ON THE ALEKSANDROV-RASSIAS PROBLEM OF DISTANCE PRESERVING MAPPINGS

SHUMING WANG ${ }^{\boxtimes}$ and WEIYUN REN

(Received 24 October 2014; accepted 5 January 2015; first published online 17 March 2015)

Abstract

In this paper, we introduce the concept of a semi-parallelogram and obtain some results for the Aleksandrov-Rassias problem using this concept. In particular, we resolve an important case of this problem for mappings preserving two distances with a nonintegral ratio.

2010 Mathematics subject classification: primary 46B04; secondary 46B20, 46C05.
Keywords and phrases: isometry, Aleksandrov problem, conservative distance, semi-parallelogram, inner product space.

1. Introduction

Let X and Y be normed spaces. A mapping $T: X \rightarrow Y$ is called an isometry if T satisfies

$$
\|T(x)-T(y)\|=\|x-y\|
$$

for all $x, y \in X$. A distance $r>0$ is said to be contractive by $T: X \rightarrow Y$ if $\|x-y\|=r$ always implies $\|T(x)-T(y)\| \leq r$. Similarly, a distance $r>0$ is said to be extensive by T if the inequality $\|T(x)-T(y)\| \geq r$ is true for all $x, y \in X$ with $\|x-y\|=r$. We say that r is conservative (or preserved) by T if r is contractive and extensive by T simultaneously. Obviously, T is an isometry if and only if every distance $r>0$ is conservative by T.

In 1970, Aleksandrov [1] posed a question now known as the Aleksandrov problem by asking whether a mapping $T: X \rightarrow X$ with a single conservative distance is an isometry. The Aleksandrov problem, not only for the mappings of a space into itself but also for the general mappings $T: X \rightarrow Y$ from one space into another, has been studied considerably (see [2, 5-10]). Note that we may assume without loss of generality that $r=1$ when X and Y are normed spaces (see [7]).

In 1953, Beckman and Quarles [2] had already given a positive answer to the Aleksandrov problem for $T: E^{n} \rightarrow E^{n}(2 \leq n<\infty)$, where E^{n} is an n-dimensional real

[^0]Euclidean space. Moreover, they also presented counterexamples for the cases $n=1$ and $n=\infty$. In order to extend the result to infinite-dimensional spaces, Schröder [10] introduced a sufficient condition such that if E is a real inner product space with $\operatorname{dim} E \geq 2, T: E \rightarrow E$ is surjective and

$$
\|T(x)-T(y)\|=r \Leftrightarrow\|x-y\|=r
$$

for all $x, y \in E$ and for some positive number $r>0$, then T is an isometry of E. In addition, in [10], he showed that with the same assumptions on the space E, if $T: E \rightarrow E$ preserves both r and $2 r$, then T is an isometry of E.

In 1985, Benz [3] generalised the latter result of Schröder to real normed spaces under an additional condition. Two years later, Benz and Berens [4] showed that the condition attached to the domain space was redundant.

Theorem 1.1 [4]. Let X and Y be real normed spaces such that $\operatorname{dim} X \geq 2$ and Y is strictly convex. Suppose that $T: X \rightarrow Y$ is a mapping and $N \geq 2$ is a fixed positive integer. If a distance r is contractive and $N r$ is extensive by T, then T is a linear isometry up to translation.

By the triangle inequality, it is easy to verify that the condition in Theorem 1.1 that a distance r is contractive and $N r$ is extensive by T is equivalent to the property that T preserves the two distances r and $N r$.

In this connection, Rassias [6] asked whether a mapping $T: X \rightarrow Y$ preserving two distances with a nonintegral ratio is an isometry. This is now called the AleksandrovRassias problem. Some results on this problem can be found in [8, 11].

Xiang [11] obtained several impressive results when $T: X \rightarrow Y$ preserves two or three distances with a nonintegral ratio and X and Y are real Hilbert spaces.

Theorem 1.2 [11]. Let X and Y be real Hilbert spaces with $\operatorname{dim} X \geq 2$. Suppose that $T: X \rightarrow Y$ preserves the two distances 1 and $\sqrt{3}$. Then T is a linear isometry up to translation.

Theorem 1.3 [11]. Let X and Y be real Hilbert spaces with $\operatorname{dim} X \geq 2$. Suppose that $T: X \rightarrow Y$ preserves the two distances 1 and $n \sqrt{3}$ for some positive integer n. Then T is a linear isometry up to translation.

Theorem 1.4 [11]. Let X and Y be real Hilbert spaces with $\operatorname{dim} X \geq 2$. Suppose that $T: X \rightarrow Y$ preserves the three distances $1, a(0 \leq a \leq 2)$ and $n \sqrt{4-a^{2}}$ for some nonnegative constant a and for some positive integer $n \geq 2$. Then T is a linear isometry up to translation.

Obviously, Theorem 1.2 is a particular case $(n=1)$ in Theorem 1.3. In fact, in [11], Theorem 1.2 is one of the main theorems, while Theorem 1.3 is just a corollary of it in view of Theorem 1.1. The reason why we list Theorem 1.2 here is that it will be used to generalise Theorem 1.3 in Section 3 (see Theorem 3.3). Moreover, Theorem 1.4 will also be generalised to Theorem 3.2 in Section 3.

Figure 1. Illustration of the semi-parallelogram condition (Definition 2.2).

Figure 2. Illustration of the semi-parallelogram condition (Definition 2.3).

In this paper, we introduce the concept of a semi-parallelogram and obtain some results for the Aleksandrov-Rassias problem using this concept. In particular, we resolve an important case of this problem for mappings preserving two distances with a nonintegral ratio (see Theorem 3.3).

2. Some definitions and lemmas

All the above theorems from Theorem 1.2 to Theorem 1.4 take the parallelogram for their geometric interpretation (see [11]). In this paper, we work in a real inner product space X with $\operatorname{dim} X \geq 2$ and consider, more generally, planar convex quadrilaterals one of whose two diagonals is divided equally by the other (see Figure 1).
Definition 2.1. A planar convex quadrilateral in X, one of whose two diagonals is divided equally by the other, is called a semi-parallelogram.

Since a planar convex quadrilateral in X is a parallelogram if and only if its two diagonals are divided equally by each other, all parallelograms are semiparallelograms, but not vice versa.

From now on, '(SPC)' is short for 'the semi-parallelogram condition'.
Definition 2.2. Let x, y, z and w be four elements in X. We say that a 4-tuple $\{x, y, z, w\}$ satisfies (SPC) if x, y, z and w, as four vertices in turn, form a semi-parallelogram, where the line segment with end points y and w passes through the mid point of the line segment with end points x and z (see Figure 1).

Figure 3. A parallelogram occurring in the proof of Lemma 2.5.

Definition 2.3. Let $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ and r_{6} be six positive numbers. We say that a 6tuple $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right\}$ satisfies (SPC) if there exists a 4-tuple $\{x, y, z, w\}$ satisfying (SPC) such that $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ and r_{6} are the lengths of $x-y, y-z, z-w, w-x, x-z$ and $y-w$, respectively (see Figure 2).

By the parallelogram law, one can easily verify the following result.
Remark 2.4. A 6-tuple $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right\}$ satisfies (SPC) if and only if both

$$
\max \left\{\left|r_{1}-r_{2}\right|,\left|r_{3}-r_{4}\right|\right\}<r_{5}<\min \left\{r_{1}+r_{2}, r_{3}+r_{4}\right\}
$$

and

$$
r_{6}=\frac{1}{2}\left(\sqrt{2 r_{1}^{2}+2 r_{2}^{2}-r_{5}^{2}}+\sqrt{2 r_{3}^{2}+2 r_{4}^{2}-r_{5}^{2}}\right)
$$

hold.
Lemma 2.5. Let X and Y be real inner product spaces with $\operatorname{dim} X \geq 2, T: X \rightarrow Y a$ mapping and $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right\}$ a 6 -tuple satisfying (SPC). Suppose that $r_{1}, r_{2}, r_{3}, r_{4}$ are contractive and r_{5}, r_{6} extensive by T. Then $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}$ are conservative by T.

Proof. By the hypothesis, there exists a 4-tuple $\{x, y, z, w\}$ satisfying (SPC) in X, where $r_{1}, r_{2}, r_{3}, r_{4}, r_{5}$ and r_{6} are the lengths of $x-y, y-z, z-w, w-x, x-z$ and $y-w$, respectively. Thus, x, y, z and w form a semi-parallelogram in X, as shown in Figure 2.

Set

$$
\xi=\frac{1}{2}(T(x)+T(z)), \quad \eta=2 \xi-T(y) .
$$

Then $T(x), T(y), T(z)$ and η form a parallelogram in Y, as shown in Figure 3.
By the parallelogram law and the assumptions on r_{1}, r_{2} and r_{5},

$$
\begin{aligned}
\|T(y)-\xi\| & =\frac{1}{2}\|T(y)-\eta\| \\
& =\frac{1}{2} \sqrt{2\|T(x)-T(y)\|^{2}+2\|T(y)-T(z)\|^{2}-\|T(x)-T(z)\|^{2}} \\
& \leq \frac{1}{2} \sqrt{2\|x-y\|^{2}+2\|y-z\|^{2}-\|x-z\|^{2}} \\
& =\frac{1}{2} \sqrt{2 r_{1}^{2}+2 r_{2}^{2}-r_{5}^{2}} .
\end{aligned}
$$

Figure 4. A semi-parallelogram arising from the proof of Lemma 2.5.

Similarly,

$$
\|T(w)-\xi\| \leq \frac{1}{2} \sqrt{2 r_{3}^{2}+2 r_{4}^{2}-r_{5}^{2}}
$$

Hence,

$$
\begin{aligned}
\|T(y)-T(w)\| & \leq\|T(y)-\xi\|+\|\xi-T(w)\| \\
& \leq \frac{1}{2}\left(\sqrt{2 r_{1}^{2}+2 r_{2}^{2}-r_{5}^{2}}+\sqrt{2 r_{3}^{2}+2 r_{4}^{2}-r_{5}^{2}}\right) .
\end{aligned}
$$

By Remark 2.4 and the assumption on r_{6},

$$
\|T(y)-T(w)\|=\frac{1}{2}\left(\sqrt{2 r_{1}^{2}+2 r_{2}^{2}-r_{5}^{2}}+\sqrt{2 r_{3}^{2}+2 r_{4}^{2}-r_{5}^{2}}\right)
$$

Thus, all the ' \leq ' signs in the above inequalities can be replaced with ' $=$ '. This completes the proof.

From the above proof, we can draw a further conclusion that $T(x), T(y), T(z)$ and $T(w)$ form a semi-parallelogram in Y as shown in Figure 4, which is the same as that formed by x, y, z and w in X in Figure 1. To show this, we need only to prove that $T(y), \xi$ and $T(w)$ are collinear in Y. However, this is obviously true because of the strict convexity of Y and the equality $\|T(y)-T(w)\|=\|T(y)-\xi\|+\|\xi-T(w)\|$.

Furthermore, the proof of Lemma 2.5 implies the following result.
Remark 2.6. Let X and Y be real inner product spaces with $\operatorname{dim} X \geq 2, T: X \rightarrow Y$ a mapping and $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right\}$ a 6 -tuple satisfying (SPC). Suppose that $r_{1}, r_{2}, r_{3}, r_{4}$ are contractive and r_{5} extensive by T. Then r_{6} is contractive by T.

Lemma 2.7. Let X and Y be normed spaces, $T: X \rightarrow Y$ a mapping and N a fixed positive integer. Suppose that a distance r is contractive by T. Then $N r$ is also contractive by T.

Proof. It is easy to verify this lemma by the triangle inequality.

Figure 5. Geometric interpretation of Theorem 3.3.

3. Main results

Theorem 3.1. Let X and Y be real inner product spaces with $\operatorname{dim} X \geq 2, T: X \rightarrow Y$ a mapping and $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right\}$ a 6 -tuple satisfying (SPC), where there exist two different numbers r_{i} and $r_{j}(1 \leq i, j \leq 6)$ such that $r_{i}=N r_{j}$ for some positive integer $N \geq 2$. Suppose that $r_{1}, r_{2}, r_{3}, r_{4}$ are contractive and r_{5}, r_{6} extensive by T. Then T is a linear isometry up to translation.

Proof. The proof follows at once from Lemma 2.5 and Theorem 1.1.
Theorem 3.2. Let X and Y be real inner product spaces with $\operatorname{dim} X \geq 2, T: X \rightarrow Y a$ mapping and $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right\}$ a 6 -tuple satisfying (SPC). Suppose that $r_{1}, r_{2}, r_{3}, r_{4}$ are contractive and $r_{5}, N r_{6}$ extensive by T for some positive integer $N \geq 2$. Then T is a linear isometry up to translation.

Proof. The proof follows from Remark 2.6 and Theorem 1.1.
The case $a=0$ or $a=2$ in Theorem 1.4 follows from Theorem 1.1 and the case $0<a<2$ can be seen as the case $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right\}=\left\{1,1,1,1, a, \sqrt{4-a^{2}}\right\}$ in Theorem 3.2. Thus, to some extent, Theorem 3.2 is a generalisation of Theorem 1.4.

Theorem 3.3. Let X and Y be real inner product spaces with $\operatorname{dim} X \geq 2$ and $T: X \rightarrow Y$ a mapping. Suppose that 1 is conservative and $k\left(\sqrt{4 n^{2}-1}+\sqrt{4 m^{2}-1}\right) / 2$ extensive by T for some positive integers k, n and m. Then T is a linear isometry up to translation.

Proof. The case $k=n=m=1$ follows from Theorem 1.2. By Lemma 2.7, the case $k=1, \max \{n, m\}>1$ can be seen as the case $\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}\right\}=\{n, n, m, m, 1$, $\left.\left(\sqrt{4 n^{2}-1}+\sqrt{4 m^{2}-1}\right) / 2\right\}$ in Theorem 3.1, and the case $k>1$ is a corollary of Theorem 3.2.

Theorem 1.3 can be seen as the particular case $n=m=1$ in Theorem 3.3. Thus, to some extent, Theorem 3.3 is a generalisation of Theorem 1.3. In contrast to Theorem 1.3, whose geometric interpretation is based on a rhombus (which is also a parallelogram), Theorem 3.3 takes its geometric interpretation from a kite quadrilateral (which is not necessarily a parallelogram), as shown in Figure 5, where $r_{6}=\left(\sqrt{4 n^{2}-1}+\sqrt{4 m^{2}-1}\right) / 2$.

Acknowledgement

The authors are grateful to Professor Guanggui Ding for valuable information and useful suggestions.

References

[1] A. D. Aleksandrov, 'Mapping of families of sets', Sov. Math. Dokl. 11 (1970), 116-120.
[2] F. S. Beckman and D. A. Quarles Jr, 'On isometries of Euclidean spaces', Proc. Amer. Math. Soc. 4 (1953), 810-815.
[3] W. Benz, 'Isometrien in normierten Räumen’, Aequationes Math. 29 (1985), 204-209.
[4] W. Benz and H. Berens, 'A contribution to a theorem of Ulam and Mazur', Aequationes Math. 34 (1987), 61-63.
[5] Y. Ma, 'The Aleksandrov problem for unit distance preserving mapping', Acta Math. Sci. Ser. B Engl. Ed. 20 (2000), 359-364.
[6] Th. M. Rassias, 'Mappings that preserve unit distance', Indian J. Math. 32 (1990), 275-278.
[7] Th. M. Rassias, 'Properties of isometries and approximate isometries', in: Recent Progress in Inequalities (ed. G. V. Milovanovic) (Kluwer Academic, Dordrecht, 1998), 341-379.
[8] Th. M. Rassias, 'On the A. D. Aleksandrov problem of conservative distances and the MazurUlam theorem', Nonlinear Anal. 47 (2001), 2597-2608.
[9] Th. M. Rassias and P. Šemrl, 'On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mapping', Proc. Amer. Math. Soc. 118 (1993), 919-925.
[10] E. M. Schröder, 'Eine Ergänzung zum Satz von Beckman und Quarles', Aequationes Math. 19 (1979), 89-92.
[11] S. Xiang, 'Mappings of conservative distances and the Mazur-Ulam theorem', J. Math. Anal. Appl. 254 (2001), 262-274.

SHUMING WANG, School of Science, Tianjin University,
Tianjin 300072, China
e-mail: wsmmath@163.com

WEIYUN REN, School of Science, Tianjin University,
Tianjin 300072, China
e-mail: rwyun@163.com

[^0]: This work is supported by the National Natural Science Foundation of China (11371201).
 (C) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

