A NUMBER THEORY PROBLEM CONCERNING FINITE GROUPS AND RINGS

Ian G. Connell
(received March 5, 1963)

Let $f_{1}(n)$ denote the number of abelian groups of order n and $f_{2}(n)$ the number of semi-simple rings with n elements. What can be said about the magnitude of $f_{i}(n)$? We shall prove that one can expect, on the average, about 2.3 groups and 2.5 rings of the kind stated for a given order. ${ }^{*}$ First we state without proof the two relevant structure theorems (which are readily available in standard texts).

Let G be an abelian group of order $n=q_{1}{ }_{1} \quad q_{2}{ }^{2} \quad \ldots$ where the q_{i} are the distinct primes dividing n. Then G is the direct product of groups G_{i} of order $q_{i}{ }_{i}$ and each G_{i} is in turn a direct product of cyclic groups $G_{i j}$ of orders e q. ${ }^{\text {ij }}$
such that

$$
\sum_{j} e_{i j}=e_{i}
$$

G determines uniquely the set of integers $\left\{q_{i}{ }^{i j}\right\}$, and conversely, each such set determines a G unique (up to isomorphism).

* I find I have been anticipated in the group case by Erdo"s and
Szekeres [1]; however my method is different from theirs and
I believe the ring case is new.

Canad. Math. Bull. vol. 7, no. 1, January 1964

It follows immediately that

$$
f_{1}(n)=p_{1}\left(e_{1}\right) p_{1}\left(e_{2}\right) \cdots
$$

where $p_{1}(n)$ is the usual partition function. Obviously $f_{1}(n)$ is multiplicative, that is, if the g.c.d. $(m, n)=1$ then $f_{1}(m n)=f_{1}(m) f_{1}(n)$.

Let R be a ring with $n=q_{1}{ }_{1} q_{2}{ }^{\mathrm{e}_{2}} \ldots$ elements which is semi-simple, that is has zero radical. Then R is the direct product of rings R_{i} of $q_{i}{ }_{i}$ elements and each R_{i} is the direct product of rings $R_{i j}$ of $q_{i}{ }_{i j}$ elements where $R_{i j}$ is the full ring of $r_{i j}{ }^{\mathrm{xr}} \mathrm{ij}_{\mathrm{ij}}$ matrices over the finite field* $G F\left(q_{i}{ }^{s}\right)$, and

$$
\underset{j}{\Sigma} e_{i j}=\underset{j}{\Sigma r_{i j}}{ }^{2} s_{i j}=e_{i}
$$

R determines uniquely the set of pairs $\left\{\left(r_{i j}, q_{i}{ }^{\mathbf{i j}}\right)\right\}$, and conversely each such set determines a unique semi-simple R.

Again we see that $f_{2}(n)$ is multiplicative and

$$
f_{2}(n)=p_{2}\left(e_{1}\right) p_{2}\left(e_{2}\right) \cdots
$$

where $p_{2}(n)$ is a modified partition function defined as follows. Let $\delta(n)$ denote the number of squares dividing n :

$$
\delta(\mathrm{n})=\frac{\Sigma 1 .}{\mathrm{d}^{2} \dot{\mathrm{l}}_{\mathrm{n}}}
$$

[^0]Then $p_{2}(n)$ is the number of partitions of n, where we now recognize $\delta(\mathrm{m})$ different 'kinds' of the integer m when it occurs as a summand in a partition. For example, the partition

$$
12+4+1
$$

contributes 1 to $p_{1}(17)$ but 4 to $p_{2}(17)$ corresponding to

$$
\begin{aligned}
& 12+4+1 \\
& 3 \cdot 2^{2}+4+1 \\
& 12+2^{2}+1 \\
& 3 \cdot 2^{2}+2^{2}+1
\end{aligned}
$$

If R has q^{17} elements then $12+4+1$ corresponds to the direct product

$$
G F\left(q^{12}\right) \times G F\left(q^{4}\right) \times G F(q)
$$

$3.2^{2}+4+1$ corresponds to

$$
G F\left(q^{3}\right)_{2} \times G F\left(q^{4}\right) \times G F(q)
$$

where the subscript 2 indicates the ring of 2×2 matrices; and so on.

The generating function for $p_{1}(n)$ is well known:

$$
P_{1}(x)=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{-1}=\sum_{n=0}^{\infty} p_{1}(n) x^{n}
$$

(where $\mathrm{p}_{1}(0)=1$), and a moment's consideration shows that

$$
P_{2}(x)=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{-\delta(n)}=\sum_{n=0}^{\infty} p_{2}(n) x^{n}
$$

(where $\mathrm{p}_{2}(0)=1$). Clearly

$$
P_{2}(x)=P_{1}(x) P_{1}\left(x^{4}\right) P_{1}\left(x^{9}\right) \ldots
$$

The generating function for $f_{i}(n)$ is of the Dirichlet series type; formally,

$$
\sum_{n=1}^{\infty} f_{1}(n) n^{-s}=\prod_{p}\left\{1+p_{1}(1) p^{-s}+p_{1}(2) p^{-2 s}+\ldots\right\}
$$

(where the product is extended over all primes)

$$
\begin{aligned}
& =\prod_{p} P_{1}\left(p^{-s}\right) \\
& =\prod_{p} \prod_{n=1}^{\infty}\left(1-p^{-n s}\right)^{-1} \\
& =\prod_{n=1}^{\infty} \prod_{n}\left(1-p^{-n s}\right)^{-1} \\
& =\prod_{n=1}^{\infty} \zeta(n s),
\end{aligned}
$$

where $\zeta(\mathrm{s})$ is the Riemann ζ-function; and similarly for $f_{2}(n)$. Thus we have the formal identities

$$
\begin{aligned}
& Z_{1}(s)=\prod_{n=1}^{\infty} \zeta(n s)=\sum_{n=1}^{\infty} f_{1}(n) n^{-s} \\
& Z_{2}(s)=\prod_{n=1}^{\infty} \zeta(n s)^{\delta(n)}=\sum_{n=1}^{\infty} f_{2}(n) n^{-s} .
\end{aligned}
$$

Note

$$
Z_{2}(s)=Z_{1}(s) Z_{1}(4 s) Z_{1}(9 s) \ldots
$$

In order to deal with the two cases simultaneously, we write $\delta_{1}(n)=1, \quad \delta_{2}(n)=\delta(n)$. We regard $Z_{i}(s)$ as being defined by the infinite product. $s=\sigma+i \tau$ is a complex variable.

PROPOSITION. $Z_{i}(s)$ is a regular function of s for $\sigma>0$ except for poles of order $\delta_{i}(n)$ at $1 / n \quad(n=1,2, \ldots)$. The line $\sigma=0$ is a natural boundary. The series

$$
\Sigma f_{i}(n) n^{-s}
$$

converges absolutely for $\sigma>1$ to $Z_{i}(s)$.

Proof. The first statement will follow if we prove for $N=1, \overline{2, \ldots}$ that $Z_{i}(s)$ is regular for $\sigma \geq 2 /(N+1)$ except for poles of order $\delta_{i}(n)$ at $1 / n \quad(n=1,2, \ldots,[(N+1) / 2])$. Since $\zeta(s)$ is regular except for a simple pole (with residue 1) at $s=1$, this will follow if we prove that the product

$$
Z_{i}(s) / Z_{i}(s, N)=\prod_{n=N+1}^{\infty}\{1+(\zeta(n s)-1)\}^{\delta_{i}(n)}
$$

where $\quad Z_{i}(s, N)=\prod_{n=1}^{N} \zeta(n s)^{\delta_{i}(n)}$,
is uniformly convergent in the half-plane $\sigma \geq 2 /(N+1)$, and this will be guaranteed if the sum

$$
\sum_{n=N+1}^{\infty}|\zeta(n s)-1|^{\delta_{i}(n)}
$$

converges uniformly. Since $n \sigma \geq 2$,

$$
\begin{aligned}
|\zeta(\mathrm{ns})-1| & =\left|2^{-\mathrm{ns}}+3^{-\mathrm{ns}}+\ldots\right| \\
& \leq 2^{-\mathrm{n} \sigma}+3^{-n \sigma}+\ldots \\
& =\left(1-2^{1-\mathrm{n} \sigma}\right)^{-1}\left(1-2^{-n \sigma}+3^{-n \sigma}-\ldots\right)-1 \\
& <\left(1-2^{1-n \sigma}\right)^{-1}-1=\left(2^{n \sigma-1}-1\right)^{-1} \\
& \leq 2^{-n \sigma} 4 \quad(\leq 1)
\end{aligned}
$$

whence

$$
\sum_{n=m}^{\infty}|\zeta(n s)-1|^{\delta_{i}(n)}<4 \sum_{n=m}^{\infty} 2^{-n \sigma}
$$

for any $m \geq N+1$, which clearly proves the uniform convergence.
$\zeta(s)$ has infinitely many zeros s_{1}, s_{2}, \ldots in the strip $0<\sigma<1$, and the conjugate of a zero is also a zero. Thus Z_{i} (s) has zeros at $\mathrm{s}_{\mathrm{k}} / \mathrm{n},(\mathrm{k}, \mathrm{n}=1,2, \ldots)$ and it follows readily that each point on the line $\sigma=0$ is a limit point of zeros, thus an essential singularity, and therefore $\sigma=0$ is a natural boundary.

Each of the finitely many series $\zeta(\mathrm{ns})$ in the product $\mathrm{Z}_{\mathrm{i}}(\mathrm{s}, \mathrm{N})$ is absolutely convergent for $\sigma>1$ and therefore the terms may be rearranged to give

$$
Z_{i}(s, N)=\sum_{n=1}^{\infty} f_{i}(n, N) n^{-s}
$$

where the series is absolutely convergent and $1 \leq f_{i}(n, N) \leq f_{i}(n)$, with $f_{i}(n, N)=f_{i}(n)$ for $n \leq N$. Thus

$$
\sum_{n=1}^{N} f_{i}(n) n^{-\sigma}<\sum_{n=1}^{\infty} f_{i}(n, N) n^{-\sigma}
$$

$$
\begin{aligned}
& =\prod_{n=1}^{N} \zeta(n \sigma)^{\delta_{i}(n)} \\
& <Z_{i}(\sigma) .
\end{aligned}
$$

Hence the series $\sum f_{i}(n) n^{-\sigma}$ of positive terms is bounded above and is therefore convergent for any $\sigma>1$. Because of the convergence of $\Sigma f_{i}(n, N) n^{-\sigma}$ and of the product $Z_{i}(\sigma)$ we clearly have

$$
\begin{aligned}
\sum_{n=1}^{\infty} f_{i}(n) n^{-\sigma} & >\sum_{n=1}^{\infty} f_{i}(n, N) n^{-\sigma} \\
& >Z_{i}(\sigma)-\varepsilon
\end{aligned}
$$

for arbitrary $\varepsilon>0$ and N sufficiently large, so that $\Sigma f_{i}(n) n^{-\sigma}$ converges to $Z_{i}(\sigma)$ for $\sigma>1$. It follows [2] that $\Sigma f_{i}(n) n^{-s}$ converges absolutely to $Z_{i}(s)$ for $\sigma>1$. This completes the proof.
$Z_{i}(s)$ has a simple pole at $s=1$; let the residue be C_{i}.
Then since $\zeta(s)$ has residue 1 at $s=1$, we have

$$
\begin{aligned}
& C_{1}=\zeta(2) \zeta(3) \ldots \zeta(n) \ldots=2.294842 \ldots \\
& C_{2}=\zeta(2) \zeta(3) \zeta(4)^{2} \ldots \zeta(n)^{\delta(n)} \ldots=2.499598 \ldots
\end{aligned}
$$

(expressions for the residues at the other poles can be given without difficulty). We now appeal to Ikehara's theorem [3, p. 125]: If

$$
F(s)=\sum_{n=1}^{\infty} a_{n} n^{-s}, \quad a_{n} \geq 0
$$

is convergent for $\sigma>1$, and $F(s)$ is regular on $\sigma=1$ except for a simple pole with residue C at $s=1$, then

$$
a_{1}+a_{2}+\ldots+a_{n} \sim C n
$$

(where, as usual, $f(n) \sim g(n)$ means that

$$
\operatorname{Lim}_{n \rightarrow \infty} f(n) / g(n)
$$

exists and has the value 1).
The conditions are satisfied by $Z_{i}(s)$ and we have COROLLARY.

$$
f_{i}(1)+f_{i}(2)+\ldots+f_{i}(n) \sim C_{i} n .
$$

Hence, on the average, there are C_{1} abelian groups and C_{2} semi-simple rings of each order.

Erdo's and Szekeres show that the error in the above asymptotic formula in the case $i=1$ is $0(\sqrt{n})$. I would conjecture that a more detailed analysis of $Z_{i}(s)$ should yield

$$
\begin{aligned}
f_{i}(1)+f_{i}(2) & +\ldots+f_{i}(n)=C_{i 1} n+2 C_{i 2} n^{1 / 2} \\
& +\ldots+k C_{i k} n^{1 / k}+O\left(n^{1 /(k+1)}\right)
\end{aligned}
$$

where $C_{i k}$ is the residue of $Z_{i}(s)$ at $s=1 / k$.
The behaviour of $f_{i}(n)$ itself is of course quite erratic; thus, if n is square-free $f_{i}(n)=1$, but on the other hand $f_{i}\left(2^{m}\right)=p_{i}(m)$. It is well-known that

$$
p_{1}(m) \sim \frac{1}{4 m \sqrt{3}} e^{K_{1} \sqrt{m}}
$$

where

$$
\mathrm{K}_{1}=\pi \sqrt{\frac{2}{3}}
$$

and therefore (for arbitrary $\varepsilon>0$)

$$
f_{1}(n)>\frac{(1-\varepsilon) A}{\log n} e^{B \sqrt{\log n}}
$$

for infinitely many values of n,
where

$$
A=\frac{\log 2}{4 \sqrt{3}}, \quad B=\pi \sqrt{\frac{2}{3 \log 2}}
$$

For the ring case we will obtain only a much cruder result. From above we have

$$
\log p_{1}(m) \sim \pi \sqrt{\frac{2}{3}} \cdot \sqrt{m}
$$

and we expect a somewhat larger value for $\log p_{2}(m)$; we now prove

$$
\log p_{2}(m) \sim \frac{\pi^{2}}{3} \sqrt{m}
$$

For $0<x<1$ we have*

$$
\begin{aligned}
\log P_{2}(x) & =\sum_{n=1}^{\infty}-\delta(n) \log \left(1-x^{n}\right) \\
& =\sum_{n=1}^{\infty} \quad \delta(n) \sum_{m=1}^{\infty} \frac{x^{m n}}{m} \\
& =\sum_{m=1}^{\infty} \frac{1}{m} \sum_{n=1}^{\infty} \delta(n) x^{m n}
\end{aligned}
$$

[^1]$$
=\sum_{m=1}^{\infty} \frac{1}{m}\left\{\frac{x^{m}}{1-x^{m}}+\frac{x^{4 m}}{1-x^{4 m}}+\frac{x^{9 m}}{1-x^{9 m}}+\ldots\right\}
$$

Using

$$
k x^{k-1}(1-x) \leq 1-x^{k} \leq k(1-x)
$$

wherever necessary,

$$
\begin{aligned}
\sum_{m=1}^{\infty} \frac{1}{m} \frac{x^{t^{2} m}}{1-x^{t^{2} m}} & <\sum_{m=1}^{\infty} \frac{1}{m^{2}} \frac{x}{t^{2}(1-x)} \\
& =\frac{\pi^{2}}{6} \frac{x}{t^{2}(1-x)} \\
& <\frac{\pi^{2}}{6 t^{2}(1-x)}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\log P_{2}(x) & <\frac{\pi^{2}}{6(1-x)} \sum_{t=1}^{\infty} \frac{1}{t^{2}} \\
& =\frac{\pi^{4} / 36}{1-x}
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\log P_{2}(x) & >\sum_{m=1}^{\infty} \frac{1}{m} \sum_{t=1}^{\infty} \frac{x^{m t^{2}}}{m t^{2}(1-x)} \\
& =\frac{1}{1-x} \sum_{m=1}^{\infty} \frac{1}{m^{2}} \quad \sum_{t=1}^{\infty} \frac{x^{2}}{2} \\
& >\frac{1}{1-x} \frac{\pi^{2}}{6} \frac{\pi^{2}}{6}(1-\varepsilon)
\end{aligned}
$$

for arbitrary $\varepsilon>0$ provided x is sufficiently close to 1 (by Abel's theorem on the continuity of power series). Hence

$$
\log P_{2}(x) \sim \frac{\pi^{4} / 36}{1-x}
$$

as $x \rightarrow 1$. .

We now appeal to the following Tauberian theorem:
If $a_{n} \geq 0$ and

$$
\log \Sigma a_{n} x^{n} \sim \frac{C}{1-x}
$$

as $x \rightarrow 1-$, then

$$
\log \left(a_{0}+a_{1}+\ldots+a_{n}\right)^{\sim 2 \sqrt{C n}}
$$

If the a_{n} are monotone increasing (as our $p_{2}(n)$) it is easy to see that this implies

$$
\log _{a_{n}} \sim 2 \sqrt{C n}
$$

Thus

PROPOSITION.

$$
\log p_{2}(n) \sim \frac{\pi^{2}}{3} \sqrt{n}
$$

We mention finally the identity (familiar in the case $i=1$)

$$
n p_{i}(n)=\sum_{k=1}^{n} a_{i}(k) p_{i}(n-k)
$$

where

$$
a_{i}(k)=\sum_{d \mid k} d \delta_{i}(d)
$$

obtained by logarithmic differentiation of

$$
\Pi\left(1-x^{n}\right)^{-\delta_{i}(n)}=\Sigma p_{i}(n) x^{n}
$$

and comparing coefficients. This recurrence relation was used to calculate $p_{2}(n)$ up to $n=100$; although the values of $p_{2}(n)$ tended to be very 'round', no congruence property of the Ramanujan type was noticed.

REFERENCES

1. P. Erdös and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem. Acta Litt. Sci. Szeged, v. 7(1934), pp. 95-102.
2. G. H. Hardy and M. Riesz, The General Theory of Dirichlet Series. Cambridge Tract No. 18.
3. N. Wiener, The Fourier Integral.

McGill University

[^0]: * In the general theorem one has skew fields but in our case they are finite and therefore commutative.

[^1]: * All the series in what follows are convergent for $0<x<1$, and the transformations can be justified by standard elementary theorems.

