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Abstract

In this paper, we introduce the concept of a semi-parallelogram and obtain some results for the
Aleksandrov—Rassias problem using this concept. In particular, we resolve an important case of this
problem for mappings preserving two distances with a nonintegral ratio.
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1. Introduction

Let X and Y be normed spaces. A mapping 7 : X — Y is called an isometry if T
satisfies

IT(x) =TIl = llx =yl

for all x, y € X. A distance r > 0 is said to be contractive by T : X —» Y if ||x —y|| =7
always implies ||T(x) — T(y)|| < r. Similarly, a distance r > 0 is said to be extensive
by T if the inequality ||7(x) — T(y)|| > r is true for all x,y € X with |[x —y|| =r. We
say that r is conservative (or preserved) by 7T if r is contractive and extensive by T
simultaneously. Obviously, T is an isometry if and only if every distance r > 0 is
conservative by 7.

In 1970, Aleksandrov [1] posed a question now known as the Aleksandrov problem
by asking whether a mapping 7 : X — X with a single conservative distance is an
isometry. The Aleksandrov problem, not only for the mappings of a space into
itself but also for the general mappings 7 : X — Y from one space into another, has
been studied considerably (see [2, 5—10]). Note that we may assume without loss of
generality that » = 1 when X and Y are normed spaces (see [7]).

In 1953, Beckman and Quarles [2] had already given a positive answer to the
Aleksandrov problem for T : E" — E" (2 < n < 00), where E" is an n-dimensional real
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Euclidean space. Moreover, they also presented counterexamples for the cases n = 1
and n = co. In order to extend the result to infinite-dimensional spaces, Schroder [10]
introduced a sufficient condition such that if E is a real inner product space with
dimE >2,T : E — E is surjective and

ITx) -TON =r e llx=yl=r

for all x,y € E and for some positive number r > 0, then T is an isometry of E.
In addition, in [10], he showed that with the same assumptions on the space E, if
T : E — E preserves both r and 2r, then T is an isometry of E.

In 1985, Benz [3] generalised the latter result of Schroder to real normed spaces
under an additional condition. Two years later, Benz and Berens [4] showed that the
condition attached to the domain space was redundant.

TueOREM 1.1 [4]. Let X and Y be real normed spaces such that dimX > 2 and Y is
strictly convex. Suppose that T : X — Y is a mapping and N > 2 is a fixed positive
integer. If a distance r is contractive and Nr is extensive by T, then T is a linear
isometry up to translation.

By the triangle inequality, it is easy to verify that the condition in Theorem 1.1 that
a distance r is contractive and Nr is extensive by T is equivalent to the property that T
preserves the two distances r and Nr.

In this connection, Rassias [6] asked whether a mapping T : X — Y preserving two
distances with a nonintegral ratio is an isometry. This is now called the Aleksandrov—
Rassias problem. Some results on this problem can be found in [8, 11].

Xiang [11] obtained several impressive results when 7 : X — Y preserves two or
three distances with a nonintegral ratio and X and Y are real Hilbert spaces.

Tueorem 1.2 [11]. Let X and Y be real Hilbert spaces with dim X > 2. Suppose that
T : X — Y preserves the two distances 1 and 3. Then T is a linear isometry up to
translation.

Tueorem 1.3 [11]. Let X and Y be real Hilbert spaces with dim X > 2. Suppose that
T : X — Y preserves the two distances 1 and n V3 for some positive integer n. Then T
is a linear isometry up to translation.

TueoreM 1.4 [11]. Let X and Y be real Hilbert spaces with dim X > 2. Suppose
that T : X — Y preserves the three distances 1, a (0 < a < 2) and n V4 — a2 for some
nonnegative constant a and for some positive integer n > 2. Then T is a linear isometry
up to translation.

Obviously, Theorem 1.2 is a particular case (n = 1) in Theorem 1.3. In fact, in [11],
Theorem 1.2 is one of the main theorems, while Theorem 1.3 is just a corollary of it in
view of Theorem 1.1. The reason why we list Theorem 1.2 here is that it will be used
to generalise Theorem 1.3 in Section 3 (see Theorem 3.3). Moreover, Theorem 1.4
will also be generalised to Theorem 3.2 in Section 3.
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Ficure 1. Illustration of the semi-parallelogram condition (Definition 2.2).

Figure 2. Illustration of the semi-parallelogram condition (Definition 2.3).

In this paper, we introduce the concept of a semi-parallelogram and obtain
some results for the Aleksandrov—Rassias problem using this concept. In particular,
we resolve an important case of this problem for mappings preserving two distances
with a nonintegral ratio (see Theorem 3.3).

2. Some definitions and lemmas

All the above theorems from Theorem 1.2 to Theorem 1.4 take the parallelogram for
their geometric interpretation (see [11]). In this paper, we work in a real inner product
space X with dim X > 2 and consider, more generally, planar convex quadrilaterals one
of whose two diagonals is divided equally by the other (see Figure 1).

DermniTion 2.1. A planar convex quadrilateral in X, one of whose two diagonals is
divided equally by the other, is called a semi-parallelogram.

Since a planar convex quadrilateral in X is a parallelogram if and only if its
two diagonals are divided equally by each other, all parallelograms are semi-
parallelograms, but not vice versa.

From now on, ‘(SPC)’ is short for ‘the semi-parallelogram condition’.

Derinition 2.2. Let x, y, z and w be four elements in X. We say that a 4-tuple {x, y, z, w}
satisfies (SPC) if x,y,z and w, as four vertices in turn, form a semi-parallelogram,
where the line segment with end points y and w passes through the mid point of the
line segment with end points x and z (see Figure 1).
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T(x)

T(y)

T(2)

FIGURE 3. A parallelogram occurring in the proof of Lemma 2.5.

DermniTion 2.3. Let ry, rp, 13, r4, 15 and rg be six positive numbers. We say that a 6-
tuple {ry, 7, 13, 4, 1s, 16} satisfies (SPC) if there exists a 4-tuple {x, y, z, w} satisfying
(SPC) such that ry, rp, r3, r4, rs and rq are the lengths of x—y, y—z, z—w, w—x, x—z and
y-w, respectively (see Figure 2).

By the parallelogram law, one can easily verify the following result.
RemMark 2.4. A 6-tuple {ry, r, 3, 14, 15, g} satisfies (SPC) if and only if both
max{|r1 - r2|, |r3 - I"4|} <r;< min{r1 +r,r3 + I"4}

and

re = %(\/Zrlz + 2r§ - rg + \/ng + 2r£ - rg)
hold.

Lemma 2.5. Let X and Y be real inner product spaces with dimX >2, T: X - Y a
mapping and {ry, rp, r3, ra, s, ¢} a 6-tuple satisfying (SPC). Suppose that ry,ry, r3, 4
are contractive and rs, rg extensive by T. Then ry, 1,13, 4,5, 1 are conservative by T.

Proor. By the hypothesis, there exists a 4-tuple {x, y, z, w} satisfying (SPC) in X, where
ry, 2, 13, F4, s and rg are the lengths of x—y, y—z, z—w, w—x, x—z and y—w, respectively.
Thus, x,y, z and w form a semi-parallelogram in X, as shown in Figure 2.

Set

= 3T +TR), n=2-TQ).

Then T'(x), T(y), T (z) and n form a parallelogram in Y, as shown in Figure 3.
By the parallelogram law and the assumptions on r, r, and rs,

ITG) - &l = JITG) -7l
=3 \/2“T<x> ~TOIP +2ITG) = TIP = IT(x) = T(2)|
<3 \/ZIIX =y +2lly —zl? = llx -zl

1 2 2_ 2
3 2r1+2r2 rs.
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T(x)

T(y)
T(z)

FIGURE 4. A semi-parallelogram arising from the proof of Lemma 2.5.

Similarly,

IT(w) - &Il < % erg +2r2 =12,

Hence,

ITG) =TI < IT() =&l + 1€ = Tw)l|
< %(\/2}’% +2r2 - s+ \/2;"% +2r2 - rg)

By Remark 2.4 and the assumption on rg,

ITG) - Tl = Y272 + 273 = 2+ |23 +272 - 2).

Thus, all the ‘<’ signs in the above inequalities can be replaced with ‘=". This

completes the proof. O

From the above proof, we can draw a further conclusion that T'(x), T'(y), T'(z) and
T'(w) form a semi-parallelogram in Y as shown in Figure 4, which is the same as that
formed by x,y,z and w in X in Figure 1. To show this, we need only to prove that
T(y),¢ and T(w) are collinear in Y. However, this is obviously true because of the
strict convexity of Y and the equality ||[T(y) = T(W)|| = ||T (y) — &Il + ||E = T(w)||.

Furthermore, the proof of Lemma 2.5 implies the following result.

RemMark 2.6. Let X and Y be real inner product spaces withdimX >2, T: X - Y a
mapping and {ry, r, 13, 4, I's, ¢} a 6-tuple satisfying (SPC). Suppose that ry, 12, 73,74
are contractive and rs extensive by T'. Then rg is contractive by 7.

Lemma 2.7. Let X and Y be normed spaces, T : X — Y a mapping and N a fixed
positive integer. Suppose that a distance r is contractive by T. Then Nr is also

contractive by T.

Proor. It is easy to verify this lemma by the triangle inequality. O
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X
n 1 m
y ' w
W
4

FiGure 5. Geometric interpretation of Theorem 3.3.

3. Main results

THeOREM 3.1. Let X and Y be real inner product spaces with dmX >2, T: X - Y
a mapping and {ry, ry, r3, 14, I's, ¢} a 6-tuple satisfying (SPC), where there exist two
different numbers r; and r; (1 <1, j < 6) such that r; = Nr; for some positive integer
N > 2. Suppose that ry, 3, r3, r4 are contractive and rs, rg extensive by T. Then T is a
linear isometry up to translation.

Proor. The proof follows at once from Lemma 2.5 and Theorem 1.1. O

TueOREM 3.2. Let X and Y be real inner product spaces withdimX >2, T: X - Y a
mapping and {ry, 2,13, 14, s, 16} a 6-tuple satisfying (SPC). Suppose that r\,ry, 13,14
are contractive and rs, Nrg extensive by T for some positive integer N > 2. Then T is
a linear isometry up to translation.

Proor. The proof follows from Remark 2.6 and Theorem 1.1. O

The case a =0 or a =2 in Theorem 1.4 follows from Theorem 1.1 and the case
0 <a <2 can be seen as the case {r, rs, 13,74, 75,76} = {1,1,1,1,a, V4 — a?} in
Theorem 3.2. Thus, to some extent, Theorem 3.2 is a generalisation of Theorem 1.4.

TueEOREM 3.3. Let X and Y be real inner product spaces withdimX >2 andT : X —» Y
a mapping. Suppose that 1 is conservative and k(N4n? — 1 + V4m? — 1)/2 extensive
by T for some positive integers k,n and m. Then T is a linear isometry up to
translation.

Proor. The case k = n = m = 1 follows from Theorem 1.2. By Lemma 2.7, the case
k =1, max{n,m} > 1 can be seen as the case {ri,r, 13, 14,75, 76} = {n,n,m,m, 1,
(V4n? — 1 + V4m? —1)/2} in Theorem 3.1, and the case k > 1 is a corollary of
Theorem 3.2. O

Theorem 1.3 can be seen as the particular case n = m = 1 in Theorem 3.3. Thus,
to some extent, Theorem 3.3 is a generalisation of Theorem 1.3. In contrast to
Theorem 1.3, whose geometric interpretation is based on a rhombus (which is
also a parallelogram), Theorem 3.3 takes its geometric interpretation from a kite
quadrilateral (which is not necessarily a parallelogram), as shown in Figure 5, where
re = (V4n2 — 1 + Vam? - 1)/2.
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