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Abstract

In this paper, we introduce the concept of a semi-parallelogram and obtain some results for the
Aleksandrov–Rassias problem using this concept. In particular, we resolve an important case of this
problem for mappings preserving two distances with a nonintegral ratio.
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1. Introduction

Let X and Y be normed spaces. A mapping T : X → Y is called an isometry if T
satisfies

‖T (x) − T (y)‖ = ‖x − y‖

for all x, y ∈ X. A distance r > 0 is said to be contractive by T : X → Y if ‖x − y‖ = r
always implies ‖T (x) − T (y)‖ ≤ r. Similarly, a distance r > 0 is said to be extensive
by T if the inequality ‖T (x) − T (y)‖ ≥ r is true for all x, y ∈ X with ‖x − y‖ = r. We
say that r is conservative (or preserved) by T if r is contractive and extensive by T
simultaneously. Obviously, T is an isometry if and only if every distance r > 0 is
conservative by T .

In 1970, Aleksandrov [1] posed a question now known as the Aleksandrov problem
by asking whether a mapping T : X → X with a single conservative distance is an
isometry. The Aleksandrov problem, not only for the mappings of a space into
itself but also for the general mappings T : X → Y from one space into another, has
been studied considerably (see [2, 5–10]). Note that we may assume without loss of
generality that r = 1 when X and Y are normed spaces (see [7]).

In 1953, Beckman and Quarles [2] had already given a positive answer to the
Aleksandrov problem for T : En → En (2 ≤ n <∞), where En is an n-dimensional real
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Euclidean space. Moreover, they also presented counterexamples for the cases n = 1
and n =∞. In order to extend the result to infinite-dimensional spaces, Schröder [10]
introduced a sufficient condition such that if E is a real inner product space with
dim E ≥ 2, T : E → E is surjective and

‖T (x) − T (y)‖ = r⇔ ‖x − y‖ = r

for all x, y ∈ E and for some positive number r > 0, then T is an isometry of E.
In addition, in [10], he showed that with the same assumptions on the space E, if
T : E → E preserves both r and 2r, then T is an isometry of E.

In 1985, Benz [3] generalised the latter result of Schröder to real normed spaces
under an additional condition. Two years later, Benz and Berens [4] showed that the
condition attached to the domain space was redundant.

Theorem 1.1 [4]. Let X and Y be real normed spaces such that dim X ≥ 2 and Y is
strictly convex. Suppose that T : X → Y is a mapping and N ≥ 2 is a fixed positive
integer. If a distance r is contractive and Nr is extensive by T , then T is a linear
isometry up to translation.

By the triangle inequality, it is easy to verify that the condition in Theorem 1.1 that
a distance r is contractive and Nr is extensive by T is equivalent to the property that T
preserves the two distances r and Nr.

In this connection, Rassias [6] asked whether a mapping T : X → Y preserving two
distances with a nonintegral ratio is an isometry. This is now called the Aleksandrov–
Rassias problem. Some results on this problem can be found in [8, 11].

Xiang [11] obtained several impressive results when T : X → Y preserves two or
three distances with a nonintegral ratio and X and Y are real Hilbert spaces.

Theorem 1.2 [11]. Let X and Y be real Hilbert spaces with dim X ≥ 2. Suppose that
T : X → Y preserves the two distances 1 and

√
3. Then T is a linear isometry up to

translation.

Theorem 1.3 [11]. Let X and Y be real Hilbert spaces with dim X ≥ 2. Suppose that
T : X → Y preserves the two distances 1 and n

√
3 for some positive integer n. Then T

is a linear isometry up to translation.

Theorem 1.4 [11]. Let X and Y be real Hilbert spaces with dim X ≥ 2. Suppose
that T : X → Y preserves the three distances 1, a (0 ≤ a ≤ 2) and n

√
4 − a2 for some

nonnegative constant a and for some positive integer n ≥ 2. Then T is a linear isometry
up to translation.

Obviously, Theorem 1.2 is a particular case (n = 1) in Theorem 1.3. In fact, in [11],
Theorem 1.2 is one of the main theorems, while Theorem 1.3 is just a corollary of it in
view of Theorem 1.1. The reason why we list Theorem 1.2 here is that it will be used
to generalise Theorem 1.3 in Section 3 (see Theorem 3.3). Moreover, Theorem 1.4
will also be generalised to Theorem 3.2 in Section 3.
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Figure 1. Illustration of the semi-parallelogram condition (Definition 2.2).
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Figure 2. Illustration of the semi-parallelogram condition (Definition 2.3).

In this paper, we introduce the concept of a semi-parallelogram and obtain
some results for the Aleksandrov–Rassias problem using this concept. In particular,
we resolve an important case of this problem for mappings preserving two distances
with a nonintegral ratio (see Theorem 3.3).

2. Some definitions and lemmas

All the above theorems from Theorem 1.2 to Theorem 1.4 take the parallelogram for
their geometric interpretation (see [11]). In this paper, we work in a real inner product
space X with dim X ≥ 2 and consider, more generally, planar convex quadrilaterals one
of whose two diagonals is divided equally by the other (see Figure 1).

Definition 2.1. A planar convex quadrilateral in X, one of whose two diagonals is
divided equally by the other, is called a semi-parallelogram.

Since a planar convex quadrilateral in X is a parallelogram if and only if its
two diagonals are divided equally by each other, all parallelograms are semi-
parallelograms, but not vice versa.

From now on, ‘(SPC)’ is short for ‘the semi-parallelogram condition’.

Definition 2.2. Let x, y, z and w be four elements in X. We say that a 4-tuple {x, y, z,w}
satisfies (SPC) if x, y, z and w, as four vertices in turn, form a semi-parallelogram,
where the line segment with end points y and w passes through the mid point of the
line segment with end points x and z (see Figure 1).
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Figure 3. A parallelogram occurring in the proof of Lemma 2.5.

Definition 2.3. Let r1, r2, r3, r4, r5 and r6 be six positive numbers. We say that a 6-
tuple {r1, r2, r3, r4, r5, r6} satisfies (SPC) if there exists a 4-tuple {x, y, z,w} satisfying
(SPC) such that r1, r2, r3, r4, r5 and r6 are the lengths of x–y, y–z, z–w,w–x, x–z and
y–w, respectively (see Figure 2).

By the parallelogram law, one can easily verify the following result.

Remark 2.4. A 6-tuple {r1, r2, r3, r4, r5, r6} satisfies (SPC) if and only if both

max{|r1 − r2|, |r3 − r4|} < r5 < min{r1 + r2, r3 + r4}

and
r6 = 1

2

(√
2r2

1 + 2r2
2 − r2

5 +

√
2r2

3 + 2r2
4 − r2

5

)
hold.

Lemma 2.5. Let X and Y be real inner product spaces with dim X ≥ 2, T : X → Y a
mapping and {r1, r2, r3, r4, r5, r6} a 6-tuple satisfying (SPC). Suppose that r1, r2, r3, r4

are contractive and r5, r6 extensive by T . Then r1, r2, r3, r4, r5, r6 are conservative by T .

Proof. By the hypothesis, there exists a 4-tuple {x, y, z,w} satisfying (SPC) in X, where
r1, r2, r3, r4, r5 and r6 are the lengths of x–y, y–z, z–w,w–x, x–z and y–w, respectively.
Thus, x, y, z and w form a semi-parallelogram in X, as shown in Figure 2.

Set
ξ = 1

2 (T (x) + T (z)), η = 2ξ − T (y).

Then T (x),T (y),T (z) and η form a parallelogram in Y , as shown in Figure 3.
By the parallelogram law and the assumptions on r1, r2 and r5,

‖T (y) − ξ‖ = 1
2‖T (y) − η‖

= 1
2

√
2‖T (x) − T (y)‖2 + 2‖T (y) − T (z)‖2 − ‖T (x) − T (z)‖2

≤ 1
2

√
2‖x − y‖2 + 2‖y − z‖2 − ‖x − z‖2

= 1
2

√
2r2

1 + 2r2
2 − r2

5.
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Figure 4. A semi-parallelogram arising from the proof of Lemma 2.5.

Similarly,

‖T (w) − ξ‖ ≤ 1
2

√
2r2

3 + 2r2
4 − r2

5.

Hence,

‖T (y) − T (w)‖ ≤ ‖T (y) − ξ‖ + ‖ξ − T (w)‖

≤ 1
2

(√
2r2

1 + 2r2
2 − r2

5 +

√
2r2

3 + 2r2
4 − r2

5

)
.

By Remark 2.4 and the assumption on r6,

‖T (y) − T (w)‖ = 1
2

(√
2r2

1 + 2r2
2 − r2

5 +

√
2r2

3 + 2r2
4 − r2

5

)
.

Thus, all the ‘≤’ signs in the above inequalities can be replaced with ‘=’. This
completes the proof. �

From the above proof, we can draw a further conclusion that T (x), T (y), T (z) and
T (w) form a semi-parallelogram in Y as shown in Figure 4, which is the same as that
formed by x, y, z and w in X in Figure 1. To show this, we need only to prove that
T (y), ξ and T (w) are collinear in Y . However, this is obviously true because of the
strict convexity of Y and the equality ‖T (y) − T (w)‖ = ‖T (y) − ξ‖ + ‖ξ − T (w)‖.

Furthermore, the proof of Lemma 2.5 implies the following result.

Remark 2.6. Let X and Y be real inner product spaces with dim X ≥ 2, T : X → Y a
mapping and {r1, r2, r3, r4, r5, r6} a 6-tuple satisfying (SPC). Suppose that r1, r2, r3, r4

are contractive and r5 extensive by T . Then r6 is contractive by T .

Lemma 2.7. Let X and Y be normed spaces, T : X → Y a mapping and N a fixed
positive integer. Suppose that a distance r is contractive by T . Then Nr is also
contractive by T .

Proof. It is easy to verify this lemma by the triangle inequality. �
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Figure 5. Geometric interpretation of Theorem 3.3.

3. Main results

Theorem 3.1. Let X and Y be real inner product spaces with dim X ≥ 2, T : X → Y
a mapping and {r1, r2, r3, r4, r5, r6} a 6-tuple satisfying (SPC), where there exist two
different numbers ri and r j (1 ≤ i, j ≤ 6) such that ri = Nr j for some positive integer
N ≥ 2. Suppose that r1, r2, r3, r4 are contractive and r5, r6 extensive by T . Then T is a
linear isometry up to translation.

Proof. The proof follows at once from Lemma 2.5 and Theorem 1.1. �

Theorem 3.2. Let X and Y be real inner product spaces with dim X ≥ 2, T : X → Y a
mapping and {r1, r2, r3, r4, r5, r6} a 6-tuple satisfying (SPC). Suppose that r1, r2, r3, r4
are contractive and r5,Nr6 extensive by T for some positive integer N ≥ 2. Then T is
a linear isometry up to translation.

Proof. The proof follows from Remark 2.6 and Theorem 1.1. �

The case a = 0 or a = 2 in Theorem 1.4 follows from Theorem 1.1 and the case
0 < a < 2 can be seen as the case {r1, r2, r3, r4, r5, r6} = {1, 1, 1, 1, a,

√
4 − a2} in

Theorem 3.2. Thus, to some extent, Theorem 3.2 is a generalisation of Theorem 1.4.

Theorem 3.3. Let X and Y be real inner product spaces with dim X ≥ 2 and T : X→ Y
a mapping. Suppose that 1 is conservative and k

(√
4n2 − 1 +

√
4m2 − 1

)
/2 extensive

by T for some positive integers k, n and m. Then T is a linear isometry up to
translation.

Proof. The case k = n = m = 1 follows from Theorem 1.2. By Lemma 2.7, the case
k = 1, max{n,m} > 1 can be seen as the case {r1, r2, r3, r4, r5, r6} =

{
n, n,m,m, 1,(√

4n2 − 1 +
√

4m2 − 1
)
/2

}
in Theorem 3.1, and the case k > 1 is a corollary of

Theorem 3.2. �

Theorem 1.3 can be seen as the particular case n = m = 1 in Theorem 3.3. Thus,
to some extent, Theorem 3.3 is a generalisation of Theorem 1.3. In contrast to
Theorem 1.3, whose geometric interpretation is based on a rhombus (which is
also a parallelogram), Theorem 3.3 takes its geometric interpretation from a kite
quadrilateral (which is not necessarily a parallelogram), as shown in Figure 5, where
r6 =

(√
4n2 − 1 +

√
4m2 − 1

)
/2.
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