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Abstract Universal Taylor series are defined on simply connected domains, but they do not exist on an
annulus. Instead we introduce universal Laurent or Laurent–Faber series on finitely connected domains
in C. These are generic universalities. Furthermore, we study some properties of universal Laurent series
on an annulus.
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1. Introduction

If
∑∞

n=0 αnzn has radius of convergence R = 1, then for |z0| > 1 the sequence
Sn(z0) =

∑n
l=0αlz

l
0 is not bounded; thus, there exists a strictly increasing sequence

µn ∈ {0, 1, 2 . . . }, n = 1, 2, . . . , so that Sµn(z0) → ∞, as n → +∞. Therefore, there
are two possibilities: either limn Sn(z0) = ∞, or there exists another strictly increasing
sequence λn ∈ {0, 1, 2, . . . }, n = 1, 2, . . . , such that the sequence Sλn

(z0) has a finite limit
(in C). In this last case, we say that the series

∑∞
n=0 αnzn overconverges at z0. It is also

possible to replace {z0} by a compact set K ⊂ {z ∈ C : |z| � 1} (Kc connected) and still
the sequence Sλn converges uniformly on K towards to a function g : K → C. In this case
we say that g is obtained by overconvergence by

∑∞
n=0 αnzn. Obviously, the function g

is continuous on K and holomorphic in K0, since g is a uniform limit of polynomials.
A power series

∑∞
n=0 αnzn converging in D = {z : |z| < 1} is called a universal

Taylor series (in D), if we can obtain by overconvergence every function g : K → C

that is continuous on K and holomorphic in K0 for all compact sets K ⊂ C satisfying
K ∩ D = ∅ and with Kc connected.

The set U(D) of universal Taylor series in D has been proved to be non-void and
especially Gδ (countable intersection of open sets) and dense in H(D) endowed with the
topology of uniform convergence on compacta [11].
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Furthermore, some properties of such universal Taylor series have been investigated
in [6–8,11].

In the above consideration, the open unit disc may be replaced by any simply connected
domain Ω ⊂ C, Ω �= C, and several kinds of universal Taylor series can be defined [7,12].
However, if Ω is an annulus, universal Taylor series do not exist [2,7]. Thus, it is natural
to search for universal Laurent series. In fact such series exist on an annulus and this is
a generic universality.

Properties of universal Taylor series on discs are easily transferred to universal Lau-
rent series on an annulus (see § 3). However, we wish to handle the case of any finitely
connected domain in C; in fact it is possible to have several universalities, all of them
being generic. Thus in § 2 we establish a unifying theorem.

Instead of partial sums we consider a sequence of maps Tn, n = 0, 1, 2, . . . , defined
on H(Ω) and take values on some function space. We say that a function f ∈ H(Ω) is
universal if the sequence Tn(f), n = 0, 1, . . . , approximates a lot of functions outside Ω

(see Definition 2.1 below). If the Tn are continuous, then the set U of universal functions
is proved to be Gδ in H(Ω), endowed with the topology of uniform convergence on
compacta. In order to combine Baire’s theorem with Mergelyan’s theorem and conclude
that U is also dense, we use an assumption of the following type: if P is a rational function
with prescribed poles, then Tn(P ) approaches P for some subsequence of n.

In the case of simply connected domains, when Tn are the partial sums of the Taylor
development with respect to some centre, this condition obviously holds for all polyno-
mials, since Tn(P ) = P for n � deg P and any polynomial P . Thus, the assumptions of
the unifying theorem (§ 2) are rather natural.

In order to apply this unifying theorem to the case of finitely connected domains Ω,
we observe that every f ∈ H(Ω) can be written as f = f0 + f1 + · · · + fk, where every
fj is holomorphic in a simply connected domain Vj of C ∪ {∞}, with V0 ⊂ C, while
∞ ∈ V1, . . . , ∞ ∈ Vk. We consider the Taylor development of f0 and partial sums. For
fj , j = 1, . . . , k, we consider partial sums of Laurent expansions with centre αj �∈ Vj . Tn

is taken to be a finite sum of those partial sums. Then the dependence on f is continuous
and Tn(P ) = P for all rational functions P with poles in {∞, α1, . . . , αk} and n � deg P .
Thus there exist universal Laurent series and they form a dense and Gδ subset of H(Ω).

The disadvantage is that Tn(f) does not converge to f in Ω, unless it is an annulus.
We can obtain this convergence if we consider Faber–Laurent expansions. This is possible
when Ω is bounded by a finite number of analytic Jordan curves. It is also possible to
have matrix transforms of the previous Tn, and still have generic universalities. Exten-
sions of results of the present paper have been obtained by Vlachou in [14,15], where
approximation outside Ω and simultaneously inside Ω is obtained.

2. A unification theorem

In this section we consider domains Ω ⊂ C, such that (C∪{∞})\Ω has a finite number of
components A0, A1, . . . , Ak, where k � 0. We assume that ∞ ∈ A0 and we fix points αj ∈
Aj , j = 1, . . . , k. Let also Y be a hemicompact space; that is, there exists an increasing
sequence of compact subsets Yp ⊂ Y , p = 1, 2, . . . , such that every compact set J ⊂ Y
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is contained in some Yp. Let H(Ω) be the space of holomorphic functions in Ω, with the
topology of uniform convergence on compacta. In addition, we consider the space C(Y ×
(C\ [Ω∪{α1, . . . , αk}])) of complex continuous functions on Y × (C \ [Ω ∪ {α1, . . . , αk}])
with the topology of uniform convergence on compacta. Both spaces are complete and
metrizable; in fact, they are Fréchet spaces. We finally fix a sequence of maps

Tn : H(Ω) → C(Y × (C \ [Ω ∪ {α1, . . . , αk}])), n = 0, 1, 2 . . . .

Definition 2.1. Under the above notation and assumptions a holomorphic function
f ∈ H(Ω) belongs to the class U ≡ U(Ω, {Tn}) if the following holds: for every compact
set K ⊂ C\{α1, . . . , αk} with K∩Ω = ∅ and Kc connected and every function g : K → C

continuous on K and holomorphic in K0, there exists a sequence λn ∈ {0, 1, 2, . . . },
n = 1, 2, . . . , such that for every compact set J ⊂ Y we have

sup
x∈J

sup
z∈K

|[Tλn(f)](x, z) − g(z)| → 0 as n → +∞.

In the previous definition it is equivalent to require λn < λn+1.

In order to obtain a denumerable description of the class U we consider qj , j = 1, 2, . . . ,
an enumeration of all polynomials with coefficients in Q + iQ, and on the other hand we
use Lemma 2.2 below.

Lemma 2.2. Let Ω be a domain in C, Ω �= C. We assume that (C ∪ {∞}) \ Ω has
components A0, . . . , Ak, k � 0, and we fix ∞ ∈ A0, α1 ∈ A1, . . . , αk ∈ Ak. Then there
exists a sequence of compact sets Km ⊂ C\{α1, . . . , αk}, m = 1, 2, . . . , with Km ∩Ω = ∅
and Kc

m connected such that the following holds.
Every compact set K ⊂ C\{α1, . . . , αk} with K∩Ω = ∅ and Kc connected is contained

in Km, for some m = 1, 2, . . . .

Proof. We fix a point ζ0 in Ω. Let K ⊂ C \ {α1, . . . , αk} be a compact set satisfying
K ∩ Ω = ∅ and with Kc connected. Since ζ0,∞, α1, . . . , αk belong to (C ∪ {∞}) \ K,
which is connected, we can find polygonal lines γ0, γ1, . . . , γk in (C ∪ {∞}) \ K starting
from ζ0 and ending at ∞, α1, . . . , αk, respectively (the last edge of γ0 is a closed half-line
of the form {x ∈ R : x � n} ∪ {∞}, for some natural number n). We assume that all
other vertices of γ0, γ1, . . . , γk are in Q+iQ. The set Γ = γ0 ∪γ1 ∪· · ·∪γk is compact and
disjoint from K. If ‘dist’ denotes the distance in C ∪ {∞} induced by Euclidean distance
in R

3 via stereographical projection, then dist(Γ, K) � (1/s) > 0 for some s ∈ {1, 2, . . . }.
Thus K ⊂ L(Γ, s), where

L(Γ, s) = {z ∈ C ∪ {∞} : z ∈ Ωc and dist(z, Γ ) � (1/s)}.

The set L(Γ, s) is compact in C \ {α1, . . . , αk} and is disjoint from Ω, its complement
is

Ω ∪ {z ∈ C ∪ {∞} : dist(z, Γ ) < (1/s)},

which is connected as the union of two connected sets containing the same point ζ0.
Since the collection of all L(Γ, s) is denumerable, an enumeration of them gives the

desired sequence Km, m = 1, 2, . . . . �
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We fix a sequence Km, m = 1, 2, . . . , as in Lemma 2.2.
Also let Lp, p = 1, 2, . . . , be an exhausting family of compact sets in Ω. By our

assumption in Ω, we can assume that (C∪{∞})\Lp has k+1 components, one containing
∞ and the others α1, . . . , αk, respectively [13, Theorem 13.3].

For J ⊂ Y compact, K ⊂ Ωc compact with Kc connected, g a complex function on
K, n ∈ {0, 1, 2, . . . } and s ∈ {1, 2, . . . } we consider the set

E(Ω, J, K, g, n, s) =
{

f ∈ H(Ω) : sup
x∈J

sup
z∈K

|[Tn(f)](x, z) − g(z)| < (1/s)
}

.

Proposition 2.3. Under the above assumptions and using the same notation we have

U =
⋂
p

⋂
m

⋂
j

⋂
s

∞⋃
n=0

E(Ω, Yp, Km, qj , n, s).

The proof of Proposition 2.3 is based on Mergelyan’s theorem [13] and is similar to
the proof of Lemma 3.5 of [7].

In order to prove that U is Gδ and dense in the complete space H(Ω), Baire’s
theorem can be applied. It suffices to prove that under some conditions, the set
E(Ω, Yp, Km, qj , n, s) is open and that

⋃∞
n=0 E(Ω, Yρ, Km, qj , n, s) is dense in H(Ω).

Proposition 2.4. Under the above assumptions and using the same notation, we also
assume that the maps Tn : H(Ω) → C(Y × (C \ [Ω ∪{α1, . . . αk}])) are continuous. Then
E(Ω, Yp, Km, qj , n, s) is open in H(Ω) and the class U is Gδ in H(Ω).

For the proof it suffices to observe that the set

A =
{

ω ∈ C(Y × (C \ [Ω ∪ {a1, . . . , ak}])) : sup
x∈Yp

sup
z∈Km

|ω(x, z) − qj(z)| < (1/s)
}

is open and T−1
n (A) = E(Ω, Yp, Km, qj , n, s). In order to establish that

∞⋃
n=0

E(Ω, Yp, Km, qj , n, s)

is dense in H(Ω), we make the assumption that the applications Tn ‘respect in the limit’
each rational function whose poles are included in {∞, α1, . . . , αk}.

Theorem 2.5. Let Ω ⊂ C be a domain of finite connectivity with ∞, α1, . . . , αk

fixed points in each component of (C ∪ {∞}) \ Ω. Let Y be a hemicompact topological
space. We endow the spaces H(Ω) and C(Y × (C\ [Ω ∪{α1, . . . , αk}])) with the topology
of uniform convergence on compacta. We consider a sequence of maps Tn : H(Ω) →
C(Y × (C \ [Ω ∪ {α1, . . . αk}])) and the corresponding class U defined in Definition 2.1.

We assume that the Tn are continuous and that there exists a function h : C \ [Ω ∪
{α1, . . . , αk}] → C continuous on its domain of definition and holomorphic on the interior,
satisfying h(z) �= 0 for all z in C \ [Ω ∪ {α1, . . . , α2}], such that the following holds.
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For every rational function P , whose poles are included in {∞, α1, . . . , αk}, and every
compact set K ⊂ C with K ∩ [Ω ∪ {α1, . . . , αk}] = ∅ and Kc connected there exists a
sequence nτ ∈ {0, 1, 2, . . . }, τ = 1, 2, . . . , such that, for every compact set J ⊂ Y we have

sup
x∈J

sup
z∈K

|[Tnτ
(P )](x, z) − h(z)P (z)| → 0 as τ → ∞.

Then the class U is Gδ and dense in H(Ω).

Proof. Combining Baire’s theorem with Propositions 2.3 and 2.4 it suffices to prove
that

⋃∞
n=0 E(Ω, J, K, g, n, s) is dense in H(Ω) for every compact set J ⊂ Y , K ⊂ C

compact with Kc connected and K ∩ [Ω ∪ {α1, . . . , αk}] = ∅, g : K → C continuous on
K and holomorphic in K0 and s ∈ {1, 2, . . . }.

Let f ∈ H(Ω), L ⊂ Ω compact and ε > 0. We consider an open neighbourhood V (f)
of f in H(Ω) of the form V (f) = {P ∈ H(Ω) : supw∈L |P (w) − f(w)| < ε}. Without
loss of generality we may assume that (C ∪ {∞}) \ L has k + 1 components for some
k � 0, each one containing ∞, α1, . . . , αk, respectively. We have to prove that V (f)
meets

⋃∞
n=0 E(Ω, J, K, g, n, s): that is, find P ∈ H(Ω) and n � 0 such that P ∈ V (f)

and P ∈ E(Ω, J, K, g, n, s).
We set M = supz∈K |h(z)| ∈ (0, +∞) and we observe that the function g/h is con-

tinuous on K and holomorphic in K0. Since L and K are disjoint compact sets, our
assumption on the number of components of their complements in C ∪ {∞} implies that
L ∪ K is a compact set in C and (C ∪ {∞}) \ (L ∪ K) has k + 1 components, each one
containing ∞, α1, . . . , αk, respectively. We consider the function F : L ∪ K → C defined
by F (w) = f(w) for w ∈ L and F (z) = (g(z)/h(z)) for z ∈ K. By an extension of
Mergelyan’s theorem [13, Exercise 1, p. 394], there exists a rational function P whose
poles are included in {∞, α1, . . . , αk} such that

sup
w∈L

|P (w) − f(w)| < ε (∗)

and

sup
z∈K

∣∣∣∣P (z) − g(z)
h(z)

∣∣∣∣ <
1

2sM
,

which implies

sup
z∈K

|h(z)P (z) − g(z)| <
1
2s

. (∗∗)

By assumption there exists nτ ∈ {0, 1, 2, . . . } such that

sup
x∈J

sup
z∈K

|[Tnτ (P )](x, z) − h(z)P (z)| <
1
2s

. (∗∗∗)

We set n = nτ .
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First, P belongs to H(Ω), since it is rational with poles outside of Ω, and P ∈ V (f)
by (∗). Further we have

sup
x∈J

sup
z∈K

|[Tn(P )](x, z) − g(z)|

� sup
x∈J

sup
z∈K

|[Tnτ (P )](x, z) − h(z)P (z)| + sup
z∈K

|h(z)P (z) − g(z)|

<
1
2s

+
1
2s

=
1
s
,

where we have used relations (∗∗∗) and (∗∗). This completes the proof. �

3. The case of an annulus

We consider the special case where Ω is an annulus ∆ = ∆(0, R1, R2) = {z ∈ C :
R1 < |z| < R2} with 0 < R1 < R2 < +∞. We set α1 = 0 and Y to be a singleton. If
f(z) =

∑+∞
n=−∞ αn(f)zn belongs to H(∆), we set Tn(f)(z) =

∑n
k=−n αk(f)zk. We denote

by U(∆) the class U(∆, {Tn}) defined in Definition 2.1. It is also easy to see that the
assumptions of Theorem 2.5 are satisfied in this case. Therefore, the class U(∆) is dense
and Gδ in H(∆).

We also need the notion of universal Taylor series in a disc introduced in [11].

Definition 3.1. Let DR = {z ∈ C : |z| < R}, 0 < R < +∞, be a disc. A holomorphic
function f(z) =

∑+∞
n=0 δnzn in H(DR) belongs to the class U(DR) if the following holds.

For every compact set K ⊂ C, K ∩ DR = ∅ with Kc connected and every function
g : K → C continuous on K and holomorphic in K0, there exists a sequence λn ∈
{0, 1, 2, . . . }, n = 1, 2, . . . , such that

sup
z∈K

∣∣∣∣
λn∑

k=0

δkzk − g(z)
∣∣∣∣ → 0 as n → +∞.

In the above definition it is equivalent to require λn < λn+1.
The set U(DR) has been proved to be Gδ and dense in H(DR) [11]. Properties of

the elements of U(DR) have been established in [1,6–8]. In the rest of this section we
investigate properties of the elements of the class U(∆).

Remark 3.2. Let

+∞∑
k=−∞

ckzk ∈ U(∆), ∆ = ∆(0, R1, R2).

Then
∞∑

k=0

ckzk ∈ U(DR2) and
∞∑

k=1

c−kwk ∈ U(D1/R1).

This is obvious if we recall that
∑∞

k=1 ckzk converges uniformly on compacta of |z| < R2

and
∑−1

k=−∞ ckzk converges uniformly on compacta of |z| > R1.
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Remark 3.3. For every
∞∑

l=−∞
clz

l ∈ U(∆), ∆ = ∆(0, R1, R2),

and every z0 with |z0| = R1 or |z0| = R2, the series
∑+∞

l=−∞ clz
l
0 is not (C, k) summable

for any k = 1, 2, . . . .
If |z0| = R2 we observe that

∑∞
l=1 c−lz

−l
0 converges and that

∑∞
l=0 ckzl ∈ U(DR2), and

then, using the corresponding property of a universal Taylor series on a disc [7,8], the
result follows.

If u ∈ U(DR) and |z0| = R, it is also true that

lim
ζ→z0
z∈DR

u(z)

does not exist in C [7].
Thus we obtain the following.

Remark 3.4. If f ∈ U(∆), ∆ = ∆(0, R1, R2), and z0 ∈ ∂∆, then

lim
ζ→z0
z∈D

f(z)

does not exist in C. In particular, f cannot be continuously extended in ∆̄ and f cannot
be holomorphically extended in any domain strictly containing ∆.

Remark 3.5. Let
+∞∑

k=−∞
ckzk ∈ U(∆), ∆ = ∆(0, R1, R2),

and let g1 and g2 be two complex-valued measurable 2π-periodic functions. Then there
exists a sequence 0 � λn < λn+1 such that

(i) lim
n

λn∑
k=−λn

ckRk
2eikϑ = g2(ϑ) and

(ii) lim
n

λn∑
k=−λn

ckRk
1eikϑ = g1(ϑ)

for almost all ϑ.
It suffices to use Lusin’s theorem to approximate (in the almost everywhere sense) g1

and g2 by continuous functions ϕ1
n, ϕ2

n and then apply the definition of U(∆) to the
compact sets

Kn =
{

z ∈ C; |z| = R2,
1
n

� arg z � 2π

}
∪

{
z ∈ C : |z| = R1,

1
n

� arg z � 2π

}

(see also [11]).
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The above is an extension of Menchoff’s result on universal trigonometric series [3,7,9].

Remark 3.6. Let

+∞∑
k=−∞

ckzk ∈ U(∆), ∆ = ∆(0, R1, R2).

Then we have the following.

(i) lim supk→+∞
k
√

|ck| = 1/R2.

(ii) lim supk→+∞
k
√

|c−k| = R1.

(iii) For every decreasing sequence bn ↓ 0 such that
∑∞

n=1(bn/n) < +∞ we have

lim sup
k→+∞

|cn|Rn
2

enbn
= +∞.

In particular, cnRn
2 does not have polynomial growth, as n → +∞.

(iv) For every decreasing sequence bn ↓ 0, such that
∑∞

n=1(bn/n) < +∞ we have

lim
n→+∞

|c−n|
Rn

1 enbn
= +∞.

In particular, c−n/Rn
1 does not have polynomial growth, as n → +∞.

The proof follows from [8] and from the fact that

∞∑
k=0

ckzk ∈ U(DR2) and
∞∑

k=1

c−kwk ∈ U(D1/R1).

Finally, we have a great Picard type property.
The proof follows the lines of [1].

Proposition 3.7. Let f ∈ H(∆), where ∆ = ∆(0, R, 1), 0 < R < 1, and let n be a
non-negative integer. If the holomorphic functions f and f (n) − 1 have at most finitely
many zeros in ∆, then f �∈ U(∆).

Proof. Let f satisfy the hypotheses of this proposition. Then, there is 0 < p0 < 1
with p0 > R such that f and f (n) − 1 have no zeros in the annulus ∆(0, p0, 1). Let
p = 1

2 (1 + p0), δ = 1
2 (1 − p0) > 0 and fix z0 = peiϑ. Define

F (z) = δ−nf(z0 + δz) for z ∈ D = {z ∈ C : |z| < 1}.

Then F and F (n) − 1 have no zeros in D. Hence, by Miranda’s theorem [10] we conclude
that

log |F (z)| � 1
1 − |z|

[
64 log+ |F (0)| +

Mn

(1 − |z|)4

]
for every z ∈ D,
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where Mn depends only on n. Let p0 < r < 1 be such that 1 − r < δ and take z = r1eiϑ

in the above inequality where r1 ∈ (0, 1) is such that δ(1 − r1)1 − r. We have F (r1eiϑ) =
δ−nf(reiθ) and there is a constant c1 depending only on δ and n such that

log |f(reiθ)| � c1

1 − r

[
log+ |f(peiθ)| +

1
(1 − r)4

]
,

whenever 0 < 1 − r < δ and p0 < r < 1.
Thus log |f(reiθ)| � c/(1 − r)5 for all r ∈ (0, 1) such that 0 < 1−r < δ and p0 < r < 1.

Hence the proof will be completed after the following lemma is established, which follows
by a combination of Remark 3.6 of the present paper and Lemma 2.2 of [1].

Lemma 3.8. Let c, k be positive real numbers and 0 < R < 1. Then for every
f ∈ H(∆(0, R, 1)) such that

|f(z)| = O(ec/(1−|z|)k

) as |z| → 1

we have f �∈ U(∆(0, R, 1)).

And the proof is complete. �

Remark 3.9. The previous proof implies easily that if u ∈ U(∆(0, R1, R2)), then for
every α ∈ C with at most one exception the following holds: the roots of the equation
u(z) = α, R1 < |z| < R2, have at least two cluster points z1, z2 with |z1| = R1 and
|z2| = R2.

4. General Laurent expansions

Let Ω be a domain in C, such that (C ∪ {∞}) \ Ω has a finite number of components
A0, A1, . . . , Ak (k � 0) with ∞ ∈ A0, α1 ∈ A1, . . . , αk ∈ Ak being fixed.

We consider the space H(Ac
0) with the topology of uniform convergence on compacta.

For j ∈ {1, . . . , k} let H0(Ac
j) be the subspace of H(Ac

j) consisting of all f ∈ H(Ac
j)

satisfying f(∞) = 0. We endow H0(Ac
j) with the topology of uniform convergence on

compacta. All spaces H(Ac
0), H0(Ac

1), . . . , H0(Ac
k) are Fréchet spaces.

Since Ω = Ac
0 ∩ Ac

1 ∩ · · · ∩ Ac
k we can consider the map

T : H(Ac
0) × H0(Ac

1) × · · · × H0(Ac
k) → H(Ω)

defined by T (f0, f1, . . . , fk) = f0 + f1 + · · · + fk.
Obviously, T is linear and continuous (where H(Ω) is endowed with the Fréchet topol-

ogy of uniform convergence on compacta). Liouville’s theorem implies easily that T is
one to one. We will show that T is also onto (hence an isomorphism).

Let f ∈ H(Ω) and z ∈ Ac
0. We consider any cycle γ0,z in Ω, such that ind(γ0,z, z) = 1,

ind(γ0,z, αj) = 1 for all j = 1, . . . , k and obviously ind(γ0,z,∞) = 0. Then the integral

f0(z) =
1

2πi

∫
γ0,z

f(ζ)
ζ − z

dζ
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is independent of the choice of the cycle γ0,z and defines a holomorphic function f0 ∈
H(Ac

0); thus f0 is given by a Cauchy transform on varying cycles.
Let j0 ∈ {1, . . . , k}, f ∈ H(Ω) and z ∈ Ac

j0
; we consider any cycle γj0,z in Ω, such that

ind(γj0,z, z) = 0, ind(γj0,z, aj0) = −1, ind(γj0,z, αj) = 0

for all j ∈ {1, . . . , k} \ {j0} and obviously ind(γj0,z,∞) = 0. Then the integral

fj0(z) =
1

2πi

∫
γj0,z

f(ζ)
ζ − z

dζ

is independent of the choice of the cycle γj0,z and defines a holomorphic function
fj0 ∈ H0(Ac

j0
); thus fj0 is defined by a Cauchy transform on varying cycles.

Cauchy’s theorem implies that for z ∈ Ω we have f(z) = f0(z) + f1(z) + · · · + fk(z).
Thus we have proved the following proposition.

Proposition 4.1. The operator T : H(Ac
0) × H0(Ac

1) × · · · × H0(Ac
k) → H(Ω) is an

isomorphism. If f ∈ H(Ω), f0 ∈ H(Ac
0), f1 ∈ H0(Ac

1), . . . , fk ∈ H0(Ac
k) are related by

f = f0 + f1 + · · · + fk, then f0, f1, . . . , fk are called the components of f and depend
continuously on f .

In view of Theorem 2.5 the map Tn can be constructed as a sum of quantities, each
one varying continuously on f0, f1, . . . , fk, respectively.

We restrict our attention to the following example.
Let φ0 : {0, 1, . . . } → {0, 1, . . . } be such that limn→+∞ φ0(n) = +∞ and let ζ ∈ Ac

0.
Then for Y = {ζ} or Y = Ac

0 we set

T 0
n(f0) =

φ0(n)∑
l=0

f
(l)
0 (ζ)
l!

(z − ζ)l.

Let j0 ∈ {1, . . . , k} and φj0 : {0, 1, . . . } → {0, 1, . . . } be such that limn→+∞φj0(n) = +∞.
The function fj0 has a Laurent expansion for |z − αj0 | large of the form

fj0(z) =
−1∑
−∞

cl(fj0)(z − αj0)
l,

where cl(fj0) depends continuously on fj0 by the well-known formula for Laurent coeffi-
cients. We set

T j0
n (fj0)(z) =

−φj0 (n)∑
l=−1

cl(fj0)(z − αj0)
l.

Finally, setting Tn(f) = T 0
n(f0) + T 1

n(f1) + · · · + T k
n (fk) one can easily check that

the assumptions of Theorem 2.5 are satisfied with h ≡ 1. Thus we have the following
theorem.

Theorem 4.2. Under the above assumptions and notation, the set of Laurent univer-
sal series U(Ω, {Tn}) is a Gδ and dense subset of H(Ω).

https://doi.org/10.1017/S0013091504000495 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000495


Universal Laurent series 581

Remark 4.3. The operators T 0
n(f0), T j0

n (fj0) may be replaced by Cesàro means
depending continuously on a parameter α ∈ (−1, +∞) (see [7]); then the parameter
space Y may be (−1, +∞) × {ζ} or (−1, +∞) × (Ac

0).
In all previous examples the function h in the assumptions of Theorem 2.5 is identically

equal to 1. More general functions h arise if we consider holomorphically varying matrix
transforms in accordance with [7]; the general case of h has been used in the proof of
Theorem 4.3 in [7].

5. The case of analytic boundaries

If Ω = ∆ = {z : R1 < |z| < R2} with 0 < R1 < R2 < +∞ and α1 = 0, then the
constructed sequence Tn, n = 0, 1, 2, has the property that for every f ∈ H(Ω) the
sequence Tn(f) is also defined in Ω and converges to f on Ω. However, in the general
setting of the previous section, Tn(f) is also defined on Ω, but it does not converge
anywhere on Ω. Instead, under some assumptions on Ω, we will modify Tn by means of
Faber-type expansions to obtain Tn(f) → f on Ω.

In the rest of this section we assume that Ω is a domain in C bounded by a finite
number of analytic Jordan curves.

Let A0, A1, . . . , Ak, where k � 0, be the components of (C ∪ {∞}) \ Ω and ∞ ∈ A0,
α1 ∈ A1, . . . , αk ∈ Ak be fixed.

If f ∈ H(Ω), then f = f0 + f1 + · · · + fk with f0 ∈ H(Ac
0), f1 ∈ H0(Ac

1), . . . ,
fk ∈ H0(Ac

k) according to Proposition 4.1.
The simply connected domain Ac

0 is bounded by an analytic Jordan curve; thus, if the
F 0

l , l = 0, 1, 2, . . . , denote its Faber polynomials (see [4,5]), then f0 has a unique Faber
expansion f0(z) =

∑∞
l=0 dl(f0)F 0

l (z) valid on the whole Ac
0.

Let φ0 : {0, 1, 2, . . . } → {0, 1, 2, . . . } be such that limn φ0(n) = +∞. We set

T 0
n(f0) =

φ0(n)∑
l=0

dl(f0)F 0
l (z)

and Y is taken to be a singleton.
Let j0 ∈ {1, . . . , k}. Let Dj0 be the image of Ac

j0
∪ {∞} under the map w = 1/(z − αj0)

and let the F j0
l , l = 0, 1, 2, . . . , denote the Faber polynomials of Dj0 ; then one can easily

deduce the unique expansion

fj0(z) =
∞∑

l=0

dj0
l (fj0)F

j0
l

(
1

z − αj0

)

valid in Ac
j0

∪ {∞}.
Let φj0 : {0, 1, 2, . . . } → {0, 1, 2, . . . } be such that limn φj0(n) = +∞. Then we set

T j0
n (fj0)(z) =

φj0 (n)∑
l=0

dj0
l (fj0)F

j0
l

(
1

z − αj0

)
.
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Finally, we set Tn(f) = T 0
n(f0) + T 1

n(f1) + · · · + T k
n (fk) and using the results of [4] we

can easily check that the assumptions of Theorem 2.5 are satisfied with h ≡ 1. It is also
true that Tn(f)(z) → f(z) uniformly on compact subsets of Ω, for all f ∈ H(Ω).

The universal functions U(Ω, {Tn}) are called universal Faber–Laurent series; their
set is a Gδ and dense subset of H(Ω), provided that Ω is a domain bounded by a finite
number of analytic Jordan curves.

It is also possible to use matrix transforms or to use Faber, Taylor and Laurent expan-
sions simultaneously, and still have generic universalities.

Using properties of universal Faber series in simply connected domains bounded by an
analytic curve [4], one can easily deduce the following proposition.

Proposition 5.1. Let z0 ∈ ∂Ω be any boundary point of Ω. Under the above assump-
tions and considerations every universal Faber–Laurent series f ∈ U(Ω, {Tn}) does not
extend continuously on the point z0 ∈ ∂Ω. In particular, f cannot be holomorphically
extended to any domain strictly containing Ω.

For the proof it suffices to observe that if f ∈ U(Ω, {Tn}), then f0 is a universal Faber
series in Ac

0 in the sense of [4] and each fj , j ∈ {1, . . . , k}, is continuous on ∂(Ac
0). Thus,

for z0 ∈ ∂(Ac
0) the existence of

lim
ζ→z0
z∈Ac

0

f(z)

is equivalent to that of
lim

ζ→z0
z∈Ac

0

f0(z).

But the last limit does not exist in C [4,7].
The proof for the other boundaries of Ω is similar.
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