Canad. Math. Bull. Vol. 29 (3), 1986

CORRIGENDUM TO THE PAPER "NILPOTENCY OF DERIVATIONS"

ΒY

L. O. CHUNG AND JIANG LUH

An error in [1] has been kindly pointed out to the present authors by Professor Warren Dicks. The hypothesis $\partial^{2n-1}R_p \neq (0)$ should be added in both Lemma 5 and the first part of Lemma 6. Such restoration will secure the main theorem if *R* is either torsion free or of characteristic a prime *p*. However, for general semiprime ring *R* some change is necessary.

In the proof of Lemma 7, the last two sentences should be replaced by:

Assuming to the contrary that $\partial^{2n-1}R_p \neq (0)$, by Lemma 5(i) we obtain $\partial^{2n-1}R(\partial^{2n-1}R_p)S = (0)$ since $S = \sum R_q$ and $R_pR_q = (0)$ for $p \neq q$. This by the semiprimeness of *R* implies $\partial^{2n-1}R\partial^{2n-1}R_p = (0)$ and hence, by Lemma 6, $\partial^{2n-1}R_p = (0)$, a contradiction.

In the proof of the main theorem, lines 13-15 on p. 345 should be replaced by the following argument:

Let $\mathcal{G} = \{(s,t)|c \in R_p \cap [R(\partial^{2n-1}R)R]$ such that $c \neq 0$, $\partial c = 0$, $(\partial^s R)c = c(\partial^r R) = (0)\}$. Partially order \mathcal{G} by (s,t) < (s',t') iff $s \leq s'$ and $t \leq t'$. Let (s_o,t_o) be a minimal one in \mathcal{G} and $0 \neq c_o \in R_p \cap [R(\partial^{2n-1}R)R]$, $\partial c_o = 0$, $(\partial^{s_o}R)c_o = c_o(\partial^{t_o}R) = (0)$. Let $k = \sum_{i=0}^M \beta_i p^i$ be the nilpotency of ∂ on R_p where $0 \leq \beta_i < p$, $\beta_M \neq 0$ are integers (β_i 's must be not all even), and let $m = \sum_{i=0}^M [\beta_i/2]p^i$. Using the technique in the proof of Lemma 4, we have $n < k \leq 2n - 1$, $m < t_o$, s_o . Let j be the largest index with β_j odd. Then $hp^j \leq k \leq (h+1)p^j$, where $h = \sum_{i=j}^M \beta_i p^{i-j}$ and, moreover, $\delta^{h+1}R_p = (0)$ where $\delta = \partial^{p^j}$ is a derivation of R_p . But we already know that the nilpotency of a derivation of R_p must be odd. So $\partial^{hp^j}R_p = \delta^h R_p = (0)$. Hence $k = hp^j$ and $\beta_i = 0$ for i < j. Now we claim $k - m < s_o$. If not, for any $x \in R$, $\delta^{(h+1)/2}xc_o = \partial^{k-m}xc_o = 0$ for all $x, y \in R$. Since k < 2n - 1 and $c_o \in R(\partial^{2n-1}R)R$, $R)R, c_o = 0$, a contradiction. Thus $k - m < s_o$. That $\partial^k(\partial^{s_o-(k-m+1)}xc_o\partial^{t_o-(m+1)}y) = 0$ yields $\partial^{s_o-1}xc_o\partial^{t_o-1}y = 0$ for all $x, y \in R$, since

$$\binom{k}{m} \equiv \prod_{i=0}^{M} \binom{\beta_i}{\left\lfloor \frac{\beta_i}{2} \right\rfloor} \neq 0 \pmod{p}.$$

Received by the editors August 13, 1984 and, in revised form, February 15, 1985.

AMS Subject Classification (1980): Primary 16A72; Secondary 16A12.

[©] Canadian Mathematical Society 1985.

L. O. CHUNG AND J. LUH

Let $y_o \in R$ be such that $c_1 = c_o \partial^{t_o - 1} y_o \neq 0$. Then $c_1 \in R_p \cap [R(\partial^{2n-1}R)R]\partial^{s_o - 1}$ $Rc_1 = 0, c_1 \partial^{t_o}R = c_o \partial^{t_o}((\partial^{t_o - 1}y_o)R) = (0)$ and hence $(s_o - 1, t_o) \in \mathcal{S}$, again a contradiction.

References

1. L. O. Chung and Jiang Luh, Nilpotency of derivations, Canad. Math. Bull. 26 (1983), pp. 341-346.

DEPARTMENT OF MATHEMATICS BOX 8205 NORTH CAROLINA STATE UNIVERSITY RALEIGH, NC 27695-8205

384