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Abstract

Let A be an abelian variety defined over a field k. In this paper we define a descending

filtration {F r}r>0 of the group CH 0(A) and prove that the successive quotients

F r/F r+1⊗Z[1/r!] are isomorphic to the group (K(k;A, . . . , A)/Sym)⊗Z[1/r!], where

K(k;A, . . . , A) is the Somekawa K-group attached to r-copies of the abelian variety A.

In the special case when k is a finite extension of Qp and A has split multiplicative

reduction, we compute the kernel of the map CH 0(A)⊗Z[1
2 ] → Hom(Br(A),Q/Z)⊗Z[1

2 ],

induced by the pairing CH 0(A)×Br(A) → Q/Z.

1. Introduction

In [Som90], Somekawa introduced the K-group K(k;G1, . . . , Gn) attached to semiabelian

varieties G1, . . . , Gn over a field k. In the case when Gi = Gm for all i = 1, . . . , n, there is a

canonical isomorphism K(k;Gm, . . . ,Gm) ' KM
n (k) with the usual Milnor K-group. In § 2.2 we

recall the definition in the case when all Gi are abelian varieties.

If now A is an abelian variety over a field k, we can consider the group K(k;A, . . . , A)

attached to r copies of A. In this paper, we study the relation between this group and the

group CH 0(A) of zero cycles modulo rational equivalence on A. Both of those groups are highly

incomputable, so our effort is focusing on obtaining some information for CH 0(A) by looking at

K(k;A, . . . , A) and vice versa.

More specifically, in § 3, we define a descending filtration F r of the group CH 0(A), such

that the successive quotients F r/F r+1 are ‘almost’ isomorphic to Sr(k;A) (Theorem 1.3), where

by Sr(k;A) we denote the quotient of K(k;A, . . . , A) by the subgroup generated by elements

of the form {x1, . . . , xr}k′/k − {xσ(1), . . . , xσ(r)}k′/k, where σ : {1, . . . , r} → {1, . . . , r} is any

permutation.

The advantage of our result is that it holds over any base field k, allowing us to obtain different

corollaries by changing the base field. In the case of an algebraically closed field k = k, the

filtration F r coincides, after ⊗Q, with the filtration defined by Bloch in [Blo76] (Proposition 4.1).

Recall that the filtration of Bloch, which we denote by Gr, was defined (in the case k = k) as

follows:

G0CH 0(A) = CH 0(A),

G1CH 0(A) = 〈[a]− [0] : a ∈ A〉,
G2CH 0(A) = 〈[a+ b]− [a]− [b] + [0] : a, b ∈ A〉,
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G3CH 0(A) = 〈[a+ b+ c]− [a+ b]− [a+ c]− [b+ c] + [a] + [b] + [c]− [0] : a, b, c ∈ A〉,

GrCH 0(A) =

〈 r∑

j=0

(−1)r−j
∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ], ai ∈ A

〉
.

One other case of particular interest is when k is a finite extension of Qp and A has split semi-
ordinary reduction. In this case, we prove that the successive quotients F r/F r+1 are divisible, for
r > 3, while F 2/F 3⊗Z[1

2 ] is the direct sum of a finite group and a divisible group (Corollary 1.4).
This result is deduced by our Proposition 1.1 and a result of Raskind and Spiess [RS00], where
they prove that if A1, . . . , An are abelian varieties over k, all satisfying the assumptions stated
above, then the group K(k;A1, . . . , An) is the direct sum of a divisible and a finite group, for
n > 2 and it is in fact divisible for n > 3.

We note that the group F 2 turns out to be the Albanese kernel of A, which in the case of
a smooth projective variety over a p-adic field k is conjectured to be the direct sum of a finite
group and a divisible group.

1.1 Main results
Our first result gives a nontrivial group homomorphism CH 0(A) −→ Sr(k;A), for any r > 0.

Proposition 1.1. Let k be a field and A an abelian variety over k. For any r > 0 there is a
well-defined abelian group homomorphism

Φr : CH 0(A)−→ Sr(k;A)

[a]−→ {a, a, . . . , a}k(a)/k,

where a is any closed point of A. For r = 0, S0(k,A) = Z, and we define Φ0 to be the degree
map.

Our next step is to define the filtration F r of CH 0(A). We define F rCH 0(A) =
⋂r−1
j=0 ker Φj ,

for r > 1. In particular, F 0CH 0(A) = CH 0(A), F 1CH 0(A) is the subgroup of degree-zero cycles.
The next result gives a homomorphism in the reverse direction as follows.

Proposition 1.2. Let r > 0 be an integer. There is a well-defined abelian group homomorphism

Ψr : Sr(k;A) −→ F rCH 0(A)

F r+1CH 0(A)

{a1, . . . , ar}k′/k −→
r∑

j=0

(−1)r−jTrk′/k

( ∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ]k′

)
,

where the summand corresponding to j = 0 is (−1)rTrk′/k([0]k′). Moreover, the homomorphisms
Ψr satisfy the property, Φr ◦Ψr = ·r! on Sr(k;A).

We see that after applying the functor ⊗Z[1/r!], the morphisms Φr and Ψr induce the
following isomorphisms.

Theorem 1.3. Let k be a field and A an abelian variety over k. For the filtration F rCH 0(A)
defined above, there are canonical isomorphisms of abelian groups:

Φr : Z
[

1

r!

]
⊗ F r

F r+1

'−→ Z
[

1

r!

]
⊗ Sr(k;A), r > 0,

with Φ−1
r = (1/r!)Ψr. Moreover, the group F 2CH 0(A) is precisely the Albanese kernel of A.

As we will see in § 3, Theorem 1.3 can be easily deduced by the two previous propositions.
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1.2 Corollaries
In §§ 4 and 5 we obtain various corollaries and properties of the filtration F r. After treating the
case of an algebraically closed field k, in the last part of § 4, we describe a recursive algorithm
to compute generators of the group F r ⊗ Z[1/(r − 1)!], for r > 1.

In § 5, we use the Somekawa map sn (see § 6 for a definition), to obtain a cycle map to Galois
cohomology

F r/F r+1

n
−→ Hr

(
k,

r∧
A[n]

)
,

where n is any integer invertible in k.

1.3 The p-adic case
In our last section, we obtain some results when the base field k is a finite extension of Qp. Using
a result of Raskind and Spiess [RS00] we obtain the following corollary.

Corollary 1.4. Let A be an abelian variety over a p-adic field k having split semi-ordinary
reduction. Then for the filtration defined above, the following hold:

(i) for r > 3, the groups F r/F r+1 are divisible;

(ii) the group F 2/F 3 ⊗ Z[1
2 ] is the direct sum of a divisible group and a finite group.

Using these divisibility results, we move on to compute the kernel of the map

CH 0(A)⊗ Z[1
2 ] → Hom(Br(A),Q/Z)⊗ Z[1

2 ],

induced by the Brauer–Manin pairing 〈 , 〉A : CH 0(A)×Br(A) → Q/Z, in the special case when
A has split multiplicative reduction. (For a definition of the pairing see § 6.2.) We obtain the
following theorem.

Theorem 1.5. Let A be an abelian variety over k. The subgroup F 3 is contained in the kernel
of the map

j : CH 0(A) → Hom(Br(A),Q/Z).

If moreover A has split multiplicative reduction, then the kernel of the map

CH 0(A)⊗ Z[1
2 ]

j⊗Z[1/2]−−−−−−→ Hom(Br(A),Q/Z)⊗ Z[1
2 ]

is the subgroup D of F 2 ⊗Z[1
2 ], which contains F 3 ⊗Z[1

2 ] and is such that D/(F 3 ⊗Z[1
2 ]) is the

maximal divisible subgroup of F 2/F 3 ⊗ Z[1
2 ].

We point out that our result was motivated by a result of Raskind and Spiess, who in [RS00]
obtain an isomorphism

Z⊕
⊕

16ν6d

⊕

16i1<···<iν6d
K(k; Ji1 , . . . , Jiν ) ' CH 0(C1 × · · · × Cd),

where C1, . . . , Cd are smooth, projective, geometrically connected curves over k, all having a
k-rational point, and Jj is the Jacobian variety of Cj . This isomorphism induces a descending
filtration of the group CH 0(C1 × · · · × Cd) in terms of the K-groups K(k; Ji1 , . . . , Jiν ).

Moreover, our results concerning the pairing of CH 0(A) with Br(A) were motivated by a
result of Yamazaki, who in [Yam05] computes the kernel of the map j : CH 0(X) → Br(X)?,
when X = C1 × · · · × Cd is a product of Mumford curves.
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Notation. If k is a field, we denote by k its algebraic closure. If L ⊃ k is any field extension and
X is a variety over k, we denote by XL = X ×k SpecL its base change to L. Moreover, if a is
any closed point of X, we denote by k(a) its residue field.

If B is a discrete abelian group, we denote by B? the group Hom(B,Q/Z). If X is a smooth
variety, and F is an abelian sheaf on the étale site of X, we denote by Hr(X,F), r > 0, the
étale cohomology groups of X with coefficients in F .

If now A is an abelian variety over k, and n is any integer, we denote by A[n] = ker(A
n−→ A)

the n-torsion points of A. Further, we denote by Â, the dual abelian variety of A.

2. Review of definitions

In this section we recall the definition of the Albanese variety, AlbX , of a smooth projective
variety X over a field k, as well as the definition of the Somekawa K-group K(k;A1, . . . , An)
attached to abelian varieties.

2.1 The Albanese map
Let X be a smooth projective variety of dimension d > 0 over a field k. We consider the group
CH 0(X) of zero cycles modulo rational equivalence on X. We denote by A0(X) the subgroup
of CH 0(X) of degree-zero cycles. For a concise collection of results concerning the groups CH 0(X)
and A0(X), we refer to [Col95].

We recall that ifX is a smooth projective variety having a k rational point P , there is a unique
abelian variety AlbX , called the Albanese variety of X, and a unique morphism ϕ : X → AlbX
taking P to the zero element of AlbX , satisfying the universal property: If f : X → B is a
morphism of X to an abelian variety B taking P to the zero element of B, then f factors uniquely
through ϕ. We note that the map ϕ induces a group homomorphism albX : A0(X) → AlbX(k),
not depending on the k-rational point P , called the Albanese map of X. For a proof of this
statement and more details on AlbX we refer to [Blo10].

In the case of a smooth projective curve C having a k-rational point, we know that albC
gives an isomorphism of Pic0(C) with the usual Jacobian of C. In higher dimensions, this map
is far from being injective. Finally we note that if A is an abelian variety, then A is its own
Albanese variety.

2.2 The group K(k;A1, . . . , An)
Here we review the definition of the K-group K(k;A1, . . . , An) attached to abelian varieties
A1, . . . , An, which was first introduced by Somekawa in [Som90]. Note that if k′/k is any extension
of k, there is a natural restriction morphism resk′/k : A(k) → A(k′), while if k′ ⊃ k is a finite
extension, we obtain further a well-defined trace morphism Trk′/k : A(k′) → A(k). We define

K(k;A1, . . . , An) =

[⊕

k′/k

A1(k′)⊗ · · · ⊗An(k′)

]/
R,

where the sum extends over all finite extensions k′ ⊃ k and R is the subgroup generated by the
following two families of elements.

(i) If L ⊃ E ⊃ k are two finite extensions of k and we have points ai ∈ Ai(L), for some
i ∈ {1, 2, . . . , n}, and aj ∈ Aj(E), for all j 6= i, then

a1 ⊗ · · · ⊗ TrL/E(ai)⊗ · · · ⊗ an − resL/E(a1)⊗ · · · ⊗ ai ⊗ · · · ⊗ resL/E(an) ∈ R
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(ii) Let K/k be a function field in one variable over k. Let f ∈ K× and xi ∈ Ai(K),
i = 1, . . . , n. Then we define

∑

v place of K/k

ordv(f)(s1
v(x1)⊗ · · · ⊗ snv (xn)) ∈ R,

where the sum extends over all places v of K over k. If v is such a place, the morphisms siv are
specialization maps Ai(K) → Ai(kv), where kv is the residue field of the place v, and are defined
as follows: let Kv be the completion of K with respect to the valuation v and Ov be its ring of
integers. The properness of Ai over k yields isomorphisms Ai(Kv) ' Ai(Ov), for all i = 1, . . . , n.
Further, we have a natural map Ai(Ov) → Ai(kv) induced by Ov � kv. This gives

Ai(K)

siv $$

// Ai(Ov)

��
Ai(kv)

where the horizontal map is the composition Ai(K)
res−→ Ai(Kv)

'−→ Ai(Ov).
Notation. (i) The elements of K(k;A1, . . . , An) will be from now on denoted as symbols
{a1, . . . , an}k′/k, for ai ∈ Ai(k′).

(ii) If A1 = A2 = · · · = Ar, then we introduce the notation

Kr(k;A) = K(k;

r︷ ︸︸ ︷
A, . . . , A).

Furthermore, we consider the group

Sr(k;A) =
Kr(k;A)

〈{x1, . . . , xr}k′/k − {xσ(1), . . . , xσ(r)}k′/k : σ ∈∑r〉
,

where Σr is the group of permutations of the set {1, . . . , r}.
(iii) If a is a closed point of A, we will denote by [a] the class of a in CH 0(A).

Functoriality. Let L/k be a finite extension of k. Then there is a well-defined trace map defined
as follows:

TrL/k : K(L;A1, . . . , An) →K(k;A1, . . . , An)

{a1, . . . , an}E/L → {a1, . . . , an}E/k.

Moreover, if j : k ↪→ L is any field extension, then there is a well-defined restriction map

resL/k : K(k;A1, . . . , An) → K(L;A1 ×k L, . . . , An ×k L).

To define it, consider a finite extension k′/k of k and let {a1, . . . , an}k′/k ∈ K(k;A1, . . . , An). We
can write k′ ⊗ L =

∏m
i=1Bi, where Bi are Artin local rings over L of length ei, for i = 1, . . . ,m.

The residue field Li of Bi is a finite extension of L, for i = 1, . . . ,m and an extension of k′. We
define

resL/k({a1, . . . , an}k′/k) =

m∑

i=1

ei{resLi/k′(a1), . . . , resLi/k′(an)}Li/L.
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Note that if L/k is a finite extension of k and {a1, . . . , an}k′/k ∈ K(k;A1, . . . , An), then we have

TrL/k(resL/k({a1, . . . , an}k′/k)) =

( m∑

i=1

ei

)
{a1, . . . , an}k′/k = [L : k]{a1, . . . , an}k′/k.

The Somekawa map. If n > 0 is an integer which is invertible in k, then there is a well-defined
Galois symbol map:

sn :
K(k;A1, . . . , Ar)

n
−→ Hr(k,A1[n]⊗ · · · ⊗Ar[n]),

defined using the cup product of Galois cohomology and the Kummer sequence for abelian
varieties. A precise definition of the map sn will be reviewed in § 6.

Remark 2.1. In [Som90], Somekawa states the conjecture that the map sn is injective. This
has been proved in some cases. We refer to [MR09] and [Yam05] for some examples where
the conjecture holds. In contrast, in [SY09], Spiess and Yamazaki provided a counterexample,
by constructing a torus T over a field k that has the property that the Galois symbol map
K(k;T, T )/n

sn−→ H2(k, T [n]⊗2) fails to be injective.

Convention–notation. Let k be any field and A a variety over k. If a is a closed point of A,
then a induces a unique k(a)-rational point ã of Ak(a), and for the push-forward map Trk(a)/k :
CH 0(Ak(a)) → CH 0(A) we have the equality Trk(a)/k([ã]) = [a].

If now k′ ⊃ k(a) ⊃ k is a finite extension, then a can be considered by restriction as a
k′-rational point of A. We will denote by [a]k′ the class of [resk′/k(a)(a)] in CH 0(Ak′). Note that
for the push-forward map Trk′/k : CH 0(Ak′) → CH 0(A) the equality Trk′/k([a]k′) = [k′ : k(a)] · [a]
holds. (See [Ful83, § 1.4].) The necessity of this remark will become apparent in Proposition 3.3.

3. The canonical isomorphisms

In this section we define a filtration F rCH 0(A) of CH 0(A) and prove the existence of canonical
morphisms Φr : F r/F r+1

→ Sr(k;A), and Ψr : Sr(k;A) → F r/F r+1, for all r > 0, so that Φr

and Ψr become ‘almost’ each other inverses. So as not to exclude r = 0 from what it follows, we
define S0(k;A) = Z.

Proposition 3.1. Let k be a field and A an abelian variety over k. For any r > 0 there is a
well-defined abelian group homomorphism

Φr : CH 0(A)−→ Sr(k;A)

[a]−→ {a, a, . . . , a}k(a)/k.

Proof. For r = 0 we define Φ0 : CH 0(A) −→ Z to be the degree map. Let now r > 0 be a fixed

integer. We define a map Z0(A)
φr−→ Sr(k;A) first at the level of cycles as follows. Let a be any

closed point of A with residue field k(a). Then we define φr(a) = {a, a, . . . , a}k(a)/k. To check that
φr factors through rational equivalence, let C ⊂ A be a closed irreducible curve with function
field K = k(C) and let f ∈ K×. Let C̃ be the normalization of C and let p

C̃

��

p // A

C
/�

??
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be the canonical map. We need to show φr(p?(div(f)) = 0. By the definition of φr we obtain

φr(p?(div(f)) = φr

(∑

x∈C̃

ordx(f)[k(x) : k(p(x))][p(x)]

)

=
∑

x∈C̃

ordx(f)[k(x) : k(p(x))]{p(x), . . . , p(x)}k(p(x))/k

=
∑

x∈C̃

ordx(f){[k(x) : k(p(x))]p(x), p(x), . . . , p(x)}k(p(x))/k

=
∑

x∈C̃

ordx(f){Trk(x)/k(p(x))(resk(x)/k(p(x))(p(x)), p(x), . . . , p(x)}k(p(x))/k

=
∑

x∈C̃

ordx(f){resk(x)/k(p(x))(p(x)), . . . , resk(x)/k(p(x))(p(x))}k(x)/k.

Let SpecK
η
↪→ C̃ be the generic point inclusion and let x be a closed point of C̃. Let Kx be the

completion of K at the place x and OKx its ring of integers. Then the diagram

SpecKx

ηx
��

// SpecK
kK

yy
C̃

yields a Kx-rational point pηx of A. The valuative criterion for properness gives a unique OKx-
valued point of A as follows.

SpecKx

��

pηx // A

��
SpecOKx //

∃!px
88

Spec k

Then, we claim that for the specialization map sx corresponding to the valuation x, then sx(pη) =
resk(x)/k(p(x))(p(x)) holds. To see this, we follow the composition

A(K)
res−→ A(Kx)

'−→ A(OKx)
res−→ A(kx)

pη −→ pηx −→ px −→ resk(x)/k(p(x))(p(x)).

This, in turn, yields

φr(p?(div(f)) =
∑

x∈C̃

ordx(f){resk(x)/k(p(x))(p(x)), . . . , resk(x)/k(p(x))(p(x))}k(x)/k

=
∑

x∈C̃

ordx(f){sx(pη), . . . , sx(pη)}k(x)/k = 0,

where the last equality comes from the defining relation (ii) of the K-group Kr(k;A). We thus

obtain a homomorphism CH 0(A)
Φr−→ Sr(k;A) as desired. 2

Definition 3.2. We define a descending filtration F r of CH 0(A) by F r =
⋂r−1
j=0 ker Φj , r > 0.

In particular, F 0CH 0(A) = CH 0(A) and F 1CH 0(A) = A0(A) is the subgroup of degree-zero
elements.
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Proposition 3.3. The filtration F rCH 0(A) just defined contains the filtration GrCH 0(A)
defined as follows:

G0CH 0(A) = CH 0(A),

G1CH 0(A) = 〈Trk′/k([a]k′ − [0]k′) : a ∈ A(k′)〉,
G2CH 0(A) = 〈Trk′/k([a+ b]k′ − [a]k′ − [b]k′ + [0]k′) : a, b ∈ A(k′)〉,

. . .

GrCH 0(A) =

〈 r∑

j=0

(−1)r−jTrk′/k

( ∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ]k′

)
: a1, . . . , ar ∈ A(k′)

〉
,

where the summand corresponding to j = 0 is (−1)rTrk′/k([0]k′), and k′ runs through all finite
extensions of k.

Proof. The claim is clear for r = 0. Let r > 1 and let a1, . . . , ar ∈ A(k′). We denote by Φk′
r−1 the

map CH 0(Ak′) → Sr−1(k′;A×k k′) defined as in Proposition 3.1. We claim that

Φr−1

( r∑

j=0

(−1)r−jTrk′/k

( ∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ]k′

))

=

r∑

j=0

(−1)r−jTrk′/k

(
Φk′
r−1

( ∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ]k′

))
= 0.

The last equality is deduced by the multilinearity of the symbol {x1, . . . , xr−1}k′/k′ and the fact
that Φr−1 is a group homomorphism.

To justify the first equality, we need to verify that Trk′/k(Φ
k′
r−1([a]k′)) = Φr−1(Trk′/k([a]k′)),

where a ∈ A(k′) is a k′-rational point of A. Note that in general the residue field k(a) might be
strictly smaller than k′. (See convention–notation at the end of § 2.) We have

Trk′/k(Φ
k′
r ([a]k′)) = Trk′/k({resk′/k(a)(a), . . . , resk′/k(a)(a)}k′/k′)

= {resk′/k(a)(a), . . . , resk′/k(a)(a)}k′/k,
Φr(Trk′/k([a]k′)) = Φr([k

′ : k(a)] · [a])) = [k′ : k(a)]{a, . . . , a}k(a)/k

= {[k′ : k(a)]a, . . . , a}k(a)/k = {Trk′/k(a)(resk′/k(a)(a)), a, . . . , a)}k(a)/k

= {resk′/k(a)(a), . . . , resk′/k(a)(a)}k′/k. 2

Proposition 3.4. Let r > 0 be an integer. There is a well-defined abelian group homomorphism

Ψr : Sr(k;A)−→ F rCH 0(A)

F r+1CH 0(A)

{a1, . . . , ar}k′/k −→
r∑

j=0

(−1)r−jTrk′/k

( ∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ]k′

)
,

where the summand corresponding to j = 0 is (−1)rTrk′/k([0]k′). Moreover, the homomorphisms
Ψr satisfy the property Φr ◦Ψr = ·r! on Sr(k;A).

Proof. We proceed through several steps.
Step 1. We define a map

Ψr :
⊕

k′/k

(A(k′)×A(k′)× · · · ×A(k′)) −→ F rCH 0(A)

F r+1CH 0(A)
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(a1, . . . , ar) −→
r∑

j=0

(−1)r−jTrk′/k

( ∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ]k′

)
,

where the direct sum extends over all finite extensions of k. Notice that the inclusion Gr+1 ⊂ F r+1

proved in Proposition 3.3, forces the map Ψr to be multilinear, and thus we obtain a well-defined
map

Ψr :
⊕

k′/k

(A(k′)⊗A(k′)⊗ · · · ⊗A(k′)) −→ F rCH 0(A)

F r+1CH 0(A)
.

Step 2. We claim that the composition

⊕

k′/k

(A(k′)⊗A(k′)⊗ · · · ⊗A(k′))
Ψr−→ F rCH 0(A)

F r+1CH 0(A)

Φr−→ Sr(k;A)

sends a1 ⊗ · · · ⊗ ar to r!{a1, . . . , ar}k′/k. For, we observe that,

Φr

([ r∑

i=1

ai

])
=

{ r∑

i=1

ai, . . . ,
r∑

i=1

ai

}

k′/k

=
r∑

i1=1

r∑

i2=1

· · ·
r∑

ir=1

{ai1 , . . . , air}k′/k

and by a combinatorial counting we can see that the only terms of this sum that do not get
canceled by Φr(

∑r−1
j=0(−1)r−j(

∑
16ν1<···<νj6r[aν1 + · · · + aνj ]k′)) are those where all the ail are

distinct. Thus, using the symmetry of the symbol in Sr(k;A), we get all the possible combinations
of the set {a1, . . . , ar} without repetition, which are exactly r!.

Notice that the above property forces the elements of the form (a1⊗· · ·⊗TrE/L(ai)⊗· · ·⊗ar)
and resE/L(a1)⊗ · · · ⊗ ai⊗ · · · ⊗ resE/L(ar) to have the same image under Ψr, where E ⊃ L ⊃ k
is a tower of finite extensions, ai ∈ A(E) and aj ∈ A(L), for all j 6= i. For,

Φr ◦Ψr((a1 ⊗ · · · ⊗ TrE/L(ai)⊗ · · · ⊗ ar)) = r!{a1, . . . ,TrE/L(ai), . . . , ar}L/k
= r!{resE/L(a1), . . . , ai, . . . , resE/L(ar)}E/k
= Φr ◦Ψr(resE/L(a1)⊗ · · · ⊗ ai ⊗ · · · ⊗ resE/L(ar)).

Step 3. Let K ⊃ k be a function field in one variable over k and assume we are given f ∈ K×
and x1, . . . , xr ∈ A(K). We need to show that

∑

v place of K/k

ordv(f)

( r∑

j=0

(−1)r−jTrkv/k

( ∑

16ν1<···<νj6r
[sv(xν1) + · · ·+ sv(xνj )]k(v)

))
= 0.

This will follow by the fact that for every place v of K over k, the map sv is a group
homomorphism and by the following lemma.

Lemma 3.5. For every x ∈ A(K),
∑

v ordv(f)Trkv/k([sv(x)]kv) = 0 holds, where the sum runs
through all the places of K over k.

Proof. Let C be the unique smooth projective curve that corresponds to the extension K/k.
By the valuative criterion of properness, we obtain that the map x : SpecK → A factors through
the generic point inclusion η : SpecK ↪→ C as follows:

SpecK

η

��

x // A

C

x̃

;;
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Here the map x̃ : C → A is given by x̃(v) = sv(x). Since x̃ is proper, it induces a push-forward
map

x̃? : CH 0(C) → CH 0(A).

Since CH 0(C) = Pic(C) and div(f) = 0 in Pic(C), this yields

x̃?(div(f)) =
∑

v

ordv(f)Trkv/k([sv(x)]kv) = 0. 2

The last fact completes the argument that the map Ψr factors through Kr(k;A). Finally,
it is clear that if σ is any permutation of the set {1, . . . , r}, then Ψr({a1, . . . , ar}) = Ψr({aσ(1),

. . . , aσ(r)}) holds. Therefore, we obtain a morphism Sr(k;A)
Ψr−→ F r/F r+1 as stated in the

proposition. 2

Remark 3.6. We observe that for every r > 0 the image of the map Ψr is contained in (Gr +
F r+1)/F r+1. Furthermore, the composition

Ψr ◦ Φr : (Gr + F r+1)/F r+1
→ Sr(k;A) → (Gr + F r+1)/F r+1

is multiplication by r!.

Corollary 3.7. The canonical map A(k)
ι−→ K1(k;G) sending a ∈ A(k) to the symbol {a}k/k

is an isomorphism.

Proof. It follows by Lemma 3.5 that the inverse map

K1(k;G) → A(k)

{a}k′/k → Trk′/k(a)

is well defined. 2

Our main theorem now follows easily by the two previous propositions.

Theorem 3.8. Let k be a field and A an abelian variety over k. For the filtration F rCH 0(A)
defined above, there are canonical isomorphisms of abelian groups:

Φr : Z
[

1

r!

]
⊗ F r

F r+1

'−→ Z
[

1

r!

]
⊗ Sr(k;A), r > 1,

with Φ−1
r = (1/r!)Ψr. Moreover, the group F 2CH 0(A) is precisely the Albanese kernel of A.

Proof. Definition 3.2 gives that F r+1 = ker Φr|F r . Thus, for every r > 1, we get an exact sequence

0 −→ F r

F r+1

Φr−→ Sr(k;A) −→ Sr(k;A)

Im(Φr)
−→ 0.

Now note that step 2 of Proposition 3.4 yields an inclusion Im(Φr) ⊃ r!Sr(k;A). Thus, the group

Sr(k;A)/Im(Φr) is r!-torsion, which forces (Sr(k;A)/Im(Φr))
⊗
Z[1/r!] = 0. We conclude that

after
⊗
Z[1/r!], the map Φr becomes an isomorphism with inverse Ψ̃r = (1/r!)Ψr.

Our next claim is that F 2CH 0(A) = ker albA. Using the isomorphism A(k)
'−→ K1(k;A)

(Corollary 3.7), the claim follows immediately from the commutative diagram

CH 0(A)/F 2 Φ0⊕Φ1//

deg⊕albA
��

Z⊕K1(k;A)

'vv
Z⊕A(k)

and the fact that F 2 is precisely the kernel of Φ0 ⊕ Φ1. 2
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4. Properties of the filtration

4.1 The case k = k

Proposition 4.1. If A is an abelian variety over an algebraically closed field k, then for every
r > 1 the groups F rCH 0(A)⊗ Z[1/(r − 1)!] and GrCH 0(A)⊗ Z[1/(r − 1)!] coincide.

Proof. Note that the statement holds trivially, if r = 1. Let r > 1. Since the base field k is
algebraically closed, the group Sr(k;A) is divisible, and we therefore have an equality r!Sr(k;A) =

Sr(k;A). Thus, for every r > 1, we obtain an isomorphism, Φr : F r/F r+1 '−→ Sr(k;A). We will
show by induction on r that F rCH 0(A) ⊗ Z[1/(r − 1)!] = GrCH 0(A) ⊗ Z[1/(r − 1)!]. Assume
F r ⊗ Z[1/(r − 1)!] = Gr ⊗ Z[1/(r − 1)!] for some r > 1. Call Φr : Gr/Gr+1

→ Sr(k;A) the map
induced by Φr. Note that the map

Ψr : Sr(k;A)−→Gr/Gr+1

{a1, . . . , ar} −→
r∑

j=0

(−1)r−j
∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ]

is well defined. The proof is essentially the same as that one of the well-definedness of Ψr

(Proposition 3.4). Namely, steps 1 and 3 of the proof apply directly in this setting, while step 2
is a tautology, since there are no finite extensions of k, and hence no nontrivial trace-restriction
maps. We therefore obtain a commutative diagram as follows:

F r

F r+1
⊗ Z

[
1

r!

]
' // Sr(k;A)⊗ Z

[
1

r!

]

Gr

Gr+1
⊗ Z

[
1

r!

]
p

OO
Φr

88

where the map p is the natural projection. The induction hypothesis clearly implies that F r ⊗
Z[1/r!] = Gr ⊗ Z[1/r!]. Moreover, the composition

Gr/Gr+1 Φr−→ Sr(k;A)
Ψr−→ Gr/Gr+1

is the multiplication by r! (see Remark 3.6). In particular, after ⊗Z[1/r!], the map Φr admits a
section 1/r!Ψr. We thus obtain an equality F r+1 ⊗ Z[1/r!] = Gr+1 ⊗ Z[1/r!]. 2

Remark 4.2. We note that the filtration GrCH 0(A) has been studied before by Bloch, Beauville
and others. We refer the reader to [Blo76], [Bea86] and [Bea83] for some results concerning this
filtration.

Remark 4.3. We now come back to the case of a non-algebraically closed field k. If L ⊃ k is any
field extension, the flat map πL : AL → A induces a pull-back map resL/k : CH 0(A) → CH 0(AL),
with resL/k([a]) =

∑
πL(ã)=a e ã[ ã ], where a is any closed point of A and e ã is the length of the

Artin local ring AL ×A k(a) at ã. Note that for a ∈ A we have

TrL/k(resL/k([a])) =

( ∑

πL(ã)=a

e ã

)
[a] = [L : k][a].
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It is an immediate consequence of the definition of the restriction map between the K-groups
(see functoriality in the § 2.2) that the following diagram commutes, for every r > 0.

CH 0(A)
resL/k //

Φr
��

CH 0(AL)

ΦLr
��

Sr(k;A)
resL/k // Sr(L;AL)

This implies in particular that the filtration {F r}r>0 is preserved under restriction maps. For, if
x ∈ F rCH 0(A), then by definition Φr(x) = 0. Thus,

ΦL
r (resL/k(x)) = resL/k(Φr(x)) = 0,

and therefore resL/k(x) ∈ F rCH 0(AL).
Moreover, if L/k is finite, then filtration {Gr}r>0 is preserved under the trace map TrL/k.

To see this, we observe that the generators of the group GrCH 0(AL) are of the form

r∑

j=0

(−1)r−jTrL′/L

( ∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ]L′

)
,

where L′/L is a finite extension and ai ∈ AL(L′). Then

TrL/k

( r∑

j=0

(−1)r−jTrL′/L

( ∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ]L′

))

=

r∑

j=0

(−1)r−jTrL′/k

( ∑

16ν1<···<νj6r
[πL(aν1) + · · ·+ πL(aνj )]L′

)
,

which is a generator of GrCH 0(A).

Corollary 4.4. If A is an abelian variety over some field k, not necessarily algebraically closed,
then the groups F rCH 0(A)⊗Q and GrCH 0(A)⊗Q coincide.

Proof. Let x ∈ F rCH 0(A) ⊗ Q, for some r > 0. Then x induces by restriction an element
x = resk/k(x) of F rCH 0(Ak) ⊗ Q (see Remark 4.3). By Proposition 4.1, we deduce that x ∈
GrCH 0(Ak) ⊗ Q and we can therefore write it as x =

∑N
i=1 qixi, with xi ∈ GrCH 0(Ak) and

qi ∈ Q, for i = 1, . . . , N . Let L ⊃ k be a finite extension of k such that all of the xi are defined
over L. Then we obtain

TrL/k(resL/k(x)) =
N∑

i=1

qiTrL/k(xi) ∈ GrCH 0(A)⊗Q.

The corollary then follows from the fact that TrL/k(resL/k(x)) = [L : k]x. 2

4.2 The finiteness of the filtration
Let A be an abelian variety of dimension d over some field k. In this section we elaborate the
question if the filtration F r defined in § 3 stabilizes for large enough r > 0.

We start by observing that the addition law on A, endows CH 0(A) with a ring structure,
by defining the Pontryagin product [a] ? [b] = [a + b], for closed points a, b of A. We can then
easily see that the group GrCH 0(A) is the rth power of the ideal G1 of (CH 0(A), ?) generated
by elements of the form {[a]− [0], a ∈ A}.
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Fact. The filtration {Gr}r>0 has the property Gd+1 ⊗Q = 0.

Bloch in [Blo76] proves the above fact for the case of an algebraically closed base field, while

Beauville in [Bea83] gives a different proof for an abelian variety A defined over C. A few years

later, Deninger and Murre in [DM91], generalized Beauville’s argument for an abelian variety

over an arbitrary base field k, not necessarily algebraically closed.

Corollary 4.5. For every r > d+ 1, F rCH 0(A)⊗Q = 0 and Sr(k;A)⊗Q = 0 hold, where F r

is the filtration defined in § 3.

Proof. The first equality follows from Corollary 4.4, while the second follows from Theorem 3.8.

2

Remark 4.6. We briefly recall the argument used by Beauville, and later by Deninger and Murre
in their articles. Beauville uses the following Fourier–Mukai transform:

F : CH •(A)⊗Q→ CH •(Â)⊗Q
x→ π̂?(exp(L) · π?(x)),

where Â is the dual abelian variety of A, π, π̂ are the projections of A×Â to A and Â, respectively,

L is the Poincaré line bundle on A × Â and the exponential exp(L) is defined as exp(L) =∑∞
n=0 ((c1(L)n)/n!). Here we denote by · the intersection product in CH •(A× Â) and by c1(L)

the image of L in CH 1(A× Â).

The map F is induced by the Fourier–Mukai isomorphism, FD : D(A) → D(Â), between the

derived categories of A and Â, defined by Mukai in [Muk81], by first passing to the K-groups and

then using the chern character isomorphism, ch : K0(A) ⊗ Q '−→ CH •(A) ⊗ Q, where CH •(A)

is the Chow ring with operation the intersection product. The map F has further the property

of interchanging the intersection product of the ring CH •(A)⊗Q with the Pontryagin product

of CH •(Â)⊗Q. This property in turn implies that Gd+1CH 0(A)⊗Q = 0, since CH s(Â) = 0 for

s > d.

We believe that the above arguments will work after only ⊗Z[1/(2d)!]. First, note that

the Fourier–Mukai transform F can be considered as a map F : CH •(A) ⊗ Z[1/d!] →

CH •(Â)⊗Z[1/d!], because the chern character isomorphism does hold after only ⊗Z[1/d!] (since

((c1(E)n)/n!) = 0 for every n > d and for every line bundle E on A). If after ⊗Z[1/(2d)!], the

relative tangent bundle of the map π̂ : A×Â→ A is trivial as an element ofK0(A×Â)⊗Z[1/(2d)!],

then by the Grothendieck–Riemann–Roch theorem, the map

F : CH •(A)⊗ Z
[

1

(2d)!

]
→ CH •(Â)⊗ Z

[
1

(2d)!

]

will attain the above concrete description and will still interchange the two products. This would

imply that Gd+1⊗Z[1/(2d)!] = 0 and further that F r⊗Z[1/(2d)!] = F d+1⊗Z[1/(2d)!], for every

r > d+ 1.

4.3 An algorithm to compute generators of F r

It is rather complicated to give a precise description of the generators of F r, for r > 3, but things

become much more concrete after ⊗Z[1/r!], because then the map Φr−1 has a very concrete

inverse, namely the map (1/(r − 1)!)Ψr−1. In this section we will describe a recursive algorithm
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to compute generators of F r ⊗ Z[1/(r − 1)!]. As an application, we will give a complete set of
generators of the Albanese kernel F 2 and of the group F 3 ⊗ Z[ 1

2! ].

Notation. If k′ ⊃ k is a finite extension and a1, . . . , ar ∈ A(k′), we will denote by wa1,...,ar the
generator of Gr corresponding to the r-tuple (a1, . . . , ar), namely

wa1,...,ar :=

r∑

j=0

(−1)r−jTrk′/k

( ∑

16ν1<···<νj6r
[aν1 + · · ·+ aνj ]k′

)
.

Definition 4.7. Let r > 1. We consider the subgroup Rr+1 ⊂ F r generated by the following
two families of elements:

(i) for any finite extension k′ ⊃ k and a1, . . . , ar+1 ∈ A(k′), we require

wa1,...,ar+1 ∈ Rr+1 (4.8)

(note that this yields an inclusion Gr+1 ⊂ Rr+1);

(ii) if L ⊃ E ⊃ k is a tower of finite extensions, and we have elements ai ∈ A(L) for some
i ∈ {1, . . . , r}, and aj ∈ A(E), for all j 6= i, then we require

wa1,...,TrL/E(ai),...,ar − wresL/E(a1),...,ai,...,resL/E(ar) ∈ Rr+1. (4.9)

Lemma 4.10. For every r > 1,Rr+1 is the smallest subgroup of F r that makes the homomorphism

Ψr :
⊕

k′/k

(A(k′)×A(k′)× · · · ×A(k′))−→ F r/Rr+1

(a1, . . . , ar)k′/k −→ wa1,...,ar

factor through Sr(k;A). We therefore have an inclusion Rr+1 ⊂ F r+1, for every r > 1, and the
composition

Sr(k;A)⊗ Z
[

1

r!

]
1/r!Ψr−−−−−→ (F r/Rr+1)⊗ Z

[
1

r!

]
Φr−→ Sr(k;A)⊗ Z

[
1

r!

]

is the identity map.

Proof. Note that if H ⊂ F r is any subgroup, such that the map

Ψr :
⊕

k′/k

(A(k′)×A(k′)× · · · ×A(k′)) −→ F r/H

factors through Sr(k;A), we definitely have Gr+1 ⊂H, since Ψr needs to be multilinear. Further,
elements of the form described in (4.9) above are necessarily in H, since {a1, . . . ,TrL/E(ai), . . . ,
ar}E/k = {resL/E(a1), . . . , ai, . . . , resL/E(ar)}L/k in Sr(k;A). Therefore, Rr+1 ⊂ H.

We have no other restrictions, since if K is a function field in one variable over k, then the
relation

∑
v ordv(f)Trkv/k(x) = 0 holds already in CH 0(A), for x ∈ A(K), and f ∈ K× (see

Lemma 3.5). The other statements follow directly from Proposition 3.4. 2

We are now ready to describe our inductive argument.

Proposition 4.11. For the Albanese kernel F 2 we have an equality F 2 = R2, and hence it can
be generated by the following two families of elements:
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(i) for any finite extension k′ ⊃ k, and points a, b ∈ A(k′),

Trk′/k([a+ b]k′ − [a]k′ − [b]k′ + [0]k′) ∈ F 2;

(ii) if L ⊃ k is a finite extension, and a ∈ A(L), then

TrL/k([a]L − [0]L)− ([TrL/k(a)]− [0]) ∈ F 2.

In general, for r > 2 the group F r ⊗ Z[1/(r − 1)!] can be generated by Rr ⊗ Z[1/(r − 1)!] and
elements of the form z − (1/(r − 1)!)Ψr−1 ◦ Φr−1(z), with z ∈ F r−1.

Proof. We proceed through several steps.
Step 1. Compute generators of F 2: we already have an inclusion R2 ⊂ F 2 and an isomorphism

Φr : F 1/F 2 ' S1(k;A). To show that R2 ⊃ F 2, it suffices therefore to prove commutativity of
the following diagram.

(F 1/R2)

1
��

Φ1 // S1(k;A)

Ψ1

yy
(F 1/R2)

(Note that by Lemma 4.10 we have an equality Φ1 ◦Ψ1 = 1.) We need to verify this only for the
generators of F 1/R2, namely for TrL/k([a]− [0]L) with a ∈ A(L). We have

Ψ1 ◦ Φ1(TrL/k([a]− [0]L)) = Ψ1({a}L/k) = TrL/k([a]− [0]L).

Step 2. Let r > 3. Consider the group

Br := Rr ⊗ Z
[

1

(r − 1)!

]
+

〈
z − 1

(r − 1)!
Ψr−1 ◦ Φr−1(z) : z ∈ F r−1

〉
.

We want to show that F r ⊗ Z[1/(r − 1)!] = Br.
Proof of (⊃). We already know Rr ⊗ Z[1/(r − 1)!] ⊂ F r ⊗ Z[1/(r − 1)!] (Lemma 4.10).

Moreover, if z is any element of F r−1, then

Φr−1

(
z − 1

(r − 1)!
Ψr−1 ◦ Φr−1(z)

)
= Φr−1(z)− Φr−1

(
1

(r − 1)!
Ψr−1 ◦ Φr−1(z)

)

= Φr−1(z)−
(

Φr−1 ◦
1

(r − 1)!
Ψr−1

)
(Φr−1(z))

= Φr−1(z)− Φr−1(z) = 0.

Thus, z − (1/(r − 1)!)Ψr−1 ◦ Φr−1(z) ∈ ker Φr−1 ∩ F r−1 ⊗ Z[1/(r − 1)!], which by definition is
F r ⊗ Z[1/(r − 1)!].

Proof of (⊂). Since the group Br contains Rr ⊗ Z[1/(r − 1)!], Lemma 4.10 implies that the
map

Ψr−1 : Sr−1(k;A)⊗ Z
[

1

(r − 1)!

]
→

F r−1 ⊗ Z[1/(r − 1)!]

Br

is well defined and Φr−1 ◦ (1/(r − 1)!)Ψr−1 is the identity map. To complete the argument, it
suffices to show that

1

(r − 1)!
Ψr−1 ◦ Φr−1 :

F r−1 ⊗ Z[1/(r − 1)!]

Br
→

F r−1 ⊗ Z[1/(r − 1)!]

Br

is also the identity. This follows from the definition of Br. Namely, by definition, if z ∈ F r−1,
then z − (1/(r − 1)!)Ψr−1 ◦ Φr−1(z) ∈ Br. 2
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Remark 4.12. Note that the Proposition 4.11 describes a recursive algorithm to compute
generators of the groups F r ⊗ Z[1/(r − 1)!], for r > 3. Namely, having computed a complete
set of generators of F r ⊗ Z[1/(r − 1)!], the formula F r+1 ⊗ Z[1/r!] = Rr+1 ⊗ Z[1/r!] + 〈z −
(1/r!)Ψr ◦Φr(z) : z ∈ F r〉 allows us to compute generators of F r+1⊗Z[1/r!]. As an example, we
compute below a set of generators of the group F 3 ⊗ Z[ 1

2! ].

Generators of F 3 ⊗ Z[ 1
2! ]. According to Proposition 4.11, we have the following families of

generators.
(i) Those that come from R3 ⊗ Z[ 1

2! ], namely:

(a) 1/2m(Trk′/k([a+ b+ c]k′ − [a+ b]k′ − [a+ c]k′ − [b+ c]k′ + [a]k′ + [b]k′ + [c]k′ − [0]k′)),
where a, b, c ∈ A(k′), and m > 0;

(b)

1

2m
(TrE/k([a+ TrL/E(b)]E − [a]E − [TrL/E(b)]E + [0]E)

− (TrL/k([resL/E(a) + b]L − [resL/E(a)]L − [b]L + [0]L))),

where L ⊃ E ⊃ k is a tower of finite extensions, a ∈ A(E), b ∈ A(L) and m > 0.

(ii) Those that come from z − 1
2Ψ2 ◦ Φ2(z) with z ∈ F 2.

Note that if z ∈ G2, then z− 1
2Ψ2 ◦Φ2(z) = 0, thus no new generator is obtained in this way.

The only remaining generating family is of the form

1

2m
([TrL/k(a)]− [0]− TrL/k([a]L − [0]L)− 1

2
Ψ2Φ2([TrL/k(a)]− [0]− TrL/k([a]L − [0]L))),

where L ⊃ k is a finite extension, a ∈ A(L) and m > 0.

5. A cycle map to Galois cohomology

In this section we recall the definition of the Somekawa map [Som90] which will in turn induce
a cycle map to Galois cohomology. Let n be an integer invertible in k and A an abelian variety
over k. We consider the connecting homomorphism δ : A/nA → H1(k,A[n]) of the Kummer
sequence of A,

0 −→ A[n] −→ A
·n−→ A −→ 0.

We will denote by ∪ the cup product pairing on H?(k,A[n]⊗?). The Somekawa map is defined
as follows:

Kr(k;A)

n

sn−→Hr(k,A[n]⊗r)

{a1, . . . , ar}k′/k −→ Cork′/k(δ(a1) ∪ · · · ∪ δ(ar)),
where by Cork′/k we denote the corestriction map of Galois cohomology Hr(k′, A[n]⊗r) → Hr(k,
A[n]⊗r).

Definition 5.1. Let r > 1 be a positive integer. We define the wedge product
∧r A[n] as the

cokernel of the map 0 → Symr(A[n]) → A[n]⊗r, where Symr(A[n]) is the subgroup of A[n]⊗r

fixed by the action of Σr.

Proposition 5.2. Let A be an abelian variety over k and let n be an integer which is invertible
in k. Then the Somekawa map induces

Sr(k;A)

n

sn−→ Hr

(
k,

r∧
A[n]

)
.

450

https://doi.org/10.1112/S0010437X14007453 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007453


On a filtration of CH 0 for an abelian variety

Proof. The projection A[n]⊗r
p∧−→∧r A[n] induces a morphism Hr(k,A[n]⊗r)

p∧−→Hr(k,
∧r A[n]).

Let {a1, . . . , ar}L/k be any symbol in Kr(k;A) and let σ ∈ Σr be any permutation of the set

{1, . . . , r}. We need to show that p∧ ◦ sn({a1, . . . , ar}L/k) = p∧ ◦ sn({aσ(1), . . . , aσ(r)}L/k). Since

any permutation σ can be written as a product of transpositions of the form τ = (i, i + 1), it

suffices to show that for all i ∈ {1, . . . , r − 1},

p∧ ◦ sn({a1, . . . , ai, ai+1, . . . , ar}L/k) = p∧ ◦ sn({{a1, . . . , ai+1, ai, . . . , ar}L/k).

We consider the map

t : A[n]⊗A[n]⊗ · · · ⊗A[n] → A[n]⊗A[n]⊗ · · · ⊗A[n]

a1 ⊗ · · · ⊗ ai ⊗ ai+1 ⊗ · · · ⊗ ar → a1 ⊗ · · · ⊗ ai+1 ⊗ ai ⊗ · · · ⊗ ar.

Then for the induced map t? : Hr(k,A[n]⊗
r
) → Hr(k,A[n]⊗

r
) the following holds:

Cork′/k(δ(a1) ∪ · · · ∪ δ(ai+1) ∪ δ(ai) ∪ · · · ∪ δ(ar))
= −t?(Cork′/k(δ(a1) ∪ · · · ∪ δ(ai)) ∪ δ(ai+1) ∪ · · · ∪ δ(ar)).

(The last equality is a general fact about cup products in group cohomology. For a proof, we

refer to [Bro94, p. 111].) Next note that the following diagram is commutative.

Hr(k,⊗rA[n])
t? //

p∧
��

Hr(k,⊗rA[n])

p∧
��

Hr(k,
∧r A[n])

−1 // Hr(k,
∧r A[n])

To conclude, we have

p∧(Cork′/k(δ(a1) ∪ · · · ∪ δ(ai+1) ∪ δ(ai) ∪ · · · ∪ δ(ar)))
= p∧(−t?(Cork′/k(δ(a1) ∪ · · · ∪ δ(ai) ∪ δ(ai+1) ∪ · · · ∪ δ(ar)))
= p∧(Cork′/k(δ(a1) ∪ · · · ∪ δ(ai) ∪ δ(ai+1) ∪ · · · ∪ δ(ar))).

The result now follows. 2

Corollary 5.3. For any integer n invertible in k and any r > 0, the Somekawa map and the

map Φr induce a cycle map to Galois cohomology:

F rCH 0(A)/F r+1CH 0(A)

n
−→ Hr

(
k,

r∧
A[n]

)
.

6. The p-adic case

Throughout this section we assume that the base field k is a finite extension of Qp, where p is a

prime number. Using the results of Raskind and Spiess [RS00], we obtain some divisibility results

for our filtration. Furthermore, using the injectivity of the Galois symbol K2(k;A)/n ↪→ H2(k,

A[n]⊗2) in the special case when A has split multiplicative reduction, a result proved by Yamazaki

in [Yam05], we obtain a result for the Brauer group of A.
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6.1 Divisibility results
Remark 6.1. We recall that if A is an abelian variety over the p-adic field k and A is the Néron
model of A, then we say that A has semi-abelian reduction if the connected component, A0

s, of
the special fiber As of A containing the neutral element fits into a short exact sequence

0 → T → A0
s → B → 0,

where T is a torus and B an abelian variety over the residue field κ of k. Further, we say that
A has split semi-ordinary reduction, if it has semi-abelian reduction with T a split torus and B
an ordinary abelian variety. For definitions and properties regarding the Néron model A of A we
refer to [BLR90] and [FC91].

Raskind and Spiess obtained the following important result.

Theorem 6.2 [RS00, Theorem 4.5]. Let A1, . . . , An be abelian varieties over k with split semi-
ordinary reduction. Then for n > 2, the group K(k;A1, . . . , An) is the direct sum of a finite
group F and a divisible group D. For n > 3, the group K(k;A1, . . . , An) is in fact divisible
[RS00, Remark 4.4.5].

Thus, in our set up, if we assume that the abelian variety A has split semi-ordinary reduction,
then Theorem 3.8 has the following corollary.

Corollary 6.3. Let A be an abelian variety over a p-adic field k having split semi-ordinary
reduction. Then for the filtration defined above, the following hold:

(i) for r > 3, the groups F r/F r+1 are divisible;

(ii) the group F 2/F 3 ⊗ Z[1
2 ] is a direct sum of a divisible group and a finite group.

Proof. Everything follows directly from Theorem 3.8, once we note that for r > 3 the divisibility

of Sr(k;A) yields an equality Sr(k;A) = r!Sr(k;A). Thus, the injective map F r/F r+1 Φr
↪→ Sr(k;A)

is also surjective. 2

6.2 The Brauer group
In this section we compute the kernel of the map

CH 0(A)⊗ Z[1
2 ] → Br(A)? ⊗ Z[1

2 ]

induced by the Brauer–Manin pairing, in the special case when the abelian variety A has split
multiplicative reduction. First, we review some definitions.

(i) Let X be a smooth, projective, geometrically connected variety over the p-adic field k.
By the Brauer group of X we will always mean the group H2(Xet,Gm) and we will denote it by
Br(X). There is a well-defined pairing of abelian groups

〈 , 〉X : CH 0(X)×Br(X) → Q/Z

defined as follows. If α ∈ Br(X) is an element of the Brauer group and x ∈ X a closed point of
X, then the closed immersion ιx : Spec(k(x)) → X induces the pullback ι?x : Br(X) → Br(k(x)).
We define

〈x, α〉X = Cork(x)/k(ι
?
x(α)) ∈ Br(k) ' Q/Z,

where Cork(x)/k : Br(k(x)) → Br(k) is the corestriction map and the isomorphism Br(k) ' Q/Z
is via the invariant map of local class field theory. To show that this definition factors through
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rational equivalence, we reduce to the case of curves, where the well-definedness of the pairing
follows by a result of Lichtenbaum [Lic69].

(ii) We say that an abelian variety A of dimension d over k has split multiplicative reduction,
if the connected component A0

s, containing the neutral element of the special fiber As of the
Néron model A of A is a split torus. In this case, the theory of degeneration of abelian varieties
[FC91, ch. III, Proposition 8.1] yields that there exists a split torus T ' G⊕dm over k and a finitely
generated free abelian group L ⊂ T (k) of rank d, such that for any finite extension k′/k, there
is an isomorphism A(k′) ' T (k′)/L.

We will first prove a lemma which holds for any smooth, projective, geometrically connected
variety X over k, which connects the pairing 〈 , 〉X and the usual cycle map to étale cohomology,

ρX,n : CH 0(X)/n → H2d(X,Z/n(d)).

Notation. We denote by Z/n(d) the abelian sheaf µ⊗dn on Xet.

Lemma 6.4. Let X be a smooth, projective, geometrically connected variety over k. There is
the following commutative diagram.

CH 0(X)/n ρX,n
//

〈 , 〉X
��

H2d(Xet,Z/n(d))

��
(Br(X)[n])? // (H2(X,µn))?

Proof. First we observe that Tate and Poincaré duality induce a non-degenerate pairing of finite
abelian groups

H2(X,µn)×H2d(X,Z/n(d)) → Z/n.

(See [Sai87] for a proof of this statement, due to Saito.) Note that this pairing induces the right

vertical map of the diagram stated in the lemma, H2d(X,Z/n(d))
'−→ H2(X,µn)?, which is

therefore an isomorphism.
Let now x be a closed point of X. We obtain a commutative diagram

H0(x,Z/n)
Gx //

'
��

H2d(Xet,Z/n(d))

��
(H2(x, µn))?

ι?x // (H2(X,µn))?

where the left vertical map is the isomorphism induced by Tate duality, H2(X,µn)
ι?x−→H2(x, µn)

is the pullback map and Gx is the Gysin map. Recall that the cycle map ρX,n : CH 0(X)/n →

H2d(X,Z/n(d)) is defined by ρX,n([x]) = Gx(1). The result now follows from the following
commutative diagram.

H2(X,µn)
ι?x //

��

H2(x, µn)

'
��

Br(X)[n]
ι?x // Br(k(x))[n]

Here the two vertical maps arise from the Kummer sequence on Xet and xet, respectively. Note
that the commutativity of the last diagram follows from the functoriality properties of étale
cohomology (universality of the functor H?(Xet, )).
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We can thus conclude that the map H0(x,Z/n) → H2d(X,Z/n(d)) → (H2(X,µn))? factors
through H0(x,Z/n) → (Br(X)[n])? and the lemma follows. 2

Corollary 6.5. The kernel of the map CH 0(X)/n
〈 , 〉X−−−→ (Br(X)[n])? coincides with the kernel

of the cycle map ρX,n : CH 0(X)/n → H2d(X,Z/n(d)).

Proof. This follows immediately from the commutative diagram of Lemma 6.4, as soon as
we note that the right vertical map is an isomorphism, and the bottom horizontal map is
injective. The injectivity of (Br(X)/n)? → (H2(X,µn))? follows by applying the exact functor
Hom( ,Q/Z) to the short exact sequence

0 → Pic(X)/n → H2(X,µn) → Br(X)[n] → 0,

arising from the Kummer sequence for X. 2

The Hochschild–Serre spectral sequence. We now go back to the case of an abelian variety A of
dimension d over the p-adic field k. We consider the Hochschild–Serre spectral sequence,

Epq2 = Hp(k,Hq(Ak,F))⇒ Hp+q(A,F),

where F is any abelian sheaf on Aet. For any q > 0, the spectral sequence gives a descending
filtration

Hq(Aet,F) = Hq
0 ⊃ Hq

1 ⊃ · · ·Hq
q−1 ⊃ Hq

q ⊃ 0,

with quotients Hq
i /H

q
i+1 ' Ei,q−i∞ . First we observe that Hq

i = 0, for i > 3. For, the p-adic field

k has cohomological dimension two, which forces Ei,q−i2 to be zero for i > 3. We will use this
filtration for the groups H2d(A,Z/n(d)) and Br(A) = H2(A,Gm).

Lemma 6.6. After ⊗Z[1
2 ], the spectral sequence

Hpq
2 = Hp(k,Hq(Ak,Z/n(d)))⇒ Hp+q(A,Z/n(d))

degenerates at level two.

Proof. We need to show that all of the differentials dpq2 become zero after ⊗Z[1
2 ]. The statement

is clear when p > 1 or p < 0 or q < 1 even before ⊗Z[1
2 ]. We will show that for q > 1, the map

d0,q
2 : H0(k,Hq(A,Z/n(d))) → H2(k,Hq−1(A,Z/n(d)))

has the property 2d0,q
2 = 0. Let m ∈ Z be an integer. We consider the multiplication by m map

A
m−→ A on A. The map m induces a pull-back map on cohomology,

Hp(k,Hq(Ak,Z/n(d)))
m?−→ Hp(k,Hq(Ak,Z/n(d))),

for every p, q. Moreover, since m is a morphism of schemes, the pull back m? is compatible with
the differentials, i.e. the following diagram commutes, for every q > 1.

H0(k,Hq(Ak,Z/n(d)))
m? //

d0,q

��

H0(k,Hq(Ak,Z/n(d)))

d0,q

��
H2(k,Hq−1(Ak,Z/n(d)))

m? // H2(k,Hq−1(Ak,Z/n(d)))
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The action of m? on H0(k,Hq(Ak,Z/n(d))) is multiplication by mq. For, the action is induced by

the action of m? on H1(Ak,Z/n) = Hom(A[n],Z/n), which is multiplication by m. Let α ∈H0(k,

Hq(A,Z/n(d))). Taking m = −1 and using the fact that d0,q is a group homomorphism, we get

d0,q((−1)?(α)) = d0,q((−1)qα) = (−1)qd0,q(α).

On the other hand, using the commutativity of the diagram above, we obtain

d0,q((−1)?(α)) = (−1)?d0,q(α) = (−1)q−1d0,q(α).

We conclude that d0,q(α) = −d0,q(α) and, hence, 2d0,q(α) = 0. 2

Corollary 6.7. The filtration H2d
0 ⊃ H2d

1 ⊃ H2d
2 ⊃ 0 of the group H2d(A,Z/n(d)) induced

by the Hochschild–Serre spectral sequence has successive quotients: H2d
0 /H2d

1 ' H0(k,H2d(A,

Z/n(d))), H2d
1 /H2d

2 ' H1(k,H2d−1(A,Z/n(d))) and H2d
2 ⊗ Z[1

2 ] ' H2(k,H2d−2(A,Z/n(d))) ⊗
Z[1

2 ].

Proof. The third equality follows directly from Lemma 6.6. We claim that for p = 0, 1, Ep,2d−p∞ =

Ep,2d−p2 before ⊗Z[1
2 ]. For p = 1 the statement follows immediately from the observation that

both the differentials d1,2d−1
2 and d−1,2d

2 are zero.

For p = 0, we first observe that E0,2d
∞ = E0,2d

3 = ker d0,2d
2 . For, the map d0,2d

3 : E0,2d
3 → E3,2d−3

3

is the zero map, since E3,2d−3
3 = 0. Thus, we have an inclusion

H2d
0 /H2d

1 = ker d0,2d
2

j
↪→ E0,2d

2 = H0(k,H2(Ak,Z/n(d))).

Since A is projective, Poincaré duality yields an isomorphism

H2d(Ak,Z/n(d)) ' Hom(H0(Ak,Z/n),Z/n) ' Z/n.

We therefore obtain the following commutative diagram.

H2d
0

p

��

CH 0(A)/nρA,n
oo

deg

��
0 // H2d

0 /H2d
1

��

j // Z/n

��
0 0

Note that since A is an abelian variety, there exists a k-rational point, and hence the degree map

is surjective. Since deg = j ◦ p ◦ ρA,n, we conclude that the map j is surjective. 2

Proposition 6.8. Let A be an abelian variety over k and n > 1 a positive integer. The cycle

map

ρA,n : CH 0(A)/n → H2d(A,Z/n(d)),

when restricted to F 3/n is the zero map. Moreover, if A has split multiplicative reduction, then

after ⊗Z[1
2 ], the kernel of the cycle map is precisely the group ((F 3 + nCH 0(A))/n)⊗ Z[1

2 ].
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Proof. Consider the filtration H2d
0 ⊃ H2d

1 ⊃ H2d
2 ⊃ 0 of the group H2d(A,Z/n(d)). Then from

the commutative diagram

0 // F 1/n //// CH 0(A)/n

ρA,n
��

// Z/n

'
��

// 0

0 // H2d
1

// H2d(A,Z/n(d)) // H2d
0 /H2d

1
// 0

we obtain that F 1/n is mapped to H2d
1 via the cycle map and the kernel of ρA,n is contained in

F 1/n. Note that the right vertical map is an isomorphism by Lemma 6.7. Next we consider the
commutative diagram

F 2/n //// F 1/n

ρA,n
��

// (F 1/F 2)/n� _

��

// 0

0 // H2d
2

// H2d
1

// H2d
1 /H2d

2
// 0

from where we obtain that F 2/nmaps toH2d
2 via the cycle map and the kernel of ρA,n is contained

in the image of the map F 2/n → F 1/n. Note that in this case, the right vertical map is injective.
By Poincaré duality and the étale cohomology of abelian varieties over an algebraically closed
field, we obtain isomorphisms

H2d−1(Ak,Z/n(d)) ' H1(Ak,Z/n)(−1) ' Hom(A[n],Z/n)(−1) ' A[n]

and therefore the map (F 1/F 2)/n → H2d
1 /H2d

2 coincides with the map A(k)/n ↪→ H1(k,A[n])

arising from the Kummer sequence for A, 0 → A[n] → A
n−→ A → 0.

Next we turn our attention to the map ρA,n : F 2/n → H2d
2 . Again, by Poincaré duality we

obtain

H2d−2(Ak,Z/n(d))' Hom(H2(Ak,Z/n),Z/n)

' Hom(∧2(Hom(A[n],Z/n),Z/n) ' ∧2A[n].

Thus, the cycle map induces F 2/n
ρA,n−−−−→ H2(k,∧2A[n]).

Now using the map sn : (F 2/F 3)/n → H2(k,∧2A[n]) obtained in Corollary 5.3, we deduce
that ρA,n : F 2/n → H2d

2 factors through (F 2/F 3)/n and therefore the group F 3/n, being the
kernel of F 2/n → (F 2/F 3)/n, is contained in the kernel of the map ρA,n. This concludes the
proof of the first statement of the proposition.

Assume now that A has split multiplicative reduction. We will prove that the map

(F 2/F 3)/n⊗ Z[1
2 ] → H2(k,∧2A[n])⊗ Z[1

2 ]

is injective. By Theorem 3.8, it suffices to prove that the Somekawa map

sn : S2(k;A)/n⊗ Z[1
2 ] → H2(k,∧2A[n])⊗ Z[1

2 ]

is injective. Yamazaki, in [Yam05], proved that in the split multiplicative reduction case, the
map

sn : K2(k;A)/n → H2(k,A[n]⊗A[n])
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is injective. Consider the following commutative diagram.

K2(k;A)/n �
� sn //

��

H2(k,A[n]⊗A[n])

��
S2(k;A)/n

sn // H2(k,∧2A[n])

Note that after ⊗Z[1
2 ] both vertical maps have sections. Namely, the maps

S2(k;A)/n⊗ Z[1
2 ]

i
→K2(k;A)/n⊗ Z[1

2 ]

{a, b}k′/k →
{a, b}k′/k + {b, a}k′/k

2

and

H2(k,∧2A[n])⊗ Z[1
2 ]

j
→ H2(k,A[n]⊗A[n])⊗ Z[1

2 ],

induced by the map

∧2A[n]⊗ Z[1
2 ] → A[n]⊗A[n]⊗ Z[1

2 ]

x ∧ y →
x⊗ y − y ⊗ x

2
.

The injectivity of the map

sn : S2(k;A)/n⊗ Z[1
2 ] → H2(k,∧2A[n])⊗ Z[1

2 ]

hence follows from the following commutative diagram.

K2(k;A)/n⊗ Z[1
2 ] �
� sn // H2(k,A[n]⊗A[n])⊗ Z[1

2 ]

S2(k;A)/n⊗ Z[1
2 ]

?�
i

OO

sn // H2(k,∧2A[n])⊗ Z[1
2 ] 2

?�

j

OO

Theorem 6.9. Let A be an abelian variety over k. The subgroup F 3 is contained in the kernel
of the map

j : CH 0(A) → Br(A)?.

If moreover A has split multiplicative reduction, then the kernel of the map

CH 0(A)⊗ Z[1
2 ]

j⊗Z[1/2]−−−−−→ Br(A)? ⊗ Z[1
2 ]

is the subgroup D of F 2 ⊗Z[1
2 ], which contains F 3 ⊗Z[1

2 ] and is such that D/(F 3 ⊗Z[1
2 ]) is the

maximal divisible subgroup of F 2/F 3 ⊗ Z[1
2 ].

Proof. Assume to contradiction that F 3  ker j and let w ∈ F 3 be such that j(w) 6= 0. This
means that there exists some element α ∈ Br(A) such that 〈w,α〉 6= 0. Note that the group
Br(A) is torsion, because it is a subgroup of Br(K), where K is the function field of A (for a
proof of the last statement see [Gro68, II, Corollary 1.10]). Let m be the order of α. Then j(w)
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gives a nonzero morphism Br(A)[m] → Q/Z. The map F 3
→ Br(A)[m]? factors through F 3/m

and by Proposition 6.8, we obtain the following commutative diagram.

F 3/m

��

0 // H2d(Xet,Z/n(d))

��
Br(X)[m]? // (H2(X,µn))?

Since the bottom map is injective, we conclude that the map F 3/m → Br(A)[m]? is zero, which
is the desired contradiction.

Next, Proposition 6.3 gives us an isomorphism

F 2/F 3 ⊗ Z[1
2 ] ' D0 ⊕ F0,

where F0 is a finite group and D0 is divisible. Let D be the subgroup of F 2 ⊗ Z[1
2 ] such that

D/(F 3 ⊗Z[1
2 ]) ' D0. It is clear that D ⊂ ker(CH 0(A)⊗Z[1

2 ] → Br(A)? ⊗Z[1
2 ]), since Br(A) is

a torsion group.
Assume now that A has split multiplicative reduction. We will show that D is in fact equal

to ker(j ⊗ 1
2). First, we consider the filtration H2

0 ⊃ H2
1 ⊃ H2

2 ⊃ 0 of Br(A) arising from the
Hochschild–Serre spectral sequence, Hp(k,Hq(A,Gm))⇒ Hp+q(A,Gm).

We can easily see that E1,1
∞ = E1,1

2 , as both the differentials d1,1
2 and d−1,2

2 are zero. This

yields an isomorphism H2
1/H

2
2 ' H1(k,H1(Ak,Gm)). Next we observe that E2,0

∞ = E2,0
3 =

E2,0
2 /Im(E0,1

2 → E2,0
2 ). For, both the differentials d2,0

3 and d−1,2
3 are zero. In particular, we have

a surjection E2,0
2 → H2

2 → 0. Dualizing, we obtain an inclusion 0 → (H2
2 )? → (E2,0

2 )?. Since A
is proper, we have an isomorphism

E2,0
2 ' H2(k,H2(Ak,Gm)) ' Br(k) ' Q/Z.

We have a commutative diagram as follows.

0 // F 1 // CH 0(A)

j

��

deg // Z

��

// 0

0 // (H2
0/H

2
2 )? // (H2

0 )? // (H2
2 )? // 0

We claim that the right vertical map is an inclusion. To see this, we observe that the composition

Z → (H2
2 )? ↪→ (E2,0

2 )?

coincides with the inclusion Z ↪→ Ẑ = (Br(k))?. (We note here that Yamazaki is using this exact
same argument for the injectivity in the proof of his Proposition 3.1 in [Yam05].) We conclude
that ker j ⊂ F 1. Moreover, under this map, F 1 is sent to the subgroup (H2

0/H
2
2 )?. Next we

consider the following commutative diagram.

0 // F 2 // F 1

j

��

albA // A(k)

��

// 0

0 // (H2
0/H

2
1 )? // (H2

0/H
2
2 )? // (H2

1/H
2
2 )? // 0
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We claim that the right vertical map is again an injection, as we have an isomorphism H2
1/H

2
2 '

E1,1
2 ' H1(k,Pic(Ak)). Moreover, Tate duality yields an isomorphism

A(k)? ' H1(k, Â) = H1(k,Pic0(Ak))

(see [Mil06]). Applying Hom( ,Q/Z), we obtain an injection

A(k) ↪→ (H1(k,Pic0(Ak)))
?.

We conclude that since the composition

A(k) → (H1(k,Pic(Ak)))
?

→ (H1(k,Pic0(Ak)))
?

is injective, the first map needs to be injective as well. This yields an inclusion ker j ⊂ F 2, and
therefore ker(j ⊗ Z[1

2 ]) ⊂ F 2 ⊗ Z[1
2 ]. Next, note that the map j ⊗ Z[1

2 ] induces

(F 2 ⊗ Z[1
2 ])/D

j⊗Z[1/2]−−−−−→ Br(A)? ⊗ Z[1
2 ].

To see that this last map is injective, let n be the order of (F 2 ⊗ Z[1
2 ])/D = F0. Since D is

divisible, we have an equality
(F 2/F 3)⊗ Z[1

2 ]

n
= F0.

Since the kernel of the map

j ⊗ Z
[

1

2

]
:

(F 2/F 3)⊗ Z[1
2 ]

n
→ Br(A)[n]? ⊗ Z

[
1

2

]

coincides with the kernel of the cycle map

ρA,n ⊗ Z
[

1

2

]
:

(F 2/F 3)⊗ Z[1
2 ]

n
→ H2d(A,Z/n(d))Z

[
1

2

]

(Corollary 6.5), the result follows by the second part of Proposition 6.8. 2

Remark 6.10. We conjecture that if the abelian variety A has semi-ordinary reduction, the group
F 3 is divisible. This would mean that in the special case of split multiplicative reduction, the
cycle map ρA,n : CH 0(A)/n⊗ Z[1

2 ] → H2d(A,Z/n(d))⊗ Z[1
2 ] is injective and the kernel of

j : CH 0(A)⊗ Z[1
2 ] → Br(A)? ⊗ Z[1

2 ]

is the maximal divisible subgroup of CH 0(A)⊗ Z[1
2 ].
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