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A NOTE ON THE TRANSCENDENCY OF PAINLEVE'S

FIRST TRANSCENDENT
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§ 1. Introduction

Here we shall prove that Painleve's first transcendent, a solution of

the equation y" — 6y2 + x, can not be described as any combination of

solutions of first order algebraic differential equations and those of linear

differential equations. This result gives an answer to the question

whether the function is truely new or not.

To make the matter clear, we adopt the notions from differential

algebra (refer to [2]). Let K be an ordinary differential field of charac-

teristic zero. In what follows we discuss everything in a fixed universal

differential field extension of K. A differential field extension L of K

will be said to be decomposable if there exists a differential field exten-

sion M of K such that L is free from M over K and LM is contained

in the terminal Nn of a finite chain of differential field extensions of

Λf: Af = JV0 c JV; c . . . c Nn with trans, deg NJ/NJ^ ^ 1 for any j (1 <;

rg n). And we also say that a differential field extension L of K is de-

composable if there is a finite chain of differential field extensions of

K: K = Lo cz Lj c: . . . c Lm = L such that for any j (1 <I j <̂  m) Lj is a

decomposable differential field extension of Lj_ι in the sense just defined

above. For example a strongly normal extension of K is decomposable.

A differential field extension of K which is generated with a solution of

some linear differential equation over K is decomposable (see § 3). We

shall prove the following:

THEOREM. Let a be a nonconstant element of K, Suppose that a solu-

tion y of the equation yN — 6y2 + a is contained in some decomposable

differential field extension of K. Then y is algebraic over K.

In particular, from this and the fact Painleve's first transcendent is
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a transcendental function, it is not contained in any decomposable differen-

tial field extension of the algebraic closure C(x) of C(x). Thus Liouville's

claim [3] that Painleve's first transcendent is expressible by a solution of

some linear differential equation over C(x) is found to be false. Our

proof of the theorem is simple and in some sense intimately related to

the "irreducibility" of the function, though we do not use Drach's theory

(for modern treatment upon Drach's theory, see [6], especially pp. 661-668).

§ 2. Proof of the theorem

The following fact is essential: Suppose that L is a differential field

extension of K and a solution y of the equation y" — 6y2 + a satisfies

trans, deg L{y}/L <̂  1. Then y is algebraic over L. In fact assume the

converse. Then there is an irreducible polynomial F i n L[Y, YJ such that

dF/dY1(y9y
/) Φ 0 and F{y, / ) = 0. By the equalities for y it is seen that

the differential polynomial

FD + YJF/8Y + (6Y2 + a)dFldYι

vanishes at y, where FD denotes the polynomial obtained by differentiating

the coefficients of F. Hence it is divisible by F in the ring L[Y, YJ

because of the irreducibility of F. We define the weight w(A) of a non-

zero element A of L[Y, YJ as w(A) = max{2£ + 3/; azj Φ 0}, where A ==

Σo,ijY
iYl- By Vm we denote the linear subspace of L[Y, YJ over L which

is generated with all monomial of weight m. Then we have the decom-

position: L[Y, YJ = Θ0<;w Vm. Define a derivation X of L[Y, YJ over L by

z - γιd/dY+ βY'd/dY,.

We find immediately w(XA) <I w(A) + 1 for any A and XVm c Vm + 1. Since

w(FD + XF+ adF/dY,) £ w(F) + 1 ,

it follows there is an element b of L with

XF - bF - FD - adF/dY, .

Let p = ιv(F) and F = Y^Fm be the decomposition, where Fm = 0 for m

greater than p and Fp φ 0. Then

(m) XFm = bFm+ι - FZ+1 - adFmJdYx (0 < m) .

From these equalities we determine Fm. Let Z = Y\ — 4Y3. This poly-
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nomial is irreducible in L[Y, YJ and satisfies XZ = 0 and w(Z) = 6. Then

we have the following:

(* ) Let H be a nonzero element of Vm and divisible strictly by Zs.

Set H = (AZ + Y,B + C)Z\ A e L[Y, YJ, B and CeL[Y]. Then
i) if Xίf Φ 0, XH" is divisible strictly by Zs and we have the ex-

pression: XH — IZ% where

I = (XA + BY)Z + Yfiy + 2Y\2YBY + SB)

ii) if XH = 0, m = 6s.

In fact

XH = [(XA)Z + Y\BY + 6 Y2B

+ 2Y2(2YβF + SB)]ZS .

If XfZ" is divisible by Z*+1, Z divides the polynomial between above

brackets. Hence C lies in L and 2YBY + SB = 0, which implies J3 = 0.

By the assumption on H we see C Φ 0 and so if = CZ% particularly

Xff" = 0 and m = 6s. This completes the proof.

By the equality (p) we have XFP = 0 and because of (*) we have

the representation

Fp = cZ«, ceL, p = 6q.

By the equality (p - 1), XFP_X = {be - cf)Zq. According to (*) and that

p — 1 is not divisible by 6, we have Fp_1 = 0. Hence XFP_2 — bFv_x —

F^-1 = 0 by the equality (p — 2), and Fp_2 = 0 by (*) and because p — 2

is not divisible by 6. Similarly we see Fp_3 = 0. By the equality (p — 4)

we have

P^ - -aFp,Yί =

By (*) if we use the same notations appeared there

CY = -2acq , 2YBY + SB = 0 .

Hence B = 0, C = —2acqY, A = 0. Consequently

By the equality (p — 5),

XFP^ = 6FP_4 - F2f_4 - α F p _ l i F l - 2

This implies α' = 0 by (*) and our assertion has been proved.
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Let us return to the proof of our theorem. Let R and S be two

differential field extensions of K. Suppose that R contains a solution y

of the equation y" = 6y2 + α, being free from S over K, and there is a

chain of differential field extensions of S: S = TQ c: T7! c: .. . cz Tn with

trans, deg ϊ y Γ , . ! <: 1 for any 7 (1 <^j <: n) and jΓn 2 JRS. Since 3/ lies in

RS therefore in Tn, because of the fact just proved above, it follows that

y is algebraic over S. Since R and S are free over K, y is algebraic

over K. Repeating the same argument, we may complete the proof of

the theorem.

§3. Rational dependence on arbitrary constants

To explain examples mentioned in Section 1, we shall introduce a

notion. We say that a differential field extension L of K depends rationally

on arbitrary constants if there exists a differential field extension M of K

such that L and M are free over K and LM = MCLM, where CLM denotes

the field of constants of LM. Such extensions are decomposable, if the

field L is finitely generated over K. In fact CLM is finitely generated over

CM by Corollary 1 in [2, p. 113], so that we have CLM — CM(cu c2, , O

Let Nj be M(cu c2, , Cj). They satisfy the required conditions and L is

decomposable.

Let L be a strongly normal extension of K. By the definition of

strongly normal extension there is a differential field extension M of K

such that M is differentially isomorphic to L over K, L and M are free

over K and LM = MCL3/ (cf. Proposition 1 in [1]). Thus L depends

rationally on arbitrary constants.

Let y be a solution of the following linear differential equation over

K:

y{n) + A / n " 1 ) + ••• +pny = q.

We show the differential field extension K(y) of K depends rationally on

arbitrary constants. We may assume that K is algebraically closed.

There exists a differential field extension M of K such that M is free

from K(y} over K, contains a solution z of the same linear differential

equation as above and a fundamental system yu ,yn of solutions of the

equation

- i > + . . . + P n y = 0
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(see p. 746 in [4]). Then in LMy

y = z + Σ cjyj , cj e CLM .

This shows that our assertion is true.
For detail discussion on the relations between strongly normal

extensions and differential field extensions depending rationally on
arbitrary constants one may consult [7], where Painleve's several asser-
tions stated in his Stockholm lessons are restated in the language of
algebraic geometry and proved rigorously.
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