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Let f (n) denote the number of abelian groups of order 

n and f (n) the number of semi-simple rings with n elements. 

What can be said about the magnitude of f.(n) ? We shall prove 

that one can expect, on the average, about 2. 3 groups and 2. 5 
rings of the kind stated for a given order. * First we state 
without proof the two relevant structure theorems (which are 
readily available in standard texts). 

e e 
1 2 

Let G be an abelian group of order n = q q . . . 

where the q. are the distinct primes dividing n. Then G is 
e 

the direct product of groups G of order q and each G 
i i i 

is in turn a direct product of cyclic groups G.. of orders 
e.. 1J 

q J such that 
l 

S e = e . 

j iJ i 

e.. 

G determines uniquely the set of integers { q. } , and con­

versely, each such set determines a G unique (up to isomor­

phism). 

* I find I have been anticipated in the group case by Erdos and 
Szekeres [l]; however my method is different from, theirs and 
I believe the ring case is new. 
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It follows immediately that 

where p (n) is the usual parti t ion function. Obviously f (n) 

is multiplicative, that i s , if the g. c. d. (m, n) =1 then 
^ ( m n ) « f ^ m j f ^ n ) . 

Let R be a ring with n = q q . . . e lements which is 
J. L* 

semi-s imple , that is has zero radical . Then R is the direct 
e. 

product of r ings R of q. e lements and each R. is the 
i n l 

e., 
direct product of r ings R , of q. e lements where R is 

1J 1 1J 

the full ring of r xr ma t r i c e s over the finite field * 
i j i j 

GF(q.1 J) , and 

S e = S r . s = e . 
. ij . u ij i 

S 

R determines uniquely the set of pai rs { ( r . . , q . *')} , and 

conversely each such set de termines a unique semi-s imple R. 

Again we see that f (n) is multiplicative and 

f2(n) " P ^ P ^ ) . . . 

where p (n) is a modified partit ion function defined as follows. 

Let 6(n) denote the number of squares dividing n : 

6(n) = S I . 

d 2 | n 

* In the general theorem one has skew fields but in our case 
they a re finite and therefore commutative. 
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Then p (n) is the number of partitions of n, where we now 

recognize 6(m) different f kindsf of the integer m when it 
occurs as a summand in a partition. For example, the partition 

12 + 4 + 1 

contributes 1 to p (17) but 4 to p (17) corresponding to 
i. Cê 

12 + 4 + 1 

3.22 + 4+ 1 

12 + 22 + 1 

2 2 
3.2 + 2 + 1 . 

17 
If R has q elements then 12 + 4 + 1 corresponds to the 
direct product 

GF(q12) X GF(q4) X GF(q) ; 

2 
3.2 + 4 + 1 corresponds to 

GF(q3)2 X GF(q ) X GF(q) , 

where the subscript 2 indicates the ring of 2X2 matrices; 
and so on. 

The generating function for p (n) is well known: 

oo - 1 oo 
P (x) = n (1 - x11) = 2 5 P l(n)xn 

n=l n=0 

(where p (0) = 1), and a moment' s consideration shows that 
1 

oo -ô(n) oo 
P (x) = n (1 - x11) = S p2(n)xn 

n=l n=0 
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(where p (0) = 1). Clearly 

P2(x) = P i ( x ) P i ( x 4 ) P i ( x 9 ) . . . . 

The generating function for f.(n) is of the Dirichlet 

se r ies type; formally, 

oo 

S f,(n)n"S = n {1 + P , ( l ) p " S + p , ( 2 ) p " 2 S + . . . } 
1 1 1 

n=l p 
(where the product is extended over all pr imes) 

= n P^P" 8 ) 
p 

00 - 1 

= n n (i - p ) 
p n=l 

1 
(A " n s \ 
(1 - P ) 

n=l p 

= n n (i - p ) 

00 

= n t(ns) , 
n=l 

where £,(s) is the Riemann Ç,-function; and s imilar ly for 
f (n). Thus we have the formal identities 

00 00 

Z (s) = n t(ns) = S f (n)n"S 

1 A A 1 

n= 1 n=1 

oo oo 
Z2(s) = E U n s ) 6 ( n ) = S f2(«)n"S 

n=1 n=1 

Note Z, (s ) = Z fs)Z (4s)Z (9s) . . 
i. I l l 
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In order to deal with the two c a s e s s imultaneously , we 
wr i te 6.(n) = 1, 6_(n) = 6(n). We regard Z.(s) a s being 

1 2 l 
defined by the infinite product. s = cr + i r i s a complex 
var iable . 

PROPOSITION. Z (s) i s a regular function of s for 
l 

or > 0 except for po les of order 6.(n) at 1/n (n = l , 2 , . . . ) . 

The line cr = 0 i s a natural boundary. The s e r i e s 

2 f (n)n" S 

l 

converges absolutely for cr > 1 to Z.(s) . 

Proof. The f irst s tatement wi l l follow if we prove for 
N = l , 2 , . . . that Z.(s) i s regular for cr > 2 / (N+l ) except for 

po les of order 6.(n) at 1/n (n = l , 2 , . . . , [ (N+l ) /2 ] ) . Since 

£(s) i s regular except for a s imple pole (with res idue 1) at 
s = 1, this wi l l follow if we prove that the product 

oo 6.(n) 
Z . ( s ) / Z . ( s , N ) = n { 1 + (Uns) - 1 ) } l , 

1 X n=N+l 

N 6.(n) 
where Z . ( s , N ) = n ?,(ns) 

n=l 

i s uniformly convergent in the half-plane o* > 2 / (N + 1), and 
this wi l l be guaranteed if the sum 

oo ô.(n) 
S |t(xis) - 1 | X 

n=N+l 

c o n v e r g e s uniformly. Since ncr > 2 , 
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IC(xis) - 1 | = | 2 - n S + 3 " n S + . . . | 

-ncr -ncr 
< 2 + 3 + . . 

- 1 1 - ncr - ncr - no* 
= (1 - 2 ) ( 1 - 2 + 3 - . . . ) - 1 

- 1 - 1 
1-ncr ncr-1 

< (1 - 2 ) » 1 = (2 - 1) 

-ncr 
< 2 4 (< 1) , 

w h e n c e 
oo ô.(n) oo 
S |£(ns) - 1 | 1 < 4 S 2" n < r 

n=m n=m 

for any m > N + 1, wh ich c l e a r l y p r o v e s the u n i f o r m c o n v e r g e n c e . 

£,(s) h a s inf ini tely m a n y z e r o s s , s , . . . in the s t r i p 

0 < cr < 1, and the conjuga te of a z e r o i s a l s o a z e r o . Thus 
Z . ( s ) h a s z e r o s at s / n , (k, n = 1 , 2 , . . . ) and it fo l lows r e a d i l y 

1 .K. 

tha t e a c h point on the l ine cr= 0 i s a l i m i t point of z e r o s , thus 
an e s s e n t i a l s i n g u l a r i t y , and t h e r e f o r e cr= 0 i s a n a t u r a l 
b o u n d a r y . 

E a c h of the f ini te ly m a n y s e r i e s £,(ns) in the p r o d u c t 
Z . ( s , N ) i s abso lu t e ly c o n v e r g e n t for cr > 1 and t h e r e f o r e 

the t e r m s m a y be r e a r r a n g e d to give 

oo 
Z . ( s , N ) = S f . ( n , N ) n " S 

n=l X 

w h e r e the s e r i e s i s ab so lu t e ly c o n v e r g e n t and 1 < f . (n ,N) < f .(n), 

wi th f ( n , N ) = f . ( n ) for n < N. Thus 
l i — 

N oo 
S f (njn"0* < S f (n,N)n~°" 

n=l * n=l i 
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N 

= n 
n=l 

< Z.(<r 

6.{n) 
Ç(n<r) l 

) • 

-0" 

Hence the s e r i e s Sf.(n)n of posi t ive t e r m s i s bounded above 

and i s therefore convergent for any a* > 1. B e c a u s e of the 

convergence 

c lear ly have 

-cr 
convergence of S f . (n ,N)n and of the product Z.((r) we 

00 00 

S f.fnjn"^ > S f . ^ I s O n ' V 
A 1 A X 

n= 1 n= 1 

> Z.(<r) - £ 

for arbitrary e > 0 and N sufficiently l arge , so that 
-or 

2f .(n)n converges to Z.(<r) for cr > 1# It fol lows [2] that 
- s 

2f . (n)n converges absolutely to Z.(s) for tr > 1. This 

comple te s the proof. 

Z.(s) has a s imple pole at s = 1; let the res idue be C.. 

Then s ince £(s) has res idue 1 at s = 1 , we have 

C± = &(2) &(3) . . . i(n) . . . = 2 . 2 9 4 8 4 2 . . . 

C 2 = 6(2) t (3) C(4)2 . . . C ( n f ( n ) . . . = 2 . 4 9 9 5 9 8 . . 

( e x p r e s s i o n s for the r e s i d u e s at the other poles can be given 
without difficulty). We now appeal to Ikehara' s theorem 
[3 , p. 125]: If 

oo 

F(s) = S a n~ S , a > 0 
, n n — 

n=l 
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is convergent for <r > 1, and F(s) is regular on o" =1 except 
for a simple pole with residue C at s = 1, then 

a + a + . . . + a ^ Cn , 
1 2 n 

(where, as usual, f(n) ^ g(n) means that 

Lim f(n)/g(n) 
n-^oo 

exis ts and has the value 1). 

The conditions a re satisfied by Z.(s) and we have 

COROLLARY. 

f.(l) + f.(2) + . . . + f.(n) ^ C n . 
i l i l 

Hence, on the average , there a re C abelian groups and C 

semi-s imple rings of each order . 

Erdos and Szekeres show that the e r r o r in the above 
asymptotic formula in the case i = 1 is 0(N/TL). I would 
conjecture that a more detailed analysis of Z,(s) should 
yield 

f.(l) + f.(2) + . . . + f.(n) = C . n + 2C n 1 / 2 

i l l i l i 2 

i r , 1/k . l / (k+l ) . 
+ . . . + kC#1 n + 0(n ) , 

lk 
where C is the residue of Z ( s ) at s = 1/k . 

îk i 

The behaviour of f.(n) itself is of course quite e r r a t i c ; 

thus, if n is square-f ree f.(n) = 1, but on the other hand 

f.(2 ) =p.(m). It is well-known that 

/ x ^ 1 K,\Tm 
p i ( m ) -4Ï^7T e 1 
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where K = Try- , 

and therefore (for a rb i t ra ry € > 0) 

f ( n ) > — e to , 
1 log n 

for infinitely many values of n, 

l o g 2 ^ / 2 
where A = wT ' B = "VTToTi • 

For the ring case we will obtain only a much cruder resul t . 
F rom above we have 

log P1(m) ^ i r y - . N/HI 

and we expect a somewhat larger value for log p (m); we now 
prove 

2 
log P2(m) ^ — N/IÏI . 

For 0 < x < 1 we have* 

log P J x ) = S -ô(n)log(l » xn) 
L n = l 

oo oo m n 
2 6(n) S X 

n= 1 m= 1 

00 » 

2 — S ô(n) x 
m= 1 n= 1 

* All the ser ies in what follows a re convergent for 0 < x < 1, 
and the transformations can be justified by standard elementary 
theorems . 
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oo m 4 m 9 m 
« 1 X X X 
2 —< + — + — + m = l m m t 4 m a 9 m 

1 - x 1 - x 1 - x 

Us ing 

k - 1 k 
kx (1 - x) < 1 - x < k( l - x) 

w h e r e v e r n e c e s s a r y , 

2 
oo t m oo 

s i *_^_ < s * m +2 2 2 
m = l 1 - yr m m = l m t (1 - x) 

TT X 

and t h e r e f o r e 

6 2 
t (1 - x) 

6t (1 - x) 

2 oo 
^ , * """ -, 1 

log P 9 x) < — S — 
2 6(1 - x) , 2 

v ' t = l t 
4 

TT / 36 
1 - x 

On the o the r hand , 

co oo m t 
log P fx) > 2 — S *• 

2 A m 2 / , 

m = l t= l m t (1 - x) 

oo co m t 
1 ^ 1 « x 

S —r- S 1 - x " 2 , 2 
m = l m t = l t 

2 2 

1 IT IT . . . 
>~A— T ~r <* -e) 

1 - x 6 6 
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for a rb i t r a ry € > 0 provided x is sufficiently close to 1 
(by Abel1 s theorem on the continuity of power se r ies ) . Hence 

I o g P , { x ) - f ^ 
2 1 - x 

as x -+- 1- . 

We now appeal to the following Tauberian theorem: 
If a > 0 and 

n — 

log 2 a x ^ -
5 n 1 - x 

as x -*> 1 - , then 

log (a + a + . . . + a ) ^ 2 \[CÎÎ . 
0 1 n 

If the a a re monotone increasing (as our p0(n)) it is easy 
n 2 

to see that this implies 

log a ^ 2\ICn . 
n 

Thus 

PROPOSITION. 

2 
log p2(n) ^ — sin . 

We mention finally the identity (familiar in the case i = 1) 

np.(n) = S a.(k)p.(n- k) 
1 k=l 1 1 

where 

a.(k) = 2 dô.(d) 
d l k x 
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obtained by logarithmic differentiation of 

n < l - x n ) ~ 6 i ( n ) = S p . ( n ) x n 

and comparing coefficients. This r ecu r rence relat ion was used 
to calculate p9(n) up to n = 100; although the values of p (n) 

tended to be very T roundT , no congruence property of the 
Ramanujan type was noticed. 
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