
JFP 18 (2): 251–283, 2008. c© 2007 Cambridge University Press

doi:10.1017/S0956796807006569 First published online 13 September 2007 Printed in the United Kingdom

251

HM(X) type inference is CLP(X) solving

MARTIN SULZMANN

School of Computing, National University of Singapore, S16 Level 5, 3 Science Drive 2,

Singapore 117543, Singapore

(e-mail: sulzmann@comp.nus.edu.sg)

PETER J. STUCKEY

NICTA Victoria Laboratory, Department of Computer Science and Software Engineering,

University of Melbourne, Victoria 3010, Australia

(e-mail: pjs@cs.mu.oz.au)

Abstract

The HM(X) system is a generalization of the Hindley/Milner system parameterized in the

constraint domain X. Type inference is performed by generating constraints out of the

program text, which are then solved by the domain-specific constraint solver X. The solver

has to be invoked at the latest when type inference reaches a let node so that we can build

a polymorphic type. A typical example of such an inference approach is Milner’s algorithm

W. We formalize an inference approach where the HM(X) type inference problem is first

mapped to a CLP(X) program. The actual type inference is achieved by executing the CLP(X)

program. Such an inference approach supports the uniform construction of type inference

algorithms and has important practical consequences when it comes to reporting type errors.

The CLP(X) style inference system, where X is defined by Constraint Handling Rules, is

implemented as part of the Chameleon system.

1 Introduction

The Hindley/Milner system is one of the most widely used type systems for

programming language design and program analysis. Type inference is an important

feature and relieves the user from providing an excessive amount of type information.

The standard approach toward type inference is to traverse the abstract syntax tree

and generate constraints out of the program text. These constraints need to be

solved at the latest when inference reaches a let node in order that we can build

a type scheme. Type schemes are also known as parametric polymorphic types (or

polymorphic types for short). Typical examples of such an inference approach are

Milner’s (1978) algorithm Wor variants such as algorithms M (Lee & Yi 1998) and

G (Eo et al. 2003). The choice of the specific algorithm only affects the order of

traversal of the abstract syntax tree. The main structure of the inference algorithm

remains the same. That is, inference employs a combination of interleaved constraint

generation and constraint solving to compute the final result type.

In this article, we formalize an inference approach where the entire Hindley/Milner

type inference problem is mapped to a logic program. Thus, we can explain

Hindley/Milner inference as a two-stage process where we first generate a logic

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

252 M. Sulzmann and P. J. Stuckey

program and then in a subsequent phase we run the logic program to compute the

actual inference result. The crucial difference to the standard approach is that there

is no interleaving between constraint generation and solving. Both phases are now

clearly separated.

Our main result is much more general. We show that the HM(X) type inference

problem can be explained as constraint logic programming over domain X. The

constraint logic programming scheme (Jaffar & Lassez 1987; Jaffar et al. 1998)

defines a family of languages, CLP(X), for constraint domains X, generalizing logic

programming from the fixed Herbrand constraint domain to arbitrary domains.

Similarly, the HM(X) (Sulzmann et al. 1997; Odersky et al. 1999; Sulzmann 2000)

type system generalizes the Hindley/Milner system by generalizing the domain

of type constraints beyond Herbrand constraints. Concrete type instances are

obtained by instantiating the abstract constraint domain X. For example, in case

of Hindley/Milner, the constraint domain X is set to be the Herbrand constraint

domain for which solving is achieved via unification (Robinson 1965). There are

plenty of further examples of constraint domains X and their respective solvers in the

literature such as record constraints (Rémy 1993) and subtype constraints (Pottier

1998). In our own work (Stuckey & Sulzmann 2005), we show how to describe

the type class constraint domain (Wadler & Blott 1989) via Constraint Handling

Rules (CHRs) (Frühwirth 1995). We can take advantage of these works and

provide CLP(X)-based type inference for record, subtype and type class systems

by instantiating X with the domain-specific solver.

The results reported in this article are based on previous work (Sulzmann et al.

1999; Sulzmann 2000; Stuckey et al. 2003b). The idea of mapping Hindley/Milner

type checking and inference to logic programming is well known, at least in the

logic programming community (e.g., consider Mycroft & O’Keefe 1984; Lakshman &

Reddy 1991; Demoen et al. 1999). However, we provide the first formal treatment on

the subject including concise soundness and completeness results of type inference.

In summary, our contributions are:

• We give an algorithm W-style constraint-based reformulation of HM(X)

type inference that is parameterized in terms of the domain-specific solver

for the constraint domain X. The proofs of soundness and completeness

of type inference are more “light-weight” than previous substitution-based

formulations (Section 3).

• We show that the entire HM(X) type inference problem can be phrased in terms

of CLP(X) solving (Section 4). An important advantage of the CLP(X)-based

type inference scheme over algorithm W is an order-independent traversal of

the abstract syntax tree (AST). This provides the basis to support better type

error diagnosis methods.

We have implemented the CLP(X)-style type inference scheme as part of the

Chameleon system (Sulzmann & Wazny 2007), where the constraint domain X

can be described by CHRs. Of course, any other system that supports CLP(X) can

be used as well. But the Chameleon system supports a number of other features

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 253

such as tracking of source locations connected to constraints for type error reporting

purposes. We refer to Stuckey et al. (2006) for an overview.

Next, we highlight the key ideas of our approach. In Sections 2.1 and 2.2, we

review the basics behind the CLP(X) and HM(X) systems. Related work is discussed

in Section 5. We conclude in Section 6.

1.1 Highlights of CLP(X)-style type inference scheme

In a first step, we translate the type inference problem into a CLP(X) program, that

is, set of Horn clauses or rules. We use constraints to describe the types of expressions

and each rule describes the type of a function. For simplicity, we only consider the

Herbrand constraint domain here, which is sufficient to describe constraints arising

out of standard Hindley/Milner programs. We perform type inference by running

the logic program resulting from the Hindley/Milner program.

Example 1 Consider the following program:

g y = let f x = x in (f True, f y)

We assume that the type domain supports tuples.

We introduce predicates (also referred to as constraints) g(t) and f(t) to constrain

t to the types of functions g and f, respectively. It is necessary for us to provide

a meaning for these constraints, which we will do in terms of rules. The body of

each rule will contain all constraints arising from the definition of the corresponding

function, which represent that function’s type.

For the program above, we may generate rules similar to the following.

g(t) :- t = ty → (t1, t2) ∧ f(tf1) ∧ tf1 = Bool → t1 ∧ f(tf2) ∧ tf2 = ty → t2
f(t) :- t = tx → tx

We adopt the convention that the rule starting with predicate g(t) (also known as

rule head) is referred to as the g rule. We assume that let-bound function names are

renamed to guarantee that the rule heads contain distinct predicates.

In the g rule, we see that g’s type is of the form ty → (t1, t2), where t1 and t2 are

the results of applying function f to a Bool and a ty value. We represent f’s type, at

both call sites in the program, by the predicate calls f(tf1) and f(tf2).

The f rule is much more straightforward. It simply states that t is f’s type if t is

the function type tx → tx, for some tx, which is clear from the definition of f.

We can infer g’s type by running the above logic program on the goal g(t). We

write �cl to denote SLD resolution with respect to rule cl .

g(t) �g t = ty → (t1, t2) ∧ f(tf1) ∧ tf1 = Bool → t1 ∧ f(tf2) ∧ tf2 = ty → t2
�f t = ty → (t1, t2) ∧ tf1 = tx → tx ∧ tf1 = Bool → t1 ∧ f(tf2)

∧ tf2 = ty → t2
�f t = ty → (t1, t2) ∧ tf1 = tx → tx ∧ tf1 = Bool → t1

∧ tf2 = t′x → t′x ∧ tf2 = ty → f2

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

254 M. Sulzmann and P. J. Stuckey

Before applying a rule, we rename variables to avoid name clashes. For example,

see the last derivation step where in f’s rule we rename tx to t′x. Each variable that

occurs only in the rule body is existentially quantified. Hence, we perform inference

by exhaustively applying rules until we reach the final constraint. Any solution to

the final constraint assigns a valid type for g to the variable t. We can capture g’s

type succinctly by building the most general unifier of the constraints and applying

it to variable t. We see that g’s type is ∀ty .ty → (Bool , ty).

Let us compare our inference strategy against a traditional approach such as

algorithm W. In algorithm W, to infer the type of g, we first infer the type of the

let function f. Inference for let function f proceeds by inferring the type tx → tx.

Variable tx is a free variable, that is, only occurs in the type of f and has no reference

to any of the types of variables from the enclosing scope. Hence, we can universally

quantify over tx and assign f the type ∀tx.tx → tx. Under this type assignment, we

continue to perform inference of (f True, f y). At each call site of f, we build a

generic instance by removing the quantifier and renaming the quantified variables

with some fresh variables. The resulting constraints generated for (f True, f y)

are effectively the same as in the last step of the CLP(X)-style inference system. As

expected, algorithm W computes the same type ∀ty .ty → (Bool , ty) for g.

The point is that in the CLP(X)-based inference scheme, we do not explicitly

generate type schemes for let-defined functions such as f. Rather, we use rules to

represent the set of types that can be given to f. Hence, there is no need to build a

generic instance of f’s type scheme at a call site. Instead, we simply use the predicate

call f(t) to query the let-defined functions type.

In essence, we achieve polymorphism by replicating the constraints for let

definitions. An idea that appears several times in the literature. For example,

consider Henglein (1992) and Mitchell (2002). In an efficient implementation, we

can use memoization and constraint simplification to reduce repeated work.

Because quantification over universal variables is implicit in the CLP(X)-based

inference scheme, we need to refine our inference scheme to ensure that all references

to free type variables from the environment share the same monomorphic type. Here

is an example that explains this point in more detail.

Example 2 The program below is a slightly modified version of the program

presented in Example 1.

g y = let f x = (y,x) in (f True, f y)

The key difference is that f now contains a free variable y. Since y is monomorphic

within the scope of g, we must ensure that all uses of y, in all definitions, are

consistent. That is, each rule that makes mention of ty , y’s type, must be referring

to the same variable. This is important since the scope of variables used in a rule is

limited to that rule alone.

To enforce this, we perform a transformation akin to λ-lifting (also known as

closure conversion) but at the type level. Instead of unary predicates of form f(t), we

now use binary predicates f(t, l), where the l parameter represents f’s environment.

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 255

For the above program, we generate the following rules:

g(t, l) :- t = ty → (t1, t2) ∧ f(tf1, [ty]) ∧ tf1 = Bool → t1 ∧ f(tf2, [ty])

∧ tf2 = ty → t2
f(t, l) :- t = tx → (ty, tx) ∧ l = [ty]

We write [t1, ..., tn] to indicate a type-level list containing n types. Type-level lists

are built using the common constructors · : · (cons) and [] (empty list). Hence,

[t1, ..., tn] is, in fact, a shorthand for t1 : ... : tn : []. The first argument in f(t, l), which

we commonly refer to as the t component, will be bound to the function’s type.

The second component, which we call l, represents a list of unbound, that is, free,

variables in scope of that function. Thus, we ensure that whenever the f predicate is

invoked from the g rule that ty , the type of y, is made available to it. So, in essence,

the ty that we use in the f rule will have the same type as ty in g, rather than simply

being a fresh variable known only in g.

Type inference for g proceeds by running the above logic program on the goal

g(t, []), where [] represents the empty (type) environment.

g(t, []) �g t = ty → (t1, t2) ∧ f(tf1, [ty]) ∧ tf1 = Bool → t1
∧ f(tf2, [ty]) ∧ tf2 = ty → t2

�f t = ty → (t1, t2) ∧ tf1 = t′x → (t′y, t
′
x) ∧ [ty] = [t′y] ∧ tf1 = Bool → t1

∧ f(tf2, [ty]) ∧ tf2 = ty → t2
�f t = ty → (t1, t2) ∧ tf1 = t′x → (t′y, t

′
x) ∧ [ty] = [t′y] ∧ tf1 = Bool → t1

∧ tf2 = t′′x → (t′′y, t
′′
x) ∧ [ty] = [t′′y] ∧ tf2 = ty → t2

We build the most general unifier of the resulting constraints and find that g’s type is

∀ty .ty → ((ty ,Bool), (ty , ty)). Without the l component, we would infer the incorrect

type ∀ty .∀t ′
y .∀t ′′

y .ty → ((t ′
y ,Bool), (t ′′

y , ty)).

Similar ideas using a list of the types of λ-bound variables for inference have been

previously described in Henglein (1993) and Birkedal and Tofte (2001). To the best

of our knowledge, we are the first to exploit this method in the context of HM(X).

Monomorphic recursion is straightforwardly handled by the approach by equating

the type of the recursive call with the type of the function.

Example 3 Consider the simple recursive code

f x = (let g y = g x in g x)

that is written in our internal syntax as follows

f x = (let g y = rec g in λ y. g x in g x)

The generated rules are

g(t, l) :- t = ty → t1 ∧ l = [tx] ∧ tg = tx → t1 ∧ tg = t

f(t, l) :- t = tx → t′ ∧ l = [] ∧ g(tx → t′, [tx])

The underlined constraint ensures that the recursive call to g has the correct type.

Polymorphic recursion is also handleable by the approach, assuming that poly-

morphic recursive functions have a declared type. We simply generate a rule for

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

256 M. Sulzmann and P. J. Stuckey

the polymorphic recursive function using its declared type. In this case, we need to

check that the constraints defining the polymorphic recursive function are implied

by the declared type. But we do not consider the issues of checking type declarations

further in this article.

Example 4 Consider the polymorphic recursive code

f :: ∀a. a -> (a,Bool)

f x = (fst (f x), snd (f True))

where fst :: ∀a,b.(a,b) -> a and snd :: ∀a,b.(a,b) -> b have the usual

meaning. The generated rule for f is simply

f(t, l) :- t = a → (a, Bool) ∧ l = []

The body of the f is translated into constraint C of the form

t = tx → (t1, t2) ∧ l = [] ∧ fst(tfst, []) ∧ tfst = t3 → t1 ∧ f(t4, []) ∧ t4 = tx → t3
∧ snd(tsnd, []) ∧ tsnd = t5 → t2 ∧ f(t6, []) ∧ t6 = Bool → t5

Checking the declared type amounts to determining that ∃a.t = a → (a, Bool) |=X

∃̄{t}C , which is indeed the case. Notation ∃̄{t}C denotes that we existentially quantify

over all free variables in C but t.

So far, we assumed that X is equivalent to the Herbrand constraint domain. Thus,

we can support type inference for standard Hindley/Milner. In our next example,

we consider type inference for type classes by describing the constraint domain X

with CHRs (Frühwirth 1995).

Example 5 We consider a Haskell-style language with support for type classes.

class Foo a b where foo :: a -> b -> Int

instance Foo a b => Foo [a] [b]

f xs y = foo xs (y:xs)

The class declaration introduces a two-parameter type class Foo, which comes with

a method foo that has the constrained type ∀a, b.Foo a b ⇒ a → b → Int . The

constraint Foo a b is defined by the constraint domain X, which, in turn, is defined

by the above instance. The instance declaration states that Foo [a] [b] holds if

Foo a b holds. For simplicity, we ignore the instance body, which does not matter

here. Following our previous work (Stuckey & Sulzmann 2005), we can represent

such type class relations via CHRs. Here is the translation of the above program to

CLP(X), where X is defined by a CHR program. We simplify the presentation by

removing the l component, which is unnecessary here.

Foo [a] [b] ⇐⇒ Foo a b

foo(t) :- t = a → b → Int ∧ Foo a b

f(t) :- t = txs → ty → t1 ∧ txs = [a] ∧ ty = a ∧ foo(txs → ty → t1)

We adopt the convention that predicates starting with lowercase letters refer to the

types of functions, that is, such predicates are defined by CLP(X) rules, and predicates

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 257

starting with uppercase letters refer to constraints defined by the constraint domain

X (which is defined via CHRs here). Above the rule for function f and method foo,

we find a CHR that represents the instance declaration. CHRs define rewrite rules

among constraints. The above rule states to rewrite Foo [a] [b] (or an instance of

it) to Foo a b. These CHR solving steps are simply performed during the CLP(X)

solving process.

Here is the inference derivation for function f.

f(t) �f t = txs → ty → t1 ∧ txs = [a] ∧ ty = a ∧ foo(txs → txs → t1)

�foo t = txs → ty → t1 ∧ txs = [a] ∧ ty = a ∧ Foo a ′ b ′

∧ txs → txs → t1 = a′ → b′ → Int

↔X t = [a] → a → Int ∧ txs = [a] ∧ ty = a ∧ Foo [a] [a]

∧ a′ = [a] ∧ b′ = [a] ∧ t1 = Int

↔X t = [a] → a → Int ∧ txs = [a] ∧ ty = a ∧ Foo a a

∧ a′ = [a] ∧ b′ = [a] ∧ t1 = Int

In the last two derivation steps, we simplify constraints giving equivalent con-

straints with respect to the constraint domain X, by first building the most general

unifier, and then applying a constraint handling rule. We find that f has type

∀a.Foo a a ⇒ [a] → a → Int .

In summary, we can support type inference for a wide range of systems by

plugging in the domain-specific solver for X into the generic CLP(X) solving engine.

Furthermore, in the CLP(X)-based inference scheme, we can maintain a strict phase

distinction between constraint generation and solving. We first generate the CLP(X)

program and then we run the CLP(X) program on some appropriate goal, for

example, the constraints corresponding to the top-most expression, to obtain the

inference result. In a traditional inference scheme such as algorithm W, we find

a mix of constraint generation and solving because each let statement invokes the

solver to infer the type of the let-defined function. Only then, we can proceed to

generate the constraints out of the let body.

The formal details of phrasing HM(X) type inference in terms of CLP(X) solving

are given in Section 4. The main benefit of the CLP(X)-based type inference scheme

is an order-independent traversal of the AST.

A separate constraint viewpoint allows us to improve type error diagnosis

significantly. For details, see Stuckey et al. (2003a, 2003b, 2004, 2006); here, we

only give a brief overview. The separate constraint viewpoint avoids the traversal

bias of algorithms such as algorithm W, and can explain the real nature of a type

error that is caused by a set of conflicting locations. We can expose multiple reasons

for a type error, and explain the reasons for an expression having a particular type.

Consider the following program, where toLower :: Char->Char and toUpper

:: Char->Char. There are two minimal unsatisfiable sets of constraints in the

generated constraint describing the type of k. The unsatisfiable sets of constraints

arise from the two highlighted sets of locations:

k x = if x then (toUpper x) else (toLower x)

k x = if x then (toUpper x) else (toLower x)

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

258 M. Sulzmann and P. J. Stuckey

A change at the shared location may fix both errors, so by Occam’s razor is more

likely to be the source of the problem. We could report the error as:

Problem :Test expression in if must be Bool

Types : Char (test argument)

Bool (test)

Conflict:k x = if x then (toUpper x) else (toLower x)

Although our earlier work (Stuckey et al. 2003b, 2004) used a particular form of

constraint domain X, the same methods extend to arbitrary domains. We only need

a constraint solver to determine minimal unsatisfiable constraints and a constraint

simplifier to display types as succinctly as possible. For determining smaller sets of

location that cause a given type, we need an implication tester that determines if

C ⊃ D for domain X. Hence, the approach extends to any constraint domain X.

Finally, we remark that type inference using CLP(X) systems can be very efficient.

A CLP(X) system is specialized for SLD resolution and constraint solving, and

hence is very efficient. If the CLP(X) system supports tabling, it can also memorize

earlier answers to avoid repeated computation and use early projection (Fordan

& Yap 1998) for simplifying intermediate answers, although the implementation of

Demoen et al. (1999) found it was unnecessary even for substantial programs. Thus,

this approach not only provides a clean theoretical understanding of type inference,

which supports more complicated error reasoning, but also leads to practical efficient

type inference.

In summary, the advantages of the CLP(X) approach are: (a) better understanding

of type inference by the separation of concerns, (b) flexible and accurate type error

diagnosis, and (c) efficient implementation of type inference.

2 Background

2.1 The CLP(X) framework

We assume familiarity with the basics of first-order logic. We use common notation

for Boolean conjunction (∧), implication (⊃), equivalence (↔), and universal (∀)

and existential quantifiers (∃). We let ∃V .F denote the logical formula ∃a1 · · · ∃an.F ,

where V = {a1, . . . , an}, and let ∃̄V .F denote ∃fv(F)−V
, where fv returns the set of free

variable in its argument. We let ∃̃.F denote the existential closure of F , and ∀̃.F the

universal closure.

We use s̄ to represent a sequence of objects s1, . . . , sn. A substitution [t1/a1, . . . , tn/

an], also written [̄t/ā], simultaneously replaces each variable ai by term ti.

The CLP(X) scheme defines a class of languages, parametric in the choice

of constraint domain X. A constraint domain defines the meaning of terms and

constraints. We give a simplified definition of the CLP(X) scheme that suffices for

our purposes.

For our purposes, a constraint domain X consists of a signature ΣX , which defines

the function and predicates symbols and their arities, and a constraint theory TX ,

which is the set of true formulae over ΣX . We use the notation F |=X F ′ to mean

TX ∧ F |= F ′, that is, all models of TX and F also model F ′.

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 259

The language of terms and constraints in CLP(X) is:

Terms t ::= a | T t̄

Constraints C,D ::= True | U t̄ | C ∧ C | ∃a.C

where a is a variable and T is a function symbol in ΣX and U is a predicate symbol

in ΣX . We will often write ∃ā.C as a short-hand for ∃a1 · · · ∃an.C , similarly, ∀ā.C
We assume the signature includes (right associative) binary function symbol · → ·

written infix, constant [] representing the empty list, and (right associative) binary

function symbol · : ·, written infix, representing cons. We assume the signature

includes binary predicate symbol · = ·, written infix. We assume that the theory TX

ensures = is an equality relation on terms in ΣX , and : is a Herbrand constructor,

that is, ∀t1.∀t2.∀t3.∀t4.t1 : t2 = t3 : t4 ⊃ t1 = t3 ∧ t2 = t4 We assume True is an always

satisfiable constraint, that is, an identity for ∧.

For example, for (pure) Hindley/Milner type inference, the constraint domain is a

Herbrand domain H . For example, ΣH = ({Int ,Bool , · → ·, [·], [], · : ·, }, {· = ·}), TH

is the complete axiomatization of (finite tree) Herbrand domains (Maher 1988).

A CLP(X) rule defines the meaning of new predicate symbols in terms of domain

X. Let Π be a set of predicate symbols disjoint from those in ΣX . The language of

CLP(X) rules is defined as

Head H ::= p(a1, . . . , an)

Atom L ::= p(t1, . . . , tn)

Goal G ::= L | C | G ∧ G

Rule R ::= H :- G

where p is a n-ary predicate symbol from Π and ā ≡ a1, . . . , an are distinct variables,

and t1, . . . , tn are terms. A program P is set of rules. Notice that we use a different

notation for predicates p(t1, . . . , tn) (also referred to as atoms) to separate them

clearly from the predicates defined by the domain X. Predicates defined by the

domain X start with upper-case letters (apart from · = ·), whereas predicates defined

by the CLP(X) program start with lower-case letters. Rules are implicitly universally

quantified, hence the role of variables is just place-holders in rules. We can therefore

freely α-rename bound variables.

A goal G is executed by SLD resolution with the rules in P . Let G = G1 ∧p(̄t)∧G2

and α-renaming of rule R in P of the form p(ā) :- G3 such that fv(p(ā) :- G3) ∩
fv(G) = ∅, we create new goal G′ ≡ G1 ∧ [̄t/ā]G3 ∧ G2. We write this as G �R G′.

A derivation for goal G using program P exhaustively applies SLD resolution,

written G �∗
P G′. The derivation is failed if G′ is not a constraint or |=X ¬∃̃G′ when

G′ is a constraint, and successful otherwise. An answer for successful derivation is

∃̄fv(G)
.G′.

Example 6 Given the program for Example 3:

g(t, l) :- t = ty → t1 ∧ l = [tx] ∧ tg = tx → t1 ∧ tg = t

f(t, l) :- t = tx → t2 ∧ l = [] ∧ g(tx → t2, [tx])

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

260 M. Sulzmann and P. J. Stuckey

The goal f(a, []) has the successful derivation:

f(a, []) �f a = t ∧ [] = l ∧ t = tx → t2 ∧ l = [] ∧ g(tx → t2, [tx])

�g a = t ∧ [] = l ∧ t = tx → t2 ∧ l = [] ∧ tx → t2 = t′ ∧ [tx] = l′

∧ t′ = t′y → t′1 ∧ l′ = [t′x] ∧ t′g = t′x → t′1 ∧ t′g = t′

↔ a = t′x → t′1 ∧ l = [] ∧ t = t′x → t′1 ∧ tx = t′x ∧ t2 = t′1
∧ t′ = t′x → t′1 ∧ l′ = [t′x] ∧ t′g = t′x → t′1

where the last step simply gives an equivalent form of the constraints by substitution.

The answer is the constraint ∃t′x∃t′1.a = t′x → t′1.

We will restrict ourselves to programs P , which have at most one rule for each

predicate symbol, that is, there are no two rules p(ā) :- G and p(ā′) :- G′ with

the same predicate symbol in the head. For these programs, we can interpret the rule

L :- G as a logical formula: ∀̃.L ↔ ∃̄fv(L)
.G. Variables appearing exclusively on

the right-hand side of a rule are existentially quantified. For example, the rule from

Example 1 f(t) :- t = tx → tx is interpreted as ∀t.f(t) ↔ (∃tx.t = tx → tx). The

logical interpretation of a program P , written [[P]], is simply the conjunction of the

interpretation of each rule. This is a simplified form of the program completion (Jaffar

et al. 1998), which defines the logical semantics of a CLP(X) program.

The following result is a consequence of the usual soundness and completeness

results for CLP(X) (Jaffar & Lassez 1987; Jaffar et al. 1998).

Theorem 1 (Soundness and completeness of CLP(X) derivations) Let P be a

program, where for each predicate symbol there is at most one rule. Then

G �∗
P G′ implies that [[P]] |= G ↔ ∃̄fv(G)

.G′

2.2 The HM(X) framework

We review the basics of the HM(X) system. In Odersky et al. (1999) and Sulzmann

(2000), the constraint domain X was described in terms of a cylindric algebra (Henkin

et al. 1971), which represents an algebraic formulation of a first-order theory. Here,

we follow the CLP(X) description and describe X semantically in terms of a first-

order logic.

The types t of the HM(X) scheme are simply terms in X and constraints C

for the HM(X) scheme are simply constraints in X. In Odersky et al. (1999) and

Sulzmann (2000), we also introduced some subtype constraints, which we ignore

here for simplicity. We can straightforwardly support subtype constraints as long as

the constraint domain X facilitates them.

Notice that constraints may be existentially quantified, see the upcoming typing

rules (HM∀ Intro) and (HM∃ Intro).

The language of expressions and types schemes for HM(X) is as follows.

Expressions e ::= f | x | λx.e | e e | let f = e in e | rec f in e

Type Schemes σ ::= t | ∀ᾱ.C ⇒ t

We support the usual expressions such as function application and abstraction,

nonrecursive let-defined functions and monomorphic recursive functions. Notice

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 261

Fig. 1. HM(X) typing rules.

that source expressions containing recursive let-defined functions such as

let g = let f = λx.f x in e

must be de-sugared into

let g = (let f = (rec f′ in λx.f′ x) in e

W.l.o.g., we assume that λ-bound and let-bound variables have been renamed to

avoid name clashes. We commonly use x, y, z, . . . to refer to λ-bound variables and

f, g, h, . . . to refer to user- and predefined functions. Both sets of variables are

recorded in a variable environment Γ. We treat Γ as a list of type assignments of

the form [x1 : σ1, . . . , xn : σn]. We use list concatenation ++ to indicate extension

of environment Γ with type assignment (x : σ) written Γ++[x : σ]. We write

(x : σ) ∈ [x1 : σ1, . . . , xn : σn] to denote that x is equal to xi and σ is equal to σi for

some i ∈ {1, ..., n}. We assume that fv([x1 : σ1, ..., xn : σn]) = fv(σ1) ∪ ... ∪ fv(σn). We

use common shorthand notation let f x1 · · · xn = e for let f = λx1. · · · λxn.e and

omit the leading let for top-level functions.

We briefly discuss the typing rules in Figure 1, which make use of typing judgments

of the form C,Γ � e : t, where C is a constraint, Γ an environment, e an expression,

and t a type. In rule (HMVar), we assume that v refers to either a λ- or a let-bound

variable. Rule (HMEq) allows us to change the type t1 of expression e to t2 if both

types are equivalent under the (assumption) constraint C . This rule is not strictly

necessary but is convenient to have in some proofs such as the upcoming proof

of Theorem 4 (Soundness of CLP(X)-style type inference) in Appendix B. In rule

(HM∀ Intro), we build type schemes by pushing in the “affected” constraint D. The

existentially quantified constraint ∃ā.D in the conclusion guarantees that if the “final”

constraint in a typing derivation is satisfiable, all “intermediate” constraints must be

satisfiable as well. In rule (HM∀ Elim), we build a type instance by demanding that

any model of our constraint domain X that satisfies C also satisfies the instantiated

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

262 M. Sulzmann and P. J. Stuckey

Fig. 2. HM(X) type inference algorithm W-style.

constraints [̄t/ā]D, written C |=X [̄t/ā]D. Rule (HM∃ Intro) allows us to simplify

constraints by “hiding” variables not appearing anywhere but in constraint C . This is

very useful when presenting inferred types to the user in our CLP(X) style inference

scheme. See the upcoming discussion in Section 4.2 right after Theorem 4. Some

readers may expect to find a dual rule (HM∃ Elim). Elimination of ∃ is a form of

weakening that is a meta-rule of the system. See Lemma 2 in Appendix B.

Rule (HMRec) allows for arbitrary (monomorphic) recursive values, not just for

functions. This requires that the dynamic semantics of our language is nonstrict.

In case of a strict language, we simply must guarantee that recursive values are

functions. We briefly addressed how to deal with polymorphic recursion in the

introduction. The remaining rules are those familiar from Hindley/Milner.

A point worth mentioning is that we do not require types to be in certain

syntactic canonical form. For example, function λx.x can be given types ∀a.a → a

and ∀a, b.a = b ⇒ a → b. Both types are equivalent but we may favor ∀a.a → a for

presentation purposes. In case of standard Hindley/Milner, we can always achieve

a canonical representation of types by building the most general unifier. Perhaps

surprisingly, there are variants of Hindley/Milner where a wrong choice of canonical

form leads to incomplete type inference. We refer to Kennedy (1996) and Sulzmann

(2001) for a discussion. Hence, we do not enforce syntactic canonical forms of

types here. For an expression to be well typed, we only require that the constraints

appearing in type judgments must be satisfiable.

Before we introduce our CLP(X)-style type inference approach, we review the

classic algorithm W in the next section.

3 Constraint-based algorithm W

In Figure 2, we introduce an algorithm W style inference system to give a syntax-

directed description of the typing rules from the previous section. We employ

inference judgments of the form Γ, e �W (C a), where environment Γ and expression

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 263

e are input values and constraint C and type a are output values. We maintain the

invariant that a is a variable and fv(C) = fv(Γ)∪{a}. Such a canonical representation

of inference judgments, also found in Zenger (1999), makes building of type schemes

in case of let-defined functions rather straightforward. See rule (TILet), which

combines the rules for quantifier introduction with the rule for let statements.

Rules (TIAbs), (TIApp), and (TIRec) generate the appropriate constraints out

of the program text. Like other inference algorithms, we need to generate “fresh”

variables. We could represent “freshness” in a sufficiently rich logic (Urban et al.

2004) but we choose here to use a “half-logical” formulation of inference. As it is

standard, rule (TIVar) combines variable introduction with quantifier elimination.

In contrast to Odersky et al. (1999) where we follow the “classic” formulation

and thread through a substitution, representing the most general unifier of the

constraints accumulated so far, we choose here a purely constraint-based formula-

tion. For example, the constraint a = b → b ∧ b = Int represents the substitution

[Int → Int/a, Int/b]. In general, the output pair (C t) is a representation of the

solutions in X of t.

We can straightforwardly verify that any inference derivation is also derivable in

the system from the previous section.

Theorem 2 (Soundness of W-style type inference) Let Γ be an environment

and e an expression such that Γ, e �W (C a) for some constraint C and type

a. Then, C,Γ � e : α.

The result can be proven by straightforward induction over �W .

To state completeness, we introduce a comparison relation �i
X among type

schemes. We define C1 �i
X (∀ā2.C2 ⇒ t2) � (∀ā3.C3 ⇒ t3) iff C1∧C3 |=X ∃ā2.(C2∧t2 =

t3), where we assume that there are no name clashes between ā2 and ā3. The

comparison relation can be easily extended to types by considering t as a shorthand

for ∀a.a = t ⇒ a, where a is fresh.

In case C �i
X σ1 � σ2, we say that σ1 is more general than σ2. We will verify

that for any type derived by the HM(X) typing rules, there is a more general type

derived by the inference algorithm.

We say that Γ is realizable in C iff for each x : σ ∈ Γ there exists a type t such

that C �i
X σ � t.

Theorem 3 (Completeness of W-style type inference) If C,Γ � e : σ and Γ is

realizable in C , then Γ, e �W (C ′ a) such that C �i
X (∀a.C ′ ⇒ a) � σ and

C |=X ∃a.C ′.

The realizability condition is necessary to establish C |=X ∃a.C ′ in case of variables.

In case of let statements, we need C |=X ∃a.C ′ to establish C �i
X (∀a.C ′ ⇒ a) � σ.

The details of the proof are given in Appendix A.

The constraint-based reformulation of algorithm W represents a first step in

rephrasing HM(X) type inference as CLP(X) solving. Constraint generation proceeds

in the same way. The major difference is that each let-defined function is turned into

a CLP(X) rule. This is what we discuss next.

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

264 M. Sulzmann and P. J. Stuckey

4 HM(X) type inference is CLP(X) solving

As highlighted, the basic idea is that for each definition f = e, we introduce a

CLP(X) rule of the form f(t, l) :- G by performing a form of λ-lifting on the

level of types. A similar concept was introduced previously in Birkedal & Tofte

(2001). The type parameter t refers to the type of f, whereas l refers to the set of

types of λ-bound variables in scope (i.e., the set of types of free variables that come

from the enclosing definition). The reason for l is that we must ensure that λ-bound

variables remain monomorphic. The goal G contains the constraints generated out

of expression e plus some additional constraints restricting l. Thus, we can explain

HM(X) type inference as running the CLP(X) program resulting from e on the

constraints generated out of e. Before we dive into the formal details, we explain

one more subtle point of our CLP(X)-style type inference scheme.

So far, we assumed that at the definition and call sites of f we set l to the exact

set of types of all free (λ) variables in scope. Hence, we actually need to compute the

exact set before we can generate the CLP(X) program. We can avoid these tedious

computations by using a slightly different approach. The following example shows

how this works.

Example 7 Consider

k z = let h w = (w,z)

in let f x = let g y = (x,y)

in (g 1, g True, h 3)

in f z

A (partial) description of the CLP(X) program resulting from the above program

text might look as follows. For simplicity, we leave out the constraints generated

out of expressions. We write tx to denote the type of λ-bound variable x and so on.

(k) k(t, l) :- l = [] ∧ · · ·
(h) h(t, l) :- l = [tz] ∧ · · ·
(f) f(t, l) :- l = [tz] ∧ · · ·
(g) g(t, l) :- l = [tz, tx] ∧ · · ·

In each CLP(X) rule, the l parameter refers exactly to the set of types of all free (λ)

variables in scope of the corresponding function.

Consider the subexpression (g 1, g True, h 3). At each instantiation site, we

need to specify correctly the sequence of types of λ-bound variables that were in

scope at the function definition site. For example, λ-variables z and x are in scope

of g y = . . . , whereas only z is in scope of h w = Among others, we generate

g(t1, l1) ∧ l1 = [tz, tx] ∧ t1 = Int → t′1 ∧ g(t2, l2) ∧ l2 = [tz, tx] ∧ t2 = Bool → t′2
∧ h(t3, l3) ∧ l3 = [tz] ∧ t3 = Int → t′3 ∧ · · ·

The point is that at function instantiation sites our constraint generation algorithm

needs to remember correctly the sequence of types of λ-variables that were in scope

at the function definition site. To avoid such tedious calculations, the sequence

of types of λ-bound variables in scope for function definitions is left “open.” We

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 265

indicate this by writing t1 : · · · : tn : r, which denotes a (type-level) list with an n-

element list [t1, ..., tn], representing the types of λ-bound variables, but an unbounded

tail represented by a fresh type variable r. The set of types of λ-bound variables at

function instantiation sites corresponds to stack of type of λ-bound variables in the

sequence of their definition.

On the basis of this scheme, our actual translation scheme yields the following

result:

(k) k(t, l) :- t = t1 → t2 ∧ f(t, l1) ∧ l1 = [tz] ∧ t1 = tz
(h) h(t, l) :- l = tz : r ∧ t = tw → (tw, tz)

(f) f(t, l) :- l = tz : r ∧ t = (t′1, t
′
2, t

′
3) ∧ g(t1, l1)

∧ l1 = [tz, tx] ∧ t1 = Int → t′1
∧ g(t2, l2) ∧ l2 = [tz, tx] ∧ t2 = Bool → t′2
∧ h(t3, l3) ∧ l3 = [tz, tx] ∧ t3 = Int → t′3

(g) g(t, l) :- l = tz : tx : r ∧ t = ty → (tx, ty)

In the h rule, we require that variable z, whose type is tz , is in scope plus possibly

some more variables (see underlined constraint). Observe that in rule f, we pass in

the (somewhat redundant) variable tx as part of the x parameter at the instantiation

site of h (see underlined constraint). There is no harm in doing so, because there is

no reference to variable tx on the right-hand side of rule h.

For example, consider the following derivation step:

h(t3, l3) ∧ l3 = [tz, tx] �h l3 = t′z : r′ ∧ t3 = t′w → (t′w, t
′
z) ∧ l3 = [tz, tx],

where we denote renamed rule variables via a prime. We find that l3 = t′z : r′ ∧ l3 =

[tz, tx] implies t′z = tz and r′ = [tx]. Thus, we establish that both references of tz in

rules h and f refer to the same type without having to compute the exact set of

λ-bound variables in scope of h at the call site h(t3, l3).

We are now well prepared to take a look at the formal translation scheme that

consists of two main parts: generating constraints from expressions and building of

CLP(X) rules for function definitions.

4.1 Translation to CLP(X)

Constraint generation is similar to algorithm W (see Figure 2). A minor difference

is that we return type terms, not just variables. The essential difference is that

we additionally need to record information about the predicates connected to let-

defined (or primitive) functions. Hence, we use constraint generation judgments

of the form E,Γ, e �Cons (G t), where the environment E of all let-defined and

predefined functions, environment Γ of λ-bound variables, and expression e are

input parameters and goal G and type t are output parameters. The details are given

in Figure 3.

In rule (CGVar-x), we simply look up the type of a λ-bound variable in Γ. In rule

(CGVar-f), the goal f(t, l) ∧ l = [tx1
, . . . , txn] demands on instance of f on type t,

where (tx1
, . . . , txn) refers to the set of types of λ-bound variables in scope. In essence,

we build a generic instance of f’s type. The actual type of f will be described by a

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

266 M. Sulzmann and P. J. Stuckey

Fig. 3. Constraint generation.

Fig. 4. CLP(X) rule generation.

CLP(X) rule where the set of types of λ-bound variables is left open. Notice that in

case f �∈ E, function f is undefined. If f is defined, we will add f to E when typing

the body of the let statement. See the upcoming rule (RGLet) for rule generation in

Figure 4. Type assignments in the environment Γ are ordered according to the scope

of variables. See rule (CGAbs). Rules (CGApp) and (CGRec) contain no surprises.

In rule (CGLet), we process a let statement by recording the predicate associated

to the CLP(X) rule of let f = e1 in e2. Then, we collect the constraints arising from

the let body e2. In algorithm W, we also collect the constraints from e1. In the

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 267

CLP(X)-style inference scheme, we collect these constraints by querying the type of

f via its predicate. We say a let-defined function f is let-realizable if f is actually

used in the let-body e2. If this is the case, the constraint f(a, l) ∧ l = [t1, ..., tn] is

redundant (and can therefore can be omitted) because the goal G already contains

a call to f. In the upcoming section, we provide examples explaining this point in

more detail.

Generation of CLP(X) rules is formulated in terms of judgments of the form

E,Γ, e �Def P , where input parameters E, Γ, and e are as before and the set P of

CLP(X) rules is the output parameter. For each function definition, we generate a

new rule. See Figure 4 for details. As discussed, we leave the set of types of λ-bound

variables open at definition sites. See rule (RGLet). If Γ is empty, we set l = r.

4.2 Type inference via CLP(X) solving

The actual type inference applies the CLP(X) program, which is the set of CLP(X)

rules generated, to the resulting constraint. More formally, let (Γ, e) be an HM(X)

type inference problem where we assume that Γ can be split into a component

Γinit and Γλ such that fv(Γinit) ⊆ fv(Γλ) and types in Γλ are simple, that is, not

universally quantified. In essence, we demand that if a type scheme in Γ contains

an unbound variable, it must be mentioned in some simple type. For each function

f in Γinit, we introduce a binary predicate symbol f, which we record in Einit. We

build a set PEinit
of CLP(X) rules by generating for each f : ∀ā.C ⇒ t ∈ Γinit the

rule f(t′, l) :- C ∧ t′ = t, where t′ and l are fresh. In such a situation, we write

PEinit
, Einit ∼ Γinit,Γλ.

Type inference proceeds as follows: We first compute Einit,Γλ, e �Cons (G t) and

Einit,Γλ, e �Def P . To infer the type of e, we run P ∪PEinit
on goal G. By construction,

P ∪PEinit
is terminating. That is, G �∗

P∪PEinit
D for some D, where D is a constraint (it

only contains predicates defined by the constraint domain X). If D is unsatisfiable,

we report a type error. Otherwise, we can conclude that expression e has type

∀ā.D ⇒ t, where ā = fv(D, t) − fv(Γλ).

The termination argument for P ∪ PEinit
goes as follows. To each let-defined

function symbol f, we assign a unique number based on a depth-first left-to-right

traversal of the AST. We assume that numbers will increase during the traversal.

Then, for each generated rule f(t, l) :- G ∧ l = t1 : ... : tn : r in P , we find that

the number of let-defined function symbols appearing in G is greater than the

number of f. Immediately, we can conclude that the generated CLP(X) P program

is nonrecursive. Hence, running any goal on P ∪ PEinit
will terminate.

We can verify that the types thus computed are derivable in the HM(X) type

system from Section 2.2 (soundness) and any HM(X) type can be computed by the

CLP(X)-style inference scheme (completeness).

Theorem 4 (Soundness of CLP(X)-style type inference)

Let PEinit
, Einit ∼ Γinit,Γλ, and Einit,Γλ, e �Cons (G t) and Einit,Γλ, e �Def P

such that G �∗
PEinit

∪P D. Then, D,Γinit ∪ Γλ � e : t.

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

268 M. Sulzmann and P. J. Stuckey

For presentation purposes, we may want to “normalize” the constraint D and

type t into an equivalent but more readable form. Let us consider Example 2 again.

Our (slightly abbreviated) translation scheme for the program text

g y = let f x = (y,x) in (f True, f y)

generates

g(t, l) :- t = ty → (t1, t2) ∧ f(tf1, [ty]) ∧ tf1 = Bool → t1 ∧ f(tf2, [ty])

∧ tf2 = ty → t2
f(t, l) :- t = tx → (ty, tx) ∧ l = ty : r

Function f is let-realizable, that is, used in the body of the let statement. Therefore,

we abbreviate the translation by omitting the constraint f(a, l) ∧ l = [ty], which

would usually appear on the right-hand side of the CLP(X) rule g according to the

constraint generation rule (CGLet).

We infer g’s type by executing

g(t, []) �g t = ty → (t1, t2) ∧ f(tf1, [ty]) ∧ tf1 = Bool → t1
∧ f(tf2, [ty]) ∧ tf2 = ty → t2

�f t = ty → (t1, t2) ∧ tf1 = t′x → (t′y, t
′
x) ∧ [ty] = t′y : r′ ∧ tf1 = Bool → t1

∧ f(tf2, [ty]) ∧ tf2 = ty → t2
�f t = ty → (t1, t2) ∧ tf1 = t′x → (t′y, t

′
x) ∧ [ty] = t′y : r′ ∧ tf1 = Bool → t1

∧ tf2 = t′′x → (t′′y, t
′′
x) ∧ [ty] = t′′y : r′′ ∧ tf2 = ty → t2

On the basis of the above soundness result, we find that g has type

∀t, t1, t2, tf1, t
′
x, t

′
y, r

′, ty, tf2, t
′′
x, t

′′
y, r

′′.(
t = ty → (t1, t2) ∧ tf1 = t′x → (t′y, t

′
x) ∧ [ty] = t′y : r′ ∧ tf1 = Bool → t1

∧ tf2 = t′′x → (t′′y, t
′′
x) ∧ [ty] = t′′y : r′′ ∧ tf2 = ty → t2

)
⇒ t

In this example, we employ the Herbrand domain H , that is, HM(H). Hence, we

can normalize the above type by building the most general (Herbrand) unifier.

∀t, t1, t2, tf1, t
′
x, t

′
y, r

′, ty, tf2, t
′′
x, t

′′
y, r

′′.⎛
⎝ t = ty → ((ty,Bool), (ty, ty)) ∧ t1 = (ty,Bool), t2 = (ty, ty)

∧ tf1 = Bool → (ty,Bool) ∧ t′x = Bool ∧ ty = t′y ∧ r′ = []

∧ tf2 = ty → (ty, ty) ∧ t′′x = ty ∧ ty = t′′y ∧ r′′ = []

⎞
⎠ ⇒ t

Notice that in general all equations [s1, ..., sn] = s′
1 : ... : s′

k : r where k � n

can be replaced by si = s′
i for i = 1, ..., k and r = [sk+1, ..., sn]. Recall that · : ·

and [] are Herbrand constructors. For the above example, we therefore find that

[ty] = t′y : r′ ∧ [ty] = t′′y : r′′ are replaced by ty = t′y ∧ ty = t′′y ∧ r′ = [] ∧ r′′ = []. Since

r′ and r′′ appear nowhere else, we can remove the constraints r′ = [] and r′′ = [].

This is justified by typing rule (HM∃ Intro) in Figure 1 and the fact that ∃r′.r′ = []

is equivalent to True. Thus, we arrive at a “pure” constraint without the added

constructors · : · and [].

In fact, we can also remove the constraints connected to variables t1, t2, tf1, t
′
x,

t′y , tf2, t
′′
x, and t′′y because they do not appear in the “output” constraint t = ty →

((ty,Bool), (ty, ty)). This step is again justified by typing rule (HM∃ Intro) in Figure 1

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 269

and the fact that

∃t1, t2, tf1, t
′
x, t

′
y, tf2, t

′′
x, t

′′
y.⎛

⎝ t = ty → ((ty,Bool), (ty, ty)) ∧ t1 = (ty,Bool), t2 = (ty, ty)

∧ tf1 = Bool → (ty,Bool) ∧ t′x = Bool ∧ ty = t′y
∧ tf2 = ty → (ty, ty) ∧ t′′x = ty, ty = t′′y

⎞
⎠

is equivalent to t = ty → ((ty,Bool), (ty, ty). Hence, g’s type can be equivalently

represented by

∀t, ty.t = ty → ((ty,Bool), (ty, ty)) ⇒ t

which we can display as ∀ty .ty → ((ty ,Bool), (ty , ty)).

In general, normalization of types will depend on the specific constraint domain

X in use. For instance, in Haskell 98 (Peyton Jones 2003), we remove “redundant”

superclass constraints, for example, ∀a.(Ord a ∧ Eq a) ⇒ a is normalized to

∀a.Ord a ⇒ a.

Next, we discuss the purpose of the “let-realizability” constraint f(a, l) ∧ l =

[t1, ..., tn] in rule (CGLet).

Example 8 Consider the following ill-typed expression.

e = let f = True True

in False

If we omit the constraint f(a, l) ∧ l = [t1, ..., tn] in rule (CGLet), the translation to

CLP(X) yields

f(t) :- t1 = Bool ∧ t1 = t2 → t3 ∧ t2 = Bool ∧ t3 = t

e(t) :- t = Bool

For simplicity, we also omit the l component, which does not matter here.

Type inference for expression e succeeds, although function f is ill-typed. We

find that e(t) �∗ t = Bool . The problem is that there is no occurrence of f in the

let body, hence we never execute the CLP(X) rule belonging to f. In a traditional

inference approach such as W, inference for e proceeds by first inferring the type of

f immediately detecting that f is not well-typed. Therefore, our actual translation

scheme generates

f(t) :- t1 = Bool ∧ t1 = t2 → t3 ∧ t2 = Bool ∧ t3 = t

e(t) :- t = Bool ∧ f(a)

The conclusion is that the “let-realizability” constraint f(a, l)∧ l = [t1, ..., tn] in rule

(CGLet) is necessary to guarantee soundness of the CLP(X)-style inference scheme

with respect to the HM(X) typing rules. We conjecture that under a nonstrict

semantics rule (CGLet) is still sound (in the sense of programs will not go wrong

at run-time) if we omit f(a, l) ∧ l = [t1, ..., tn]. In this respect, typing of programs in

CLP(X) seems more flexible than typing in HM(X).

We conclude this section by stating completeness.

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

270 M. Sulzmann and P. J. Stuckey

Theorem 5 (Completeness of CLP(X)-style type inference)

Let PEinit
, Einit ∼ Γinit,Γλ and C ′,Γinit ∪ Γλ � e : t′. Then, Einit,Γλ, e �Cons (G t)

and Einit,Γλ, e �Def P for some goal G, type t and CLP(X) program P such

that C ′ �i
X (∀ā.D ⇒ t) � t′ where G �∗

PEinit
∪P D and ā = fv(D, t) − fv(Γλ).

Proofs for the above results can be found in Appendix 6.

5 Related work and discussion

There are numerous works that study type inference for Hindley/Milner-style

systems. We refer to Pottier and Rémy (2005) and the references therein.

Most works on Hindley/Milner-style type inference focus on the domain-specific

solver X and employ standard inference algorithms such as W, M, etc. The basic

structure of such standard algorithms is the same. Type inference proceeds by

generating constraints out of the program text while traversing the AST. We will

need to solve these constraints at the latest once we visit a let node in order that we

can build a type scheme. We refer to Fuh and Mishra (1990), Aiken and Wimmers

(1992) and Palsberg and Smith (1996) for a selection of early works on solving

constraints. To the best of our knowledge, the first work on solving constraints via

CHRs in the context of type inference is our own work reported in Glynn et al.

(2000) which subsequently led to Stuckey & Sulzmann (2005). Further works on

using CHRs to solve type constraints include Alves and Florido (2002) and Coquery

and Fages (2002).

There are only a few works that consider a fundamentally different inference

approach where the entire type inference is mapped to a constraint problem.

The earliest reference we can find in the literature is some work by Dietzen

and Pfenning (1991) who employ λProlog’s (Nadathur & Miller 1988) higher order

abstraction facilities for type inference. Effectively, they translate the Hindley/Milner

inference problem into a “nested” Horn clause program. For instance, the program

text

g y = let f x = (y,x) in (f True, f y)

from the earlier Example 2 is (roughly) translated to

g(t) :-

(
t = ty → (t1, t2) ∧ f(tf1) ∧ tf1 = Bool → t1, f(tf2) ∧ tf2 = ty → t2
∧ (f(t) :- t = tx → (ty, tx))

)

in Dietzen and Pfenning’s approach. Notice the “nested” Horn clause f, which

captures the type of f and also has a reference to the type variable tx from the

enclosing function g. Hence, different calls to f will refer to the same tx.

Similar ideas of phrasing Hindley/Milner type inference in terms of a calculus

with higher order abstraction can be found in the work of Müller (1994) and

Liang (1997). Pottier and Rémy (2005) introduce a constraint domain with an

explicit “let” construct for the same purpose.

In contrast to these works, Mycroft and O’Keefe (1984) map Hindley/Milner type

checking of logic programs to a logic program. In some later work, Lakshman and

Reddy (1991) established a semantic soundness result that was missing in Mycroft

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 271

and O’Keefe (1984). Demoen et al. (1999) extend this approach to allow inference

and ad hoc overloading. They also provide a specialized solver for disjunctive

Herbrand constraints to improve worst case behavior.

6 Conclusion

In this work, we extend the approach of Demoen et al. (1999) to handle expressions

containing nested let definitions (which do not arise in logic programs). To translate

HM(X) type inference to CLP(X) rules and solving, we perform a form of λ-

lifting on the level of types. A similar idea can be found in the work by Birkedal

and Tofte (2001). Most importantly, we abstract away from the Herbrand constraint

domain to an arbitrary constraint domain X. We formally verify for the first time that

Hindley/Milner inference is equivalent to CLP(X) solving. We can cover a wide range

of Hindley/Milner-style systems by appropriately instantiating X with a domain-

specific solver. The Chameleon system (Sulzmann & Wazny 2007) implements the

CLP(X)-style inference scheme where the constraint domain is specifiable in terms

of CHRs.

In general, the complexity of Hindley/Milner type inference is exponential (Kan-

ellakis et al. 1991). Experience shows that type inference works well in practice.

This observation is supported by some theoretical studies, for example, consider

McAllester (2003). The approach defined in this article is highly practical and is

implemented in the Chameleon (Sulzmann & Wazny 2007) system, where X is

specifiable using CHRs (Frühwirth 1995).

Acknowledgments

We thank the reviewers for their helpful feedback on earlier drafts of this article.

APPENDIX A

Proof of Theorem 3 (Completeness of W-style type inference)

We verify Theorem 3 by induction over the typing derivation. To ensure that the

inductive proof will go through, we strengthen the statement (an idea that dates

back to Damas & Milner 1982).

First, we introduce some notation. We write C �i
X Γ′ � Γ if Γ = [x1 : σ1, ..., xn :

σn] and Γ′ = [x1 : σ′
1, ..., xn : σ′

n] and for each x : σ′ ∈ Γ′, x : σ ∈ Γ we have that

C �i
X σ′ � σ.

The completeness result follows from the following more general lemma.

Lemma 1 Let C,Γ � e : σ, Γ be realizable in C , C ′′ �i
X Γ′ � Γ and C ′′ |=X C .

Then Γ′, e �W (C ′ a) for some C ′, α such that C ′′ �i
X (∀α.C ′ ⇒ α) � σ and

C ′′ |=X ∃a.C ′.

Proof

Recall that Γ is realizable in C iff for each x : σ ∈ Γ there exists a type t such that

C �i
X σ � t.

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

272 M. Sulzmann and P. J. Stuckey

In the proof, we often omit parentheses by assuming that ∧ binds tighter than ∃.

Hence, ∃a.C1 ∧ C1 is a short form for ∃a.(C1 ∧ C1).

The proof proceeds by induction over the derivation C,Γ � e : σ. We omit cases

(HMEq), (HM∃ Intro), and (HMRec) for simplicity.

Case (HMVar) We find the following situation

C,Γ � v : σ (v : σ ∈ Γ)

Let us assume that σ is of the form ∀ā.D ⇒ t and v : ∀ā′.D′ ⇒ t′ ∈ Γ′.

We find that

Γ′, v �W (∃ā′.b = t′ ∧ D′ b)

We have to show that

C ′′ �i
X (∀b.∃ā′.b = t′ ∧ D′ ⇒ b) � (∀ā.D ⇒ t)

which follows immediately from C ′′ �i
X Γ′ � Γ and the fact that

C ′′ �i
X (∀b.∃ā′.b = t′ ∧ D′ ⇒ b) � (∀ā′.D′ ⇒ t′)

We yet need to verify that C ′′ |=X ∃b, ā′.b = t′ ∧ D′. The realizability assumption

implies that C |=X ∃ā.D. Hence, we also find C ′′ |=X ∃ā.D (1) because of C ′′ |=X C

(by assumption). From

C ′′ �i
X (∀b.∃ā′.b = t′ ∧ D′ ⇒ b) � (∀ā.D ⇒ t)

we can see that

C ′′ ∧ D |=X ∃b, ā′.b = t′ ∧ D′ (2)

We know that ā does not appear in D′. Hence, from (2) we can conclude

C ′′ ∧ ∃ā.D |=X ∃b, ā′.b = t′ ∧ D′ (3)

From (1) and (3), we can finally conclude C ′′ |=X ∃b, ā′.b = t′ ∧ D′.

Case (HMAbs) We find the following situation:

C,Γ++[x : t] � e : t′

C,Γ � λx.e : t → t′

We have that C ′′ �i
X Γ′ � Γ and C ′′ |=X C . Then,

C ′′ ∧ α = t �i
X Γ++[x : α] � Γ++[x : t]

where α is fresh. Application of the induction hypothesis to the premise yields

Γ′++[x : α], e �W (C ′ α′)

C ′′ ∧ α = t �i
X (∀α′.C ′ ⇒ α′) � t′ (1)

C ′′ ∧ a = t |=X ∃a′.C ′ (2)

for some constraint C ′ and type variable α′. Application of the (TIAbs) rule yields

Γ′, λx.e �W (∃α, α′.(C ′ ∧ α′′ = α → α′) α′′)

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 273

where α′′ is a new type variable. We first show that

C ′′ �i
X (∀α′′.∃α, α′.(C ′ ∧ α′′ = α → α′) ⇒ α′′) � t → t′

The above is equivalent to C ′′ |=X ∃a′′, a′, a.C ′ ∧ a′′ = a → a′ ∧ a′′ = t → t′ (3).

From (1), we can conclude that

C ′′ ∧ a = t |=X ∃a′.C ∧ a′ = t′

which implies that

φ(C ′′ ∧ a = t) |=X φ(∃a′.C ∧ a′ = t′) (4)

where φ = [t/a]. We can assume that a �∈ fv(C ′′). Hence, φ(C ′′∧a = t) = C ′′. We write

= to denote logical equivalence among constraints. The constraint φ(∃a′.C ∧ a′ = t′)

is equivalent to ∃a, a′.C ∧ a′ = t′ ∧ a = t. We simply represent substitution via

existential quantification. Hence, from (4) we can conclude

C ′′ |=X ∃a, a′.C ∧ a′ = t′ ∧ a = t

which implies (3) by introducing the “intermediate” variable a′′.

It remains to verify that

C ′′ |=X ∃a, a′, a′′.C ′ ∧ a′′ = a → a′

From (2) via a similar reasoning as above, we can conclude

C ′′ |=X ∃a, a′.C ∧ a = t

which implies (by weakening) C ′′ |=X ∃a, a′.C . Variable a′′ does not appear in C .

Hence, we can conclude that

C ′′ |=X ∃a, a′, a′′.C ∧ a′′ = a → a′

and we are done.

Case (HMApp) We have the following situation:

C,Γ � e1 : t1 → t2 C,Γ � e2 : t1

C,Γ � e1 e2 : t2

Application of the induction hypothesis to the left and right premise yields

Γ′, e1 �W (C1 α1) Γ′, e2 �W (C2 α2)

C ′′ �i
X (∀α1.C1 ⇒ α1) � t1 → t2 C ′′ �i

X (∀α2.C2 ⇒ α2) � t1
C ′′ |=X ∃a1.C1 C ′′ |=X ∃a2.C2

(A 1)

for some constraints C1, C2 and type variables α1, α2. We can assume that the set of

freshly generated type variables in Γ′, e1 �W (C1 α1) and Γ′, e2 �W (C2 α2) are

disjoint.

Application of the (TIApp) rule yields

Γ′, e1 e2 �W (∃α1, α2.(C1 ∧ C2 ∧ α1 = α2 → α3) α3)

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

274 M. Sulzmann and P. J. Stuckey

where α3 is a fresh type variable.

From A 1, we an conclude that

C ′′ |=X ∃a1.(C1 ∧ a1 = t1 → t2) C ′′ |=X ∃a2.(C2 ∧ a2 = t1) (A 2)

which yields

C ′′ �i
X (∀α3.∃α1, α2.(C1 ∧ C2 ∧ α1 = α2 → α3) ⇒ α3) � t2

From A 2, we can conclude that

C ′′ |=X ∃a1, a2.C1 ∧ C2 ∧ a1 = t1 → t2 ∧ a2 = t1

Recall that a1 does not appear in C2 and a2 does not appear in C1. The above

implies

C ′′ |=X ∃a1, a2, a3.C1 ∧ C2 ∧ a1 = a1 → a3 ∧ a2 = t1 ∧ a3 = t2

and via weakening we obtain

C ′′ |=X ∃a1, a2, a3.C1 ∧ C2 ∧ a1 = a1 → a3

Thus, we are done.

Case (HM∀ Elim) We have the following situation:

C,Γ � e : ∀ᾱ.D ⇒ t C |=X [̄t/ᾱ]D

C ∧ D,Γ � e : [̄t/ᾱ]t

Application of the induction hypothesis yields

Γ′, e �W (C ′ α)

C ′′ �i
X (∀α.C ′ ⇒ α) � (∀ᾱ.D ⇒ t)

C ′′ |=X ∃a.C ′

for some constraint C ′ and type variable α. It immediately follows that

C ′′ �i
X (∀α.C ′ ⇒ α) � [̄t/ᾱ]t

which establishes the induction step.

Case (HM∀ Intro) We have the following situation:

C ∧ D,Γ � e : t ᾱ �∈ fv(C) ∪ fv(Γ)

C ∧ ∃ᾱ.D,Γ � e : ∀ᾱ.D ⇒ t

W.l.o.g. ᾱ �∈ fv(Γ′, C ′′). We have that C ′′ ∧D |=X C ∧D. Application of the induction

hypothesis yields

Γ′, e �W (C ′ α)

C ′′ ∧ D �i
X (∀α.C ′ ⇒ α) � t

C ′′ ∧ D |=X ∃a.C ′

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 275

We can conclude that

C ′′ �i
X (∀α.C ′ ⇒ α) � (∀ᾱ.D ⇒ t)

and C ′′ ∧ ∃ā.D |=X ∃a.C ′ (we existentially quantify over ā on both sides, note that ā

do not appear in C ′), which establishes the induction step.

Case (HMLet) We have the following situation:

C,Γ � e : σ C,Γ++[f : σ] � e′ : t′

C,Γ � let f = e in e′ : t′

We apply the induction hypothesis to the left premise and obtain

Γ′, e �W (C1 α1)

C ′′ �i
X (∀α1.C1 ⇒ α1) � σ

C ′′ |=X ∃a1.C1 (1)

for some constraint C1 and type variable α1. We conclude that

C ′′ �i
X Γ′++[f : (∀α1.C1 ⇒ α1)] � Γ++[f : σ]

Thus, we are in the position to apply the induction hypothesis to the right premise

which yields

Γ′
x++[f : (∀α1.C1 ⇒ α1)], e

′ �W (C2 α2)

C ′′ �i
X (∀α2.C2 ⇒ α2) � t′ (2)

C ′′ |=X ∃a2.C2

for some constraint C2 and type variable α2. Application of rule (TILet) yields

Γ′, let f = e in e′ �W ((∃α1.C1) ∧ C2 α2)

We have to show that

C ′′ �i
X (∀α2.((∃α1.C1) ∧ C2) ⇒ α2) � t′

The above is equivalent to C ′′ |=X ∃a2.(∃α1.C1) ∧ C2 ∧ a2 = t. Note that a2 does

not appear in C1 and a1 does not appear in C2. Hence, it is sufficient to show that

C ′′ |=X ∃a1.C1 and C ′′ |=X ∃a2.C2 ∧ a2 = t. The first statement follows from (1) and

the second statement follows from (2). Thus, we are done. �

APPENDIX B

Soundness and completeness of CLP(X)-style type inference

First, we verify soundness. In preparation, we slightly generalize the ∼ relation

among CLP(X) rules PE , environments E, Γ, and Γλ. We assume that

Termfv ([x1 : σ1, ..., xn : σn]) = {x1, ..., xn}

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

276 M. Sulzmann and P. J. Stuckey

We define PE, E ∼ Γ,Γλ iff

1. Γλ only consists of simple types, Termfv (Γ) = E, fv(Γ) ⊆ fv(Γλ),

2. For each (f : ∀ā.D ⇒ t) ∈ Γ we have that ā = fv(D, t) − fv(Γλ) and f(t, l) ∧ l =

[t1, ..., tn] �∗
PE

D′ where Γλ = [x1 : t1, ..., xn : tn] and |=X ∃̄fv(Γλ,t)
.D ↔ ∃̄fv(Γλ,t)

.D′.

The second item states that we can compute the types in Γ by running the CLP(X)

program PE on the goal f(t, l) ∧ l = [t1, ..., tn]. In the result D′, we may have

references to irrelevant type variables, which we can project away as stated by

|=X ∃̄fv(Γλ,t)
.D ↔ ∃̄fv(Γλ,t)

.D′. Implicitly, we make use of Theorem 1, which ensures that

the logical meaning of the resulting constraint D′ is equivalent to f(t, l)∧l = [t1, ..., tn]

with respect to PE .

In the upcoming soundness proof we make use of the following Weakening

Lemma which is Lemma 13 in Sulzmann (2000).

Lemma 2 (Weakening) Let C,Γ � e : σ such that C ′ �i
X σ � σ′ and C ′ |=X

C . Then, C ′,Γ � e : σ′.

The above lemma says that expression e is still derivable under a stronger

constraint but weaker type.

We verify soundness of the CLP(X)-style type inference scheme.

Theorem 4 (Soundness of CLP(X)-style type inference)

Let PE, E ∼ Γ,Γλ and E,Γλ, e �Cons (G t) and E,Γλ, e �Def P such that

G �∗
P∪PE

D. Then, D,Γ++Γλ � e : t.

Proof

The proof proceeds by structural induction over e. We only show some of the more

interesting cases.

Case (CGVar-f) and (RGVar): We have that

f ∈ E t, l fresh

E, [x1 : t1, . . . , xn : tn], f �Cons (f(t, l) ∧ l = [t1, . . . , tn] t)

E,Γ, f �Def ∅

By assumption, (f : ∀ā.D ⇒ t) ∈ Γ we have that ā = fv(D, t) − fv(Γλ) and

f(t, l) ∧ l = [t1, ..., tn] �∗
PE

D′

where |=X ∃̄fv(Γλ,t)
.D ↔ ∃̄fv(Γλ,t)

.D′ (1). Hence,

D,Γ++Γλ � f : t

by application of typing rules (HMVar) and (HM∀ Elim). Another (HM∃ Intro)

application step leads to

∃̄fv(Γλ,t)
.D,Γ++Γλ � f : t

From (1) and Lemma 2, we can conclude that

∃̄fv(Γλ,t)
.D′,Γ++Γλ � f : t

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 277

Recall that C |=X ∃a.C for any constraint C and variable a. Hence, by another

application of the Lemma 2, we find that

D′,Γ++Γλ � f : t

and we are done.

Case (CGAbs) and (RGAbs): We have that

E,Γλ++[x : t1], e �Cons (G t2) t1 fresh

E,Γλ, (λx.e) �Cons (G t1 → t2)

E,Γλ++[x : t1], e �Def P t1 fresh

E,Γλ, (λx.e) �Def P

W.l.o.g. we can assume that both rules share the same fresh type variable t1. By

assumption G �∗
PE∪P D. Application of the induction hypothesis to e yields

D,Γ++Γλ++[x : t1] � e : t2

We apply the typing rule (HMAbs) and find that

D,Γ++Γλ � λx.e : t1 → t2

and we are done.

Case (CGApp) and (RGApp):

E,Γλ, e1 �Cons (G1 t1) E,Γλ, e2 �Cons (G2 t2) t fresh

E,Γλ, e1 e2 �Cons (G1 ∧ G2 ∧ t1 = t2 → t t)

E,Γλ, e1 �Def P1 E,Γλ, e2 �Def P2

E,Γλ, e1 e2 �Def P1 ∪ P2

By assumption G1 ∧ G2 ∧ t1 = t2 → t �∗
PE∪P1∪P2

D. Function symbols in goal G1

only appear in PE ∪ P1 and function symbols in goal G2 only appear in PE ∪ P2.

Hence, we can conclude that G1 �∗
PE∪P1

D1 (1) and G2 �∗
PE∪P2

D2 (2) for some D1

and D2 such that D |=X D1 ∧ D2 ∧ t1 = t2 → t (3).

On the basis of (1) and (2), we can apply the induction hypothesis to the left and

right premise, which yields

D1,Γ++Γλ � e1 : t1
D2,Γ++Γλ � e2 : t2

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

278 M. Sulzmann and P. J. Stuckey

From (3) and the Weakening Lemma, we conclude that

D,Γ++Γλ � e1 : t1
D,Γ++Γλ � e2 : t2

From (3) and application of rule (HMEq), we conclude that

D,Γ++Γλ � e1 : t2 → t

We are in the position to apply rule (HMApp), which leads to

D,Γ++Γλ � e1 e2 : t

and we are done.

Case (CGLet) and (RGLet): We have that

E ∪ {f},Γλ, e2 �Cons (G t)

Γλ = [x1 : t1, . . . , xn : tn] a,l fresh

E,Γλ, let f = e1 in e2 �Cons (G ∧ f(a, l) ∧ l = [t1, ..., tn] t)

E,Γλ, e1 �Cons (G′ t′) Γλ = [x1 : t1, . . . , xn : tn] l, r fresh

E,Γλ, e1 �Def P1 E ∪ {f},Γ, e2 �Def P2

P = P1 ∪ P2 ∪ {f(t′, l) :- G′ ∧ l = t1 : ... : tn : r}

E,Γλ, let f = e1 in e2 �Def P

By assumption we find that G �∗
PE∪P D. Because of the (anonymous) call to f

(we refer here to the constraint f(a, l) ∧ l = [t1, ..., tn]) there exists a subderivation

G′ �∗
PE∪P1

D′ (1) where D |=X ∃̄fv(Γλ)
.D′ (2).

On the basis of (1), we can apply the induction hypothesis to e1, which yields

D′,Γ++Γλ � e1 : t′

Then, we apply the typing rule (HM∃ Intro) and obtain

∃̄fv(Γλ,t′)
.D′,Γ++Γλ � e1 : t′

Next, we apply typing rule (HM∀ Intro) and find

∃ā.∃̄fv(Γλ,t′)
.D′,Γ++Γλ � e1 : ∀ā.∃̄fv(Γλ,t′)

.D′ ⇒ t′ (3)

where ā = fv(D′, t′) − fv(Γλ).

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 279

We set

PE∪{f} = PE ∪ {f(t, l) :- G ∧ l = t1 : ... : tn : r} ∪ P1

and immediately find that

PE∪{f}, E ∪ {f} ∼ Γ++[f : ∀fv(D′, t′) − fv(Γλ).D
′ ⇒ t′],Γλ

We are in the position to apply the induction hypothesis to e2 and obtain that

D,Γ++Γλ++[f : ∀fv(D′, t′) − fv(Γλ).D
′ ⇒ t′] � e2 : t (4)

W.l.o.g., we assume that t′ is a fresh variable. Then, from (2), we can conclude

that

D |=X ∃ā.∃̄fv(λλ,t′)
.D′ (5)

From (3), (5), and the Weakening Lemma, we obtain that

D,Γ++Γλ � e1 : ∀ā.∃̄fv(Γλ,t′)
.D′ ⇒ t′

Together with (4), we conclude by application of typing rule (HMLet) that

D,Γ++Γλ � let f = e1 in e2 : t

and we are done. �

Next, we consider completeness. For convenience, we will make use of a slightly

different formulation of rule (HMLet) from Figure 1. We combine the rule for

quantifier introduction with the rule for let statements.

(HMLet’)

D′′,Γ′′ � e1 : t′′

ā = fv(D′′, t′′) − fv(Γ′′) σ = ∀ā.D′′ ⇒ t′′

D′,Γ′′++[f : σ] � e2 : t′

(∃ā.D′′) ∧ D′,Γ′′ � let f = e1 in e2 : t′

In essence, the above rule corresponds to the inference rule (TILet) from Figure 2. It

should be clear that we can replace rules (HM∀ Intro) and (HMLet) by (HMLet’)

without changing the set of typable programs.

The completeness result follows from the following lemma. As in case of Lemma 1,

we provide a slightly stronger statement than necessary so that the induction will

go through.

Lemma 3 Let PE, E ∼ Γ′,Γλ and fv(Γ) ⊆ fv(Γλ) and � Γ′ � Γ and D′,Γ++Γλ �
e : t′. Then, E,Γλ, e �Cons (G t) and E,Γλ, e �Def P for some goal G, type t

and CLP(X) program P such that D′ |=X ∃̄fv(Γλ,t′)
.D∧ t = t′ where G �∗

PE∪P D.

Proof

The proof proceeds by structural induction. We only show the case for let-defined

functions.

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

280 M. Sulzmann and P. J. Stuckey

Case (HMLet’): We have that

D′′,Γ++Γλ � e1 : t′′

ā = fv(D′′, t′′) − fv(Γλ) σ = ∀ā.D′′ ⇒ t′′

D′,Γ++Γλ++[f : σ] � e2 : t′

(∃ā.D′′) ∧ D′,Γ++Γλ � let f = e1 in e2 : t′

where we assume that Γλ = [x1 : t1, ..., xn : tn].

Application of the induction hypothesis to the left premise yields

E,Γλ, e1 �Cons (G1 t′1) E,Γλ, e1 �Def P1

such that D′′ |=X ∃̄fv(Γλ,t′′)
.D1 ∧ t′′ = t′1 (1) where G1 �∗

PE∪P1
D1 (2). We can conclude

that

�i
X (∀fv(D1, t

′
1) − fv(Γλ).D1 ⇒ t′1) � (∀fv(D′′, t′′) − fv(Γλ).D

′′ ⇒ t′′)

We have that

PE∪{f}, E ∪ {f} ∼ Γ′++[f : ∀fv(D1, t
′
1) − fv(Γλ).D1 ⇒ t′1],Γλ

where PE∪{f} = PE ∪ {f(t′1, l) :- G1 ∧ l = t1 : ... : tn : r} ∪ P1. Notice that PE∪{f}
includes P1, hence, G1 will be reduced to D1.

We can then apply the induction hypothesis to e2, which yields

E ∪ {f},Γλ, e2 �Cons (G t) E ∪ {f},Γλ, e2 �Def P2

such that D′ |=X ∃̄fv(Γλ,t′)
.D ∧ t′ = t (3) where G �∗

PE∪{f}∪P2
D (4).

Application of the rules (CGLet) and (RGLet) yields

E,Γλ, e2 �Cons (G ∧ f(a, l) ∧ l = [t1, ..., tn] t)

E,Γλ, let f = e1 in e2 �Def P

where P = P1 ∪ P2 ∪ {f(t′1, l) :- G1 ∧ l = t1 : ... : tn : r}.
We yet need to verify that G ∧ f(a, l) ∧ l = [t1, ..., tn] t �∗

PE∪P D′′′ for some D′′′

such that (∃ā.D′′) ∧ D′ |=X ∃̄fv(Γλ,t′)
.D′′′ ∧ t′ = t. From (2), we can conclude that

f(a, l) ∧ l = [t1, ..., tn]

�PE∪P [a/t′1]G1 ∧ l = t1 : ... : tn : r ∧ l = [t1, ..., tn]

�∗
PE∪P [a/t′1]D1 ∧ l = t1 : ... : tn : r ∧ l = [t1, ..., tn]

and therefore from (4) we can conclude that

G ∧ f(a, l) ∧ l = [t1, ..., tn] t �∗
PE∪P D ∧ [a/t′1]D1 ∧ l = t1 : ... : tn : r ∧ l = [t1, ..., tn]

From (1) and (3), we can conclude that ∃ā.D′′ |=X ∃̄fv(Γλ,t′)
.D1 and D′ |=X

∃̄fv(Γλ,t′)
.D ∧ t′ = t. Constraints D and D1 only share variables in fv(Γλ, t

′). Hence,

we can conclude that (∃ā.D′′) ∧ D′ |=X ∃̄fv(Γλ,t′)
.D1 ∧ D ∧ t′ = t. Variable t′1 does not

appear in fv(Γλ, t
′) and ∃l, r.l = t1 : ... : tn : r ∧ l = [t1, ..., tn] is a true statement.

Hence, we can conclude that

(∃ā.D′′) ∧ D′ |=X ∃̄fv(Γλ,t′)
.D ∧ [a/t′1]D1 ∧ l = t1 : ... : tn : r ∧ l = [t1, ..., tn]

and we are done. �

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 281

References

Aiken, A. & Wimmers, E. L. (1992) Solving systems of set constraints. In Seventh IEEE

Symposium on Logic in Computer Science, Santa Cruz, CA. Los Alamitos, CA: IEEE

Computer Society Press, pp. 320–340.

Alves, S. & Florido, M. (2002) Type inference using constraint handling rules. Electr. Notes

Theor. Comput. Sci. 64.

Birkedal, L. & Tofte, M. (2001) A constraint-based region inference algorithm. Theor. Comput.

Sci. 258(1–2), 299–392.

Coquery, E. & Fages, F. (2002) TCLP: Overloading, subtyping and parametric polymorphism

made practical for CLP. In Proc. of ICLP ’02, vol. 2401. Berlin: Springer-Verlag.

Damas, L. & Milner, R. (1982) Principal type-schemes for functional programs. In Proc. of

POPL’82. New York: ACM Press, pp. 207–212.

Demoen, B., Garcı́a de la Banda, M. & Stuckey, P. J. (1999) Type constraint solving for

parametric and ad-hoc polymorphism. In Proc. of the 22nd Australian Computer Science

Conference. Berlin: Springer-Verlag, pp. 217–228.

Dietzen, S. & Pfenning, F. (1991) A declarative alternative to “assert” in logic programming.

In Proc. of ISLP’91, pp. 372–386.

Eo, H., Lee, O. & Yi, K. (2003) Proofs of a set of hybrid let-polymorphic type inference

algorithms. New Generation Comput. 22(1), 1–36.

Fordan, A. & Yap, R. H. C. (1998) Early projection in CLP(R). In CP ’98: Proceedings of the

4th International Conference on Principles and Practice of Constraint Programming. London,

UK: Springer-Verlag, pp. 177–191.

Frühwirth, T. (1995) Constraint handling rules. In Constraint Programming: Basics and Trends.

LNCS. Berlin: Springer-Verlag, pp. 90–107.

Fuh, Y.-C. & Mishra, P. (1990) Type inference with subtypes. Theor. Comput. Sci. 73, 155–175.

Glynn, K., Stuckey, P. J. & Sulzmann, M. (2000) Type classes and constraint handling

rules. In Workshop on Rule-Based Constraint Reasoning and Programming. Available at:

http://xxx.lanl.gov/abs/cs.PL/0006034. Accessed August 2007.

Henglein, F. (1992) Simple Closure Analysis. DIKU Semantics Report D-193. University of

Copenhagen.

Henglein, F. (1993) Type inference with polymorphic recursion. Trans. Programming Lang

Syst. 15(1), 253–289.

Henkin, L., Monk, J. D. & Tarski, A. (1971) Cylindric Algebra. Amsterdam: North-Holland

Publishing Company.

Jaffar, J. & Lassez, J-L. (1987) Constraint logic programming. In Proc. of POPL’87, pp. 111–

119.

Jaffar, J., Maher, M., Marriott, K. & Stuckey, P.J. (1998) The semantics of constraint logic

programs. J. Logic Programming 37(1–3), 1–46.

Kanellakis, P. C., Mairson, H. G. & Mitchell, J. C. (1991) Unification and ML-type

reconstruction. In Computational logic - Essays in Honor of Alan Robinson. Cambridge,

Mass.: MIT Press, pp. 444–478.

Kennedy, A. J. (1996) Type Inference and Equational Theories. Tech. rept. LIX/RR/96/09.

LIX, Ecole Polytechnique, 91128 Palaiseau Cedex, France.

Lakshman, T. L. & Reddy, U/ S. (1991) Typed Prolog: A semantic reconstruction of the

Mycroft-O’Keefe type system. In Proc. of ISLP’91. Cambridge, Mass.: MIT Press, pp. 202–

217.

Lee, O. & Yi, K. (1998) Proofs about a folklore let-polymorphic type inference algorithm.

ACM Trans. Programming Lang. Syst., 20(4), 707–723.

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

282 M. Sulzmann and P. J. Stuckey

Liang, C. (1997) Let-polymorphism and eager type schemes. In TAPSOFT ’97: Proceedings

of the 7th International Joint Conference CAAP/FASE on Theory and Practice of Software

Development. Springer-Verlag, pp. 490–501.

Maher, M. (1988) Complete axiomatizations of the algebras of finite, rational and infinite

trees. In Proc. 3rd Logic in Computer Science Conference, pp. 348–357.

McAllester, D. A. (2003) Joint RTA-TLCA invited talk: A logical algorithm for ML type

inference. In Proc. of RTA’03. LNCS, Vol. 2706. Berlin: Springer-Verlag, pp. 436–451.

Milner, R. (1978) A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17,

348–375.

Mitchell, J. (2002) Concepts of Programming Languages. Cambridge University Press.

Müller, M. (1994) A constraint-based recast of ML-polymorphism. In 8th International

Workshop on Unification. Also available as Technical Report 94-R-43, Université de Nancy.

Mycroft, A. & O’Keefe, R. (1984) A polymorphic type system for Prolog. Artif. Intelligence

23, 295–307.

Nadathur, G. & Miller, D. (1988) An overview of λprolog. In Fifth International Conference

and Symposium on Logic Programming, Bowen, K. & Kowalski, R. (eds). MIT Press.

Odersky, M., Sulzmann, M. & Wehr, M. (1999) Type inference with constrained types. Theory

Pract. Object Syst., 5(1), 35–55.

Palsberg, J. & Smith, S. (1996) Constrained types and their expressiveness. ACM Trans.

Programming Lang. Syst. 18(5), 519–527.

Peyton Jones, S. (ed). (2003) Haskell 98 Language and Libraries: The Revised Report.

Cambridge University Press.

Pottier, F. (1998) A framework for type inference with subtyping. In Proc. of ICFP’98. ACM

Press, pp. 228–238.

Pottier, F. & Rémy, D. (2005) The essence of ML type inference. Advanced Topics in Types

and Programming Languages, Pierce, B. C. (ed). Cambridge, Mass.: MIT Press, Chap. 10,

pp. 389–489.

Rémy, D. (1993) Type inference for records in a natural extension of ML. In

Theoretical Aspects of Object-Oriented Programming. Types, Semantics and Language Design,

Chapter 3. Gunter, C. A. & Mitchell, J. C. (eds), MIT Press.

Robinson, J. A. (1965) A machine-oriented logic based on the resolution principle. J. ACM

12, 23–41.

Stuckey, P. J. & Sulzmann, M. (2005) A theory of overloading. ACM Trans. Programming

Lang. syst. (TOPLAS) 27(6), 1–54.

Stuckey, P. J., Sulzmann, M. & Wazny, J. (2003a) The Chameleon type debugger. In Proc.

of Fifth International Workshop on Automated Debugging (AADEBUG 2003). Computer

Research Repository. Available at: http://www.acm.org/corr/.

Stuckey, P. J., Sulzmann, M. & Wazny, J. (2003b) Interactive type debugging in Haskell. In

Proc. of Haskell’03. New York: ACM Press, pp. 72–83.

Stuckey, P. J., Sulzmann, M. & Wazny, J. (2004) Improving type error diagnosis. In Proc. of

Haskell’04. New York: ACM Press, pp. 80–91.

Stuckey, P. J., Sulzmann, M. & Wazny, J. (2006) Type processing by constraint reasoning.

Proc. of APLAS’06. LNCS, Vol. 4279, Berlin: Springer-Verlag, pp. 1–25.

Sulzmann, M. (2000) A General Framework for Hindley/Milner Type Systems With Constraints.

Ph.D. thesis, Department of Computer Science, Yale University.

Sulzmann, M. (2001) A general type inference framework for Hindley/Milner style systems.

In Proc. of FLOPS’01. LNCS, Vol. 2024. Berlin: Springer-Verlag, pp. 246–263.

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

HM(X) type inference is CLP(X) solving 283

Sulzmann, M., Müller, M. & Zenger, C. (1999) Hindley/Milner Style Type Systems in Constraint

Form. Research Report ACRC-99-009. University of South Australia, School of Computer

and Information Science.

Sulzmann, M., Odersky, M. & Wehr, M. (1997) Type inference with constrained types. In

FOOL4: 4th Int. Workshop on Foundations of Object-Oriented Programming Languages.

Sulzmann, M. & Wazny, J. (2007) Chameleon. Available at http://www.comp.nus.edu.sg/

˜sulzmann/chameleon. Accessed August 2007.

Urban, C., Pitts, A. M. & Gabbay, M. J. (2004) Nominal unification. Theor. Comput. Sci.

323(1-3), 473–497.

Wadler, P. & Blott, S. (1989) How to make ad-hoc polymorphism less ad-hoc. In Proc. of

POPL’89. New York: ACM Press, pp. 60–76.

Zenger, C. (1999) Indizierte Typen. Ph.D. thesis, Universität Karlsruhe, Germany.

https://doi.org/10.1017/S0956796807006569 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796807006569

