν is a
constant, and all components of both the Christoffel symbol and the Riemann tensor vanish.

In turn, neither the vanishing of the Ricci tensor – nor even of the entire Riemann tensor –
implies that the metric is flat. For example, the Kasner geometry has the metric tensor defined
as [367, generalized]

Kasner ds2 = −c2dt2 +
3

∑
i=1

( t
Ti

)2pi (dxi)2, (9.85)

where Ti are arbitrary constants with units of time. If the parameters pi are chosen to satisfy the
Kasner conditions

3

∑
i=1

pi = 1 =
3

∑
i=1

(pi)2, (9.86)

the Einstein tensor (Gμν := Rμν − 1
2 gμνR) and even the Ricci tensor vanish. If we further set

any two of three parameters pi to be zero and the third to be 1, then the entire Riemann ten-
sor vanishes, although the metric tensor is not equal to −ημν, the constant metric tensor of flat
spacetime.

One of the unusual properties of the Kasner geometry inexorably follows from Kasner’s con-
ditions (9.86) themselves: one of the three parameters must be non-positive. That is, we have

equation (9.86) ⇒
{ p±2 = 1

2

(
1 − p1 ±

√
1 + 2p1 − 3p 2

1

)
,

p±3 = 1 − p1 − 1
2

(
1 − p1 ±

√
1 + 2p1 − 3p 2

1

)
,

(9.87)

where − 1
3 � pi � 1 for i = 1, 2, 3. It is easy to verify that the only non-negative solutions are the

permutations of the triple �p = (0, 0, 1). In turn, if one of the parameters is maximally negative,
we have permutations of the triple �p = (− 1

3 , 2
3 , 2

3 ). A few examples with rational values are the
permutations of �p = (− 2

7 , 3
7 , 6

7 ), (− 3
13 , 4

13 , 12
13 ), (− 6

19 , 10
19 , 15

19 ), (− 4
21 , 5

21 , 20
21 ), (− 5

31 , 6
31 , 30

31 ), etc.

Since
√−g = ct/(T p1

1 T p2
2 T p3

3 ), the volume of Kasner geometry expands linearly in time.
However, except for the class where the values (p1, p2, p3) are permutations of the triple (0, 0, 1)
and where the Kasner geometry stagnates in two directions and expands in the third, the Kasner
geometry expands in two spatial directions but shrinks in the third in all other cases.
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Gödel’s universe
One of the most unusual solutions to the Einstein equations was discovered in 1949 by Kurt Gödel;
the metric tensor for the geometry of the so-called Gödel universe is specified as [372, 219]

Gödel ds2 = −c2dt2 +
dr2

1 +
( r

rg

)2 + r2
[
1 −

( r
rg

)2]
dφ2 + dz2 − c

2
√

2 r2

rg
dt dφ, (9.88)

where rg is the Gödel radius. These cylindrical coordinates (t, r, φ, z) co-rotate with the entire
universe, which results in the additional non-diagonal dt dφ-term.

In this universe and with reference to the coordinate system (t, r, φ, z), a light ray that starts
from the coordinate origin in the horizontal (r, φ)-plane follows an elliptical path that bends in
the counter-clockwise direction. At the point where it reaches the distance rg from the coordinate
origin, the light ray is moving in the +êφ direction and begins to return to the coordinate origin,
where it closes the elliptic path. Thus, observers that are at rest in the coordinate origin cannot see
outside the cylinder of the horizontal radius of rg, which then defines an optical horizon for these
observers. This curious property is a consequence of the fact that the light cones (generated by
light-like vectors) at every point of the (x, y)-plane tilt in the +êφ direction at an angle (away from
the coordinate t-axis) that grows with the distance from the origin. At the distance rg ln(1 +

√
2) ≈

0.88 rg, the light cone tilts over so much that one of the light-like vectors becomes parallel with
+êφ and generates a circular light-like path in the (x, y)-plane: a beam of light can be emitted so
as to travel on a closed circle of radius ≈ 0.88 rg – without advancing in coordinate time, t [264].

A

Optical
horizon for A

B

Optical horizon for B

C

Optical horizon for C

Figure 9.3 Optical horizons for observers A, B and C in the Gödel universe.

For an observer located outside the coordinate origin there exists a similar optical horizon,
of an ovoid shape where the ovoid is narrower and longer in the region further away from the
coordinate origin, as shown in Figure 9.3. Note that, by the definition of the optical horizon in the
Gödel universe, light returns owing to the Doppler effect and the co-rotation of the entire universe
and not owing to gravity. This optical horizon is thus of an essentially different nature from the
event horizon in the Schwarzschild geometry.

In turn, a particle with a non-vanishing mass that is at some point at rest with respect to
this coordinate system remains in that resting state, i.e., moves only in time. Thus, the coordinates
(t, r, φ, z) are called co-rotating, and the radius rg presents the effective optical horizon. For the
Gödel universe it is convenient to define the angular speed

Ωg :=
√

2 c
rg

(9.89)

with which the matter “at rest” and the entire Gödel universe rotate.
In spite of this rotation, the geometry (9.88) is homogeneous. From the form of the metric

tensor, it should be clear that translations in the êt and êz directions as well as rotations in the êφ
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directions are isometries (symmetries of the metric tensor) and that they are respectively generated
by the differential operators

X0 := 1
Ωg
∂t, X3 := rg ∂z and X2 := ∂φ. (9.90)

As for the radial direction, ∂r is clearly not a symmetry as this would translate r → r + r0, leaving
a cylindrical “hole” of radius r0, whereas a r → r − r0 translation would map points near the z-axis
into a nonexistent domain with the absurd value r < 0. However, it turns out that there do exist
two differential operators,

X1 :=
1√

1 +
( r

rg

)2

[
r√
2c

cos φ ∂t + rg
2

[
1 +

( r
rg

)2] sin φ ∂r + rg
2r

[
1 + 2

( r
rg

)2] cos φ ∂z

]
, (9.91)

X4 :=
1√

1 +
( r

rg

)2

[
r√
2c

cos φ ∂t − rg
2

[
1 +

( r
rg

)2] cos φ ∂r + rg
2r

[
1 + 2

( r
rg

)2] sin φ ∂z

]
, (9.92)

that do generate isometries. Gödel, in his original work in 1949, already used four of these five
isometries to show that this geometry is homogeneous, and it was shown in 1992 [167] that the
complete set of five isometries closes the so(3) ⊕ tr(R1,1) algebra:

L1 := X4, L2 := X1, L3 := −i(X0+X2),
{ [

L j , Lk
]

= iε jk
�L�,[

L j , X0
]

= 0 =
[

L j , X3
]
,

(9.93)

where tr(R1,1) is the abelian algebra of translations in the (t, z)-plane. These symmetries can then
be used to map points, paths, vectors and other tensors from one point of the Gödel universe
into another, so that it suffices to work out the geometric properties with reference to the given
coordinate system (9.88) and with the origin of the spatial coordinates as the reference point.

The coordinate time t and the proper time τ are identical for the observer “at rest” at the
coordinate origin. Very near the z-axis, so for r ∼ 0, the Gödel geometry is approximately flat (in
cylindrical coordinates). Using the homogeneity and the action of the algebra (9.93), this then
holds locally for any observer.

In the co-rotating basis the Einstein tensor (Gμν := Rμν − 1
2 gμνR) is given as

[Gμν] = Ω2
g diag(−1, 1, 1, 1) + 2Ω2

g diag(1, 0, 0, 0). (9.94)

The Einstein equations then dictate that this geometry is maintained by a type of matter for which
the energy–momentum tensor density has the same value. The first contribution describes the
so-called lambda-vacuum, i.e., the solution with the cosmological constant [☞ relations (9.77)–
(9.79)]. The second contribution describes a co-rotating perfect (and all-permeating) fluid, i.e.,
a co-rotating dust.21 Note that the coefficients of the two contributions must be in the precise
proportion as given in equation (9.94).

Conclusion 9.8 The Gödel geometry of spacetime may be understood as the result of an
even permeation of the whole spacetime with dark energy (cosmological constant) and a
perfect fluid, and in the precise proportion provided in the expression (9.94).

The Gödel geometry is a relatively rare example of a geodesically complete and non-singular
geometry [☞ the lexicon entry, in Appendix B.1]: The coordinate system (9.88) covers the entire
Gödel spacetime, and contains no singularity; it also has an unusually symmetric structure (9.93).
21 The cylindrical solution with co-rotating dust was discovered in 1924 by Cornelius Lanczos [325], but the solutions is

better known after Willem Jacob van Stockum, who analyzed it in 1937 [534].

https://doi.org/10.1017/9781009291507.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.013


346 Gravity and the geometrization of physics

Traveling through time
Of course, every particle incessantly travels – through time, in the direction of time flow. However,
the Lanczos–Stockum solution of co-rotating dust and Gödel’s co-rotating universe were amongst
the first solutions to contain so-called closed time-like curves; the Kerr solution (9.63) also has
such curves. Those are curves for which the tangent vector is always time-like [☞ Definitions 3.3
on p. 90], but which are closed in spacetime. An ordinary particle with nonzero mass may travel
along such a curve, and so can return into its own past!

observer

Figure 9.4 A time-like closed path in the Gödel universe.

The simplest such closed time-like curve in the Gödel universe is an ovoid path in the (x, y)-
plane, e.g., with the x-axis as its symmetry axis, as shown (following the analysis of Ref. [219]) in
Figure 9.4. Similar, but much more complicated closed time-like curves may then be found both in
the Gödel universe, and in the Lanczos–Stockum solution with co-rotating dust, and also in many
other exact solutions [☞ catalogues [497, 372] as well as the texts [367, 548]]. Note that, follow-
ing the path in Figure 9.4, the particle moves backwards in time only outside the optical horizon of
the observer at the coordinate origin. Also, Ref. [219] gives the necessary conditions: For a particle
to move along such a closed time-like curve, it must be launched with the initial speed v � 0.98c
(measured in the co-rotating coordinate system) and from a location r � 1.7rg, as well as any other
initial conditions that are obtained from these by isometry algebra transformations (9.93).

These concrete, exactly solved examples are particularly important to indicate the fact that
many intuitively clear and acceptable characteristics of flat spacetime – including also the perhaps
beguiling but precisely resolved situations in the special theory of relativity22 – simply need not
hold in the general theory of relativity. For details about closed time-like curves, the ambitious
Reader should consult the books [519, 265].

Digression 9.6 Most typical scenarios of reversing the direction of traveling in time con-
tradict energy conservation: Suppose an object X were to travel forward in time from
t < t0 to t1 > t0, then “turn around” to travel in time from t1 back to t0 < t1, and
then continue traveling in time forward as usual, through t1 and beyond. Figure 9.5
depicts this process in two versions, to the left where the object X travels continu-
ously backward in time, and to the right where it “jumps.” So, in version (a), the

22 The so-called paradoxes most often mentioned are the twin-paradox, and those of the ladder and the barn, the ruler
and hole in the table, but there exist many others [512]. Not one of these puzzling situations is a real paradox and
merely indicates that many of our notions acquired in everyday life are approximations that are really fit only for flat
spacetime or at most locally, and so must be reconsidered and adapted beyond such local applications. For example,
simultaneity becomes a relative notion, and the rigid body makes sense only at non-relativistically small speeds, since
the action of the force cannot propagate through the body faster than the speed of light in vacuum, so that each body
bends under the influence of non-simultaneous forces.
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Figure 9.5 Two typical scenarios of time-travel: (a) with continuous backward travel, and
(b) with “instantaneous” backward travel. Energy is measured by adding up all contributions at
spacetime points simultaneous to a given observer and connected by the dashed lines. In both
scenarios, energy fails to be conserved.

change �E0 = (mX+mX)c2 occurs as time passes from before t0 to after t0, and then
�E1 = −(mX+mX)c2 as time passes through t1. In version (b), �E0,1 = ±mX c2 at these
two points in time. In diagrams with elementary particles similar to (a), another kind of
particle is emitted from the point B and absorbed at the point C to balance 4-momentum
conservation.

However, in the general, nontrivial geometries (and topologies) necessary to de-
scribe gravity in all generality, energy and 3-momentum are not globally well defined.
These quantities are spatial 3-dimensional integrals of the Tμν components of the energy–
momentum density tensor, where the domain of integration is a 3-dimensional space-like
hypersurface of simultaneous points in the 4-dimensional spacetime, as chosen by a spe-
cific class of observers. Most admissible 4-dimensional spacetime geometries admit a
wide variety of such 3-dimensional space-like hypersurfaces, over which the required
integrals produce widely differing results; the analysis is improved by restricting to co-
ordinate systems satisfying the de Donder gauge condition, ∂μ(

√−ggμν) = 0 [2]. This
exhibits the close relationship between energy conservation and time-travel, so the simple
energy-conservation argument in Figure 9.5 need not hold. In fact, no general argument
preventing time-travel can exist.

Counter-intuitively, and using the isometry algebra (9.93), it was shown [219] that the closed
time-like curves in the Gödel universe nevertheless do not violate causality. In other cases, such
as the closed time-like curves through the ergoregion of the Kerr geometry, paths that go through
“wormholes” [☞ below] and many others [519, 265], where causality may be violated in prin-
ciple, semi-classical arguments indicate that the quantum physics probably precludes violations
of causality. However, based on such semi-classical arguments, Stephen Hawking hypothesized in
1992 that there exists a general chronology protection principle, except within the indeterminacy
specified by Heisenberg’s relations. Much milder is the hypothesis proposed by Igor Novikov back
in 1975, whereby only self-consistent paths are permitted; this also includes traveling backwards
in time if this does not cause a change in the existing history. A survey of these hypotheses and
other practical, technical and conceptual questions related to closed time-like curves may be found
in Refs. [542, 544]. Of course, as no complete theory of quantum gravity exists as yet, physical re-
alizations of traveling along closed time-like curves and the physical realization of even chronology
violation remain an open question☞ .
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9.3.4 Engineering spacetime, wormholes and topological bridges
Returning to the Einstein tensor (9.94) in the Gödel universe, which the Einstein equations equate
with the energy–momentum tensor density of the matter/energy that maintains this geometry,
points to an important property of the nonlinear system of Einstein equations (9.44):

Conclusion 9.9 For each i = 1, 2 . . . , let T(i)
μν denote the energy–momentum tensor density

for the ith matter/energy distribution, and g(i)
μν the corresponding solution of the Einstein

equations (9.44). The joint matter distribution (if this is physically achievable) has the
energy–momentum tensor density ∑i T(i)

μν and the solution of the Einstein equations (9.44)
g(Σ)
μν . However, g(Σ)

μν is most often significantly different from either of the “partial” solutions
g(i)
μν, as well as from their sum.

This property is intuitively acceptable: It should be the case that we can always freely combine
different types of matter/energy (except that two macroscopic material objects, of course, cannot
exist in the same place at the same time) and to add them to any initially given spacetime. The
presence of additional matter/energy then must change the geometry of spacetime again in a
way determined by the Einstein equations. However, the resulting metric tensor, in general, is not
simply an analogous linear combination of metric tensors that follow from the presence of one or
the other component energy–momentum tensor density. Succinctly,

Conclusion 9.10 Energy–momentum density tensors of matter/energy distributions and
their Einstein tensors are additive; the corresponding metric tensors are not.

These conclusions rely on the usual interpretation of the Einstein equations as a differential system
that determines the metric tensor as a function of a provided energy–momentum tensor density
and initial and boundary data.

The converse approach partially follows from the logical sequence in Conclusion 9.8 on
p. 345, and is sometimes referred to as the “engineering approach,” wherein:

1. specify a desired geometry by specifying the corresponding metric tensor;
2. compute the Einstein tensor Gμν = Rμν − 1

2 gμνR for this metric tensor;
3. this specifies the required energy–momentum tensor density Tμν of the matter/energy

distribution that produces/maintains the desired geometry by its presence.
4. Finally, explore:

(a) What (physical/engineering) characteristics should this matter/energy distribution
have, so as to have the required Tμν?

(b) Is it (at least in principle) possible to construct a structure with the matter/energy
distribution and the required Tμν?

For the purpose of classifying the types of matter/energy, the characterizing “energy
conditions” were introduced. To define these conditions, we need:23

1. a time-like 4-vector field with components ξμ(x), i.e., gμνξμξν < 0, ∀x;
2. a light-like (or null) 4-vector field with components kμ(x), i.e., gμνkμkν = 0, ∀x;
3. a causal 4-vector field with components ζμ(x), i.e., gμνζμζν � 0, ∀x.

Since ξμ may be interpreted as a 4-vector that is tangential to the worldline of a massive particle,
it follows that � := Tμνξμξν is the total mass–energy density (of the material particle as well as all

23 Recall that the signature of the metric tensor gμν in the relativistic tradition followed in this chapter is the reverse of the
signature of the metric tensor of flat spacetime, ημν, used in the particle physics tradition; gtt < 0 while ηtt > 0.
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non-gravitational fields that act upon this particle in this spacetime point). Similarly, the quantity
�0 := Tμνkμkν is the limiting value of the mass–energy density � for a massless particle/field.

The following “energy conditions” are used to typify matter/energy:

Condition For all

Dominant gμνTμρTνσζρζσ � 0 and g0 μTμνζν < 0 gμνζμζν � 0, (ζ0 > 0)
Weak Tμνξμξν � 0 gμνξμξν < 0
Null∗ Tμνkμkν � 0 gμνkμkν = 0
Strong

[
Tμν − 1

2 gμνT
]
ξμξν � 0 gμνξμξν < 0

∗ The null condition is also often referred to as “light-like.”

(9.95)

The relationship between these conditions is

Dominant ⇒ Weak ⇒ Null ⇐ Strong, (9.96)

where it is important to note that, nomenclature to the contrary, the strong condition does not
imply the weak, nor vice versa. These conditions also have their “averaged” version, where the
integral of the condition over some spacetime region is satisfied although the condition is violated
somewhere within the given region.

The Einstein–Rosen “bridge”
The Schwarzschild metric tensor (9.55) exhibits two pathological properties at the distance r = rS:

1. the time component, g00 = gtt = −(
1− rS

r

)
c2 vanishes,

2. the radial component, grr = −(
1− rS

r

)−1 diverges.

In turn, as discussed in Section 9.3.1 on p. 334, the divergence or vanishing of an individual
component of the metric tensor does not necessarily imply a real singularity in the geometry.
Moreover, Lemâıtre’s coordinates (9.60) prove that the location r = rS is not singular. This sup-
ports the nagging doubt that the familiar spherical coordinates (t, r, θ, ϕ) – and so maybe even
Lemâıtre’s – do not in fact describe the complete spacetime geometry in the vicinity of the black
hole.

Also, a detailed analysis of the various trajectories of massive particles and light rays that
pass through the event horizon [367] points to a very bizarre property, sketched in the diagram
on the left-hand side of Figure 9.6: Particles directed towards the black hole follow spacetime
paths that are seemingly disconnected when passing through the event horizon and require the
coordinate time to diverge to t → +∞ (whereas the proper time remains finite), and the path
segment within the event horizon to move backwards in coordinate time while computation
proves that the proper time continues to pass forward for massless particles and to stagnate for
light.

In Figure 9.6(a), follow a light ray directed at the black hole from an initial point A, as it
passes through the point C in the coordinate time t = 0, passes through the horizon (r = rS) in
coordinate time t = +∞ at the “point” D, then returns in coordinate time, within the horizon, and
falls into the r = 0 singularity in the spacetime point F. Namely,

for r < rS, fS(r) < 0 so gtt = − fS(r) > 0 and grr =
(

fS(r)
)−1

< 0. (9.97)

Thus, within the horizon, the coordinate t has a space-like character (particles may move in both
directions of t) and the coordinate r has a time-like character, and particles may move only in the
direction r → 0, i.e., towards the singularity. Similarly to a light ray, a massive particle directed
towards the black hole from the initial spacetime point B, passes through the point C in coordinate
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Figure 9.6 The Schwarzschild geometry (a) in the original (t, r) coordinates, (c) in Kruskal–Szekeres
coordinates and (b) the transitionary stadium of the mapping from (a) to (c). A light ray directed
toward the black hole follows the A-C-D-F path, while a particle with a non-vanishing mass directed
toward the black hole follows the B-C-E-G path. The depiction (9.55) is spherically symmetric and
angular coordinates θ, ϕ are not shown; every point in the figure lies on a sphere of the given radius.
The diagram (b) shows how the diagram (a) “opens” in the mapping to the diagram (c).

time t = 0, passes through the horizon (r = rS) in coordinate time t = + ∞ (at the “point” E), and
then returns retrograde in coordinate time within the horizon, and falls into the r = 0 singularity
(G). Throughout, the proper time of a massive particle passes forward, and remains finite.

Besides the appearance of a fictitious singularity at r = rS, the discontinuity of the
path – along which we know that the proper time is not discontinuous – also indicates that
the Schwarzschild coordinates (t, r, θ, ϕ) are not appropriate. The Eddington–Lemâıtre coordi-
nates (9.60) do remove the first but not also the second of these two problems. In 1950, John
L. Synge discovered the incompleteness of the Schwarzschild coordinates, as well as a sys-
tem of coordinates that is complete. Independently and unaware of Synge’s results, Christian
Fronsdal again proved the incompleteness of Schwarzschild coordinates in 1959 (at CERN),
and found a complete analytical description of the Schwarzschild geometry in the form of
a higher-dimensional coordinate system with an algebraic constraint.24 His solution turned
out to be very similar to the solution that Martin Kruskal (at Princeton University) found a
little earlier but did not publish, and of which D. Finkelstein and J. A. Wheeler (then profes-
sors at Princeton University) knew and to whom Fronsdal, in his original work [181], gave
thanks for the communication. Independently from this group of explorers, the same solu-
tion was discovered also by Szekeres György, in Australia; the independent works by Kruskal
and Szekeres were published in 1960 and this finite – and explicit – version of the descrip-
tion is today called the Kruskal–Szekeres diagram, and u and v in Figure 9.6(c), p. 350, are
the Kruskal–Szekeres coordinates [367]. In turn, Fronsdal’s implicit description is today rarely
mentioned.

24 By definition, spaces of solutions of systems of algebraic equations are called algebraic varieties and form a major subject
in the mathematical discipline of algebraic geometry. This connection between mathematics and physics will recur later,
and much more vigorously, with the exploration of (super)strings.
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The Schwarzschild and Kruskal–Szekeres coordinates are related as follows:

K–Sz Schwarzschild

uI , −uII I =
√

r
rS
−1 er/rS cosh

( ct
2rS

)
vI , −vII I =

√
r

rS
−1 er/rS sinh

( ct
2rS

)
K–Sz Schwarzschild

uII , −uIV =
√

1− r
rS

er/rS sinh
( ct

2rS

)
vII , −vIV =

√
1− r

rS
er/rS cosh

( ct
2rS

) (9.98a)

( r
rS
−1

)
er/rS = u2 − v2, t =

{ 2rS
c arth

( v
u

)
in regions I and III;

2rS
c arth

( u
v

)
in regions II and IV;

(9.98b)

where the subscript to Kruskal–Szekeres coordinates denotes the region in which the stated rela-
tion holds. By definition, r � 0, so the half-plane (t, r)r<0 has no physical meaning. However, the
half-plane (t, r)r�0 with the boundary (r = 0) is not geodesically complete – as was shown: paths
that start outside the horizon, pass through the horizon and then fall into the singularity “pass”
through the point at infinity and come back from it. In turn, the domain of Kruskal–Szekeres coor-
dinates (shown in Figure 9.6(c), p. 350, as the part of the (u, v)-plane bounded by the singularity
hyperbolas) is geodesically complete: All geodesic lines are either completely contained within
this region or have a limiting point at infinity and outside the singularity hyperbolas. Also, ev-
ery finite part of every geodesic path is entirely contained within the domain of Kruskal–Szekeres
coordinates.

Figure 9.6(c), p. 350, is the Schwarzschild geometry presented in Kruskal–Szekeres coordi-
nates (u, v): the half-plane (t, r)r�0 from Figure 9.6(a) is mapped into the region bounded by the
“r = rS, t = −∞” diagonal and the upper singularity hyperbola. Figure 9.6(b) shows the “interme-
diate phase” between the Schwarzschild picture and the Kruskal–Szekeres picture, where one sees
that:

1. the diagonal “r = rS, t = −∞” appears by “splitting” the lower Schwarzschild semi-axis
r = rS, t ∈ (−∞, 0] into two semi-axes that then open into the “r = rS, t = −∞” diagonal;

2. the “splitting” of the lower Schwarzschild semi-axis r = rS, t ∈ (−∞, 0] provides the space of
regions III and IV;

3. the upper Schwarzschild semi-axis r = rS, t ∈ [0, +∞) becomes the semi-axis that divides the
regions I and II, and its copy divides the regions III and IV.

The comparative examination of these two coordinates of the Schwarzschild geometry clearly
demonstrates that the mapping (t, r)r�0

1−2−−→ (u, v) is two-valued, i.e., that the Kruskal–Szekeres
picture is a double covering of the Schwarzschild picture.

This double covering implies that every spacetime region with the Schwarzschild geometry
there automatically must have an exact copy, and these two regions touch along the “r = rS,
t = −∞” diagonal in the Kruskal–Szekeres picture. By means of Figure 9.6(b), p. 350, we see that
in the Schwarzschild picture this means that the two copies of spacetime touch along the event
horizon, but only up to the coordinate time t = 0. As the coordinates may be changed by arbitrary
general coordinate transformations [☞ Definition 9.1 on p. 319], the time t = 0 of course has
no invariant meaning and the moment when the two spacetime regions separate depends on the
choice of the observer; the text [367] shows the detailed history of this process from the vantage
point of two different observers.

Since arth(x) = tanh−1(x) = ∑∞
k=0

( x
k

)2k+1, in regions I and III and for sufficiently large
but fixed u∗, we have that t(u∗) ≈ 2rS

cu∗ v, and the Kruskal–Szekeres coordinate v approximates
the Schwarzschild time t. Thus, the Schwarzschild-simultaneous points in Kruskal–Szekeres Fig-
ure 9.6(c), p. 350, all lie on predominantly horizontal and approximately straight lines when
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“sufficiently deep” within the regions I and III;25 in passing through the regions II and IV, these
Schwarzschild-simultaneous points are depicted by the nonlinear curves in the Kruskal–Szekeres
coordinates.

Figure 9.6 (c), p. 350, then clearly indicates that this depicts a dynamical process where, from
the vantage point of a fixed observer outside the event horizon, a “bridge” (or tunnel) appears that
connects the spacetime regions I and III. This process was discovered by Albert Einstein and Nathan
Rosen in 1935, hence its name. However, only in 1962 did John A. Wheeler and Robert W. Fuller
discover that this bridge is in fact an unstable configuration and that neither material objects
nor light can pass through it. Because of this impassability and topological form S2 ×R1 that is
a 3-dimensional generalization of the cylinder (S1 ×R1), these configurations became known as
wormholes.

II

I IIII

IV

III

observer

Two separate “sides” of a black hole, one side
seen from region I, the other from region III.

The Einstein–Rosen bridge is about to open.

The Einstein–Rosen bridge is partially open;
regions I and III are spatially connected.

The Einstein–Rosen bridge is maximally open.

The Einstein–Rosen bridge begins to close;
regions I and III are still spatially connected.

The Einstein–Rosen bridge closes.

Two separate “sides” of a black hole, one side
seen from region I, the other from region III.

Figure 9.7 The Einstein–Rosen “bridge” as a dynamical process. The (≈ time) v coordinate distance
between the lower (earlier) and upper (later) singularity has no physical meaning: Particles directed
towards the “bridge” end up in the upper (future) singularity: massive particles follow the path depicted
by the solid line, light follows the dashed one. The physically accessible regions I and III meet only at
the Kruskal–Szekeres coordinate origin, usually thought of as the circumference of the “throat” of the
bridge.

Figure 9.7 shows the Schwarzschild geometry in the Kruskal–Szekeres coordinates, where
the Schwarzschild-simultaneous hypersurfaces are depicted as predominantly horizontal lines,
which indicate to the right the status of the Einstein–Rosen bridge by a sketch of its cross-section.
The lines C that connect the regions I and III through the Einstein–Rosen bridge always have
a spatial character, i.e., tangent 4-vectors V ∈ Tx(C ) along these lines (x ∈ C ) are space-like,
gμν(x)Vμ(x)Vν(x) > 0 for every x ∈ C . The diagram in Figure 9.7 shows that not even light rays –
in the Kruskal–Szekeres coordinate system, light travels along straight 45◦ lines – can reach either
from the inside of region I into the inside of region III, or the other way. The same is true of real,
massive particles.

Only light rays that are entirely within the event horizon (diagonal lines that intersect in the
center of the diagram in Figure 9.7) pass from the boundary of region I into the boundary of region

25 Recall that the angular coordinates θ and ϕ are not depicted in the diagrams in Figure 9.6 on p. 350, so every point
represents an entire sphere of indicated radius, and every line is then a 3-dimensional space of the R1 × S2 topology,
where the radius of the sphere S2 varies along the line R1, collapsing to a point only where this line R1 touches the
singularity.
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III and the other way around. However, these paths (of light-like character) are forever trapped in
the event horizon.

Conclusion 9.11 In spite of the existence of spatial connections (by paths to which all tan-
gent vectors are of spatial character) between regions I and III, the Einstein–Rosen “bridge”
is forever closed for real particles (which travel along paths of time-like character), including
here light and all other gauge fields.

Comment 9.5 The Einstein–Rosen bridge, however, is not closed to virtual particles.
This in principle permits an interference of wave-functions that permeate through the
Einstein–Rosen bridge, and provides a form of Aharonov–Bohm effect: The spacetime for
Feynman-esque integration over paths (histories) [☞ Procedure 11.1 on p. 416] is multiply
connected and connects otherwise unreachable portions of the universe.

Notice that the topology of spacetime is necessarily a dynamical concept since one of the
dimensions is time-like. Abstractly, the 4-dimensional mathematical space of the physical spacetime
is multiply connected, and the bridge is “always” present. However, the simultaneous points for
any real physical observer, F, form a 3-dimensional subspace, PF,t, of space-like character, so
that all tangent vectors V ∈ Tx(PF,t) to this subspace (for each x ∈ P) are space-like 4-vectors:
gμν(x)Vμ(x)Vν(x) > 0 for every x ∈ PF,t. As the time t of the physical observer F passes, the
topology of this subspace PF,t varies, as sketched in the right-hand half of Figure 9.7 on p. 352.
In the example of the Einstein–Rosen “bridge” in the Schwarzschild geometry, the two separated
regions of space:

1. have a black hole each;
2. these two black holes connect in a moment;
3. the connection of these black holes opens into a space-like “bridge” (wormhole) of the

S2 ×R1 topology;
4. this “bridge” closes before even light can pass through it;
5. there remain two separated regions, with a black hole each.

It can, however, not be overstated that every real physical observer, F, can see only the events that
can signal F from the interior of the “past” light cone C ∧

F,t, the vertex (“here, now”) of which is in
the spacetime point xF,t. Figure 9.7 on p. 352 then makes it clear that no real physical observer can
even see through an Einstein–Rosen bridge. Owing to the somewhat “instantaneous” nature of the
Einstein–Rosen bridge, it vaguely recalls the instantons mentioned in Chapter 6 and the tunneling
through them; see Footnote 16 on p. 248.

Stabilization of traversable wormholes
Recall that the Schwarzschild geometry solves the Einstein equations without an energy–
momentum tensor density on the right-hand side. The above description of the Einstein–Rosen
“bridge” shows that even the topology and geometry of otherwise empty spacetime may be highly
nontrivial.

The geodesically complete picture of the Schwarzschild geometry [☞ Figures 9.6 on p. 350
and 9.7 on p. 352] indicates that the Einstein equations have solutions where the spacetime is
topologically nontrivial. Namely, the regions I and III may be either regions in otherwise separate
universes, or regions in the same universe, which are however arbitrarily far from one another as
measured along any path that does not pass through the Einstein–Rosen “bridge.” Concretely, sup-
pose in a given moment one such “bridge” opens temporarily between a black hole near Earth and
some black hole in this same spacetime, but in the Andromeda Galaxy. In this case our spacetime
would become multiply connected, and the space would become momentarily multiply connected,
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as there exist closed paths that do pass through that “bridge” from Earth to Andromeda, and then
return to Earth along a (much) longer way. In the moment when such a path (space-like, for the
Einstein–Rosen “bridge” is impassable) exists, such a path cannot be continuously shrunk to a
point. Alternatively, such a path is not the boundary of any surface that is entirely contained in the
given spacetime.

This topological property is identical to the property of the surface of a torus, which contains
closed paths that traverse the “big” or the “small” circle at least once, so they cannot be continu-
ously deformed into a point. In contrast to such non-contractible paths, there also exist of course
closed paths that are the boundaries of surfaces that are completely contained in the given space,
and which then may be continuously contracted to a point. Thus “topologically” seen, the surface
of a torus is equivalent to the surface of a 2-sphere to which was added a cylindrical “handle”
(wormhole), as shown in Figure 9.8.

�

Figure 9.8 The torus surface with three topologically distinct closed paths: Neither A nor B can be
continuously deformed into a point as can be done with the path C. Besides, the path A cannot be
continuously deformed into the path B. The same holds for the “sphere with a handle” to the right,
which is topologically equivalent to the torus.

In turn, that multiple connectedness – for real particles, fields and objects – has no practical
meaning as the Einstein–Rosen “bridge” is impassable for them.

It is then reasonable to ask if there may exist some deformation of the Schwarzschild (or
similar) geometry in which some such bridge between otherwise distant spacetime regions could
exist and which would be traversable by real particles, fields and objects.

The metric tensor that exactly describes such a geometry evidently must have elements that
are at least quadratic functions of at least some spatial coordinates, so that the spacetime solution
would have two “branches,” i.e., “sheets,” which would then be connected by a tunnel, and so
that in an adequate geodesically complete spacetime diagram (such as the Kruskal–Szekeres dia-
gram for the Schwarzschild geometry) the otherwise separated regions of spacetime are connected
through that tunnel by time-like paths. For solutions of this type the popular name “wormhole”
was kept, but unlike the Einstein–Rosen space-like “bridge,” these time-like wormholes are named
Lorentzian wormholes [541, 543].

The simplest example is provided by the metric tensor

ds2 = −c2dt2 + d�2 + (k2+�2)
(
dθ2 + sin2(θ)dϕ2), (9.99)

where r = ±√
k2+�2 is the “true” radial coordinate, and k > 0 is a constant. For this metric tensor

one computes the Einstein tensor, in spherical coordinates:

[Gμν = Rμν − 1
2 gμνR] =

k2

(k2 + �2)2 diag
[−c2,−1, (k2+�2), (k2+�2) sin2(θ)

]
. (9.100)
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The Einstein equations then equate this tensor with the energy–momentum tensor density of the
matter/energy that is necessary at the connection of the two “branches” of the solution to maintain
this geometry.

This use of the Einstein equations is identical to the use of the Gauss–Ampère equations in
electrodynamics. There, the spherically symmetric electric field, for example, with a magnitude
that decays as 1/r2 implies that there must exist an electric charge at the coordinate origin that
maintains this field.

As the physical meaning of the Ttt component of the energy–momentum tensor density is the
usual matter/energy density (including all non-gravitational fields), and Trr is the radial pressure
of this matter density, we see that the energy–momentum tensor density that is being equated with
the result (9.100) must represent a very unusual matter/energy: both its density and its radial
pressure are negative. However, in the original paper in 1989, Matt Visser [541] pointed out that
there do exist physical systems that have been realized in laboratories, such as for the Casimir
effect, and which exhibit at least some of these exotic properties. Later research in this respect
discovered several other physical systems, the combinations of which could – in principle – be
used to open and stabilize such Lorentz wormholes.

The fact that the matter/energy that maintains a traversable wormhole must have exotic
properties follows from the simple insight [519]: When light enters a traversable wormhole, the
rays are being focused towards a fictitious center, following the spacetime curvature caused by the
gravitational effect of the energy/matter that maintains the wormhole traversable. The incoming
rays therefore behave precisely as if they are gravitationally focused by the gravitational field of
a massive object. In turn, when the light comes out on the “other side” of a traversable worm-
hole, the rays must be emanating as if they were welling from a center, following the spacetime
curvature caused by the gravitational effects of the energy/matter that maintains the wormhole
traversable. Effectively, these rays are then refracted by the gravitational field, indicating that the
matter/energy density that maintains the wormhole traversable must be less than the density of
empty, flat spacetime, i.e., must be negative.

The interested Reader should consult Refs. [546, 544] for additional examples and literature.

9.3.5 Exercises for Section 9.3

✎ 9.3.1 Verify that the substitutions (9.77) eliminate the cosmological constant from the
equations (9.76).

✎ 9.3.2 Adapting the relation (9.94), specify the proportion of cosmological constant and co-
rotating perfect fluid that can emulate (a) dark energy, (b) quintessence, and (c) phantom
energy.

✎ 9.3.3 Estimate the energy conditions (9.95) for (a) dark energy, (b) quintessence, (c) cos-
mological constant, and (d) phantom energy.

✎ 9.3.4 Determine which of the energy conditions (9.95) are violated by the matter/energy
distribution required to support the Lorentzian wormhole (9.100).
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