A NUMBER THEORY PROBLEM
CONCERNING FINITE GROUPS AND RINGS

Ian G. Connell

(received March 5, 1963)

Let fi(n) denote the number of abelian groups of order
n and fz(n) the number of semi-simple rings with n elements.
What can be said about the magnitude of f (n) ? We shall prove
i

that one can expect, on the average, about 2.3 groups and 2.5
rings of the kind stated for a given order.* First we state
without proof the two relevant structure theorems (which are
readily available in standard texts).

e e
2
Let G be an abelian group of order n = qi1 a,

where the qi are the distinct primes dividing n. Then G is
e
the direct product of groups G, of order q,1 and each G,
i i i

is in turn a direct product of cyclic groups G,, of orders
e.. lJ
q‘lJ such that

1

€,.
G determines uniquely the set of integers {qi 1‘]} , and con-

versely, each such set determines a G unique (up to isomor-
phism).

% I find I have been anticipated in the group case by Erdds and
Szekeres [1]; however my method is different from theirs and
I believe the ring case is new.
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It follows immediately that
£,(m) = ple,)p,(e,) ...

where pi(n) is the usual partition function. Obviously f1(n)

is multiplicative, that is, if the g.c.d. (m,n) =1 then

f1(mn) = fi(m)f1(n).

e e
1 2
Let R be a ring with n = q1 qQy - elements which is
semi-simple, that is has zero radical. Then R is the direct
e-
product of rings R,i of qil elements and each Ri is the

e

direct product of rings R, , of q, 4
ij i

elements where R, is
1)

the full ring of r, Xr , matrices over the finite field™®
1 1
s

GF(q, Yy, and

R determines uniquely the set of pairs {(r..,q )}, and
ij7 1

conversely each such set determines a unique semi-simple R.

Again we see that fz(n) is multiplicative and
£,(n) = p,(e,)p,(e,) ...
where pz(n) is a modified partition function defined as follows.

Let &(n) denote the number of squares dividing n :

&(n) = z 1.

dzln

* In the general theorem one has skew fields but in our case
they are finite and therefore commutative.
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Then pz(n) is the number of partitions of n, where we now

recognize 6(m) different ' kinds' of the integer m when it
occurs as a summand in a partition. For example, the partition .

12+ 4+ 1

contributes 1 to p1(17) but 4 to p2(17) corresponding to

12 +4+ 1
3.22+4+1
12+22+1

3.22+ 22+1.

17
If R has q elements then 12 + 4 + 1 corresponds to the
direct product

12 4
GF(q ) X GF(q ) X GF(q) ;
2
3.2 + 4+ 1 corresponds to

4
GF(a’), X GF(a") X GF(q) ,

where the subscript 2 indicates the ring of 2X2 matrices;

and so on.

The generating function for pi(n) is well known:

0 -1 00
P(x) = T (1-x) = Z p(n)x
1 1

n=1 n=0

(where p1(0) =1), and a moment's consideration shows that

0 - 8(n) o
P(x) = T (1-x) = = p.(n)x
2 2
n=1 n=0
25
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(where pZ(O) =1). Clearly

4
PZ(X) = P1(x)P1(x )Pi(xg) e
The generating function for fi(n) is of the Dirichlet

series type; formally,

)
-s -s -2s
Z fion =1 {1+ p,(tlp +p (2 +...}

n=1 P

(where the product is extended over all primes)

-8
=IIP1(p)
P
0 s-'l
-n
=T O {(1-p )
p n=1
0 -1
-ns
= 0T M (4-p )
n=1 p
0
= I ¢(ns),
n=1

where {(s) is the Riemann {-function; and similarly for
fz(n). Thus we have the formal identities

0 0

Z(s) = I tns) = = £ (n)n °
1 1

n=1 n=1

o0 6 0
z(s) = 1 tms)’™ = = £ (nn°
2 2

n=1 n=1

Note Zz(s) = 21(5)21(43)21(95) e .
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In order to deal with the two cases simultaneously, we
write 61(n) =1, 62(n) = 6(n). We regard Zi(s) as being

defined by the infinite product. s =0 + it is a complex
variable.

PROPOSITION. Zi(s) is a regular function of s for
o > 0 except for poles of order éi(n) at 1/n (n=1,2,...).

The line ¢ =0 1is a natural boundary. The series

Z f(n)n
i
converges absolutely for o> 1 to Zi(s) .

Proof. The first statement will follow if we prove for
N=1,2,... that Zi(s) is regular for o > 2/(N+1) except for

poles of order 6i(n) at 1/n (n=1,2,..., [(N+1)/2]). Since
t(s) is regular except for a simple pole (with residue 1) at

s =1, this will follow if we prove that the product

oo 5. (n)
n {1+ (@s)-1}" ,
n=N+1

Z,(s)/Z(s,N)

N §.(n)
I L(ns) =,
n=1

where Zi(s,N)
is uniformly convergent in the half-plane o > 2/(N+ 1), and
this will be guaranteed if the sum

© 8,(n)

Z  |t(ns) - 1]

n=N+1

converges uniformly. Since no > 2,

27
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|t(ns) - 4| = |2 7 +3 7 +
5 2—n0'+ 3-n0'+
1-no -1 no no
=(1-2 ) (1-2 +3 - ) -1
-1 -1
1- -1
< (1-2"""y L4 =27
-nag
<24 (<),
whence
) 6.(n) ) -
T |tms)-1] ' <4 = 277
n=m n=m

for any m > N + 1, which clearly proves the uniform convergence.

¢(s) has infinitely many zeros s, ,s in the strip

1Sy
0 <o <1, and the conjugate of a zero is also a zero. Thus
Zi(s) has zeros at sk/n, (k,n=1,2,...) and it follows readily

that each point on the line ¢=0 is a limit point of zeros, thus
an essential singularity, and therefore o=0 is a natural
boundary.

Each of the finitely many series {(ns) in the product
Zi(s,N) is absolutely convergent for ¢ > 1 and therefore

the terms may be rearranged to give

o0
Z(s,N) = Z f(n,Nn °
1

t n=1

where the series is absolutely convergent and 1 < f (n,N) < f (n),
: - i - i

with fi(n,N) =fi(n) for n<N. Thus

N 0

- -0
T f(o)n < = f(n,N)n .
1 1
n=1 n=1
28
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N 6,(n)
= I no) '
n=1

<Z(o).
i

-C
Hence the series Efi(n)n of positive terms is bounded above
and is therefore convergent for any ¢ > 1. Because of the
-0
convergence of Zfi(n,N)n and of the product Z (o) we
i

clearly have

00 . 0 -
T f(n)nn > = f(n,N)n
1 1
n=1 n=1

> Z (o) -¢
i

for arbitrary ¢ > 0 and N sufficiently large, so that

-0
Zfi(n)n converges to Zi(O') for ¢ > 1, It follows [2] that
Efi(n)n-s converges absolutely to Zi(s) for ¢ > 1. This

completes the proof.

Zi(s) has a simple pole at s =1; let the residue be Ci'

Then since {(s) has residue 41 at s =1, we have

4

£(2) £(3) ... L(n) ... =2.294842 ...

I
, = L2 3 p@’ L g

i

C

1]

. = 2.499598 ...

(expressions for the residues at the other poles can be given
without difficulty). We now appeal to Ikehara's theorem
[3, p.125]: If

00 .
F(s) = Z ann_s , a >0

n=1 ne
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is convergent for o > 1, and F(s) is regular on ¢ =1 except
for a simple pole with residue C at s =1, then

a +a_+...+4a ~Cn,
1 2 n

(where, as usual, f(n) ™~ g(n) means that

Lim £(n)/g(n)

n-—» o
exists and has the value 1).

The conditions are satisfied by Z (s) and we have
1
COROLLARY.

f(1)+ £(2)+ ... + f(n) ~Con .
1 1 1

1

Hence, on the average, there are C1 abelian groups and C2
semi- simple rings of each order.

Erdds and Szekeres show that the error in the above
asymptotic formula in the case i=1 is 0(Nn). I would

conjecture that a more detailed analysis of Z (s) should
. i
yield

1/2
f(Y+£(2)+... +f(n) = C, . n+2C,_n /
i i i il i2

n1/k n1/(k+‘1)

... + k ,
+ + Cik + Of )

where Cik is the residue of Zi(s) at s=1/k.

The behaviour of f (n) itself is of course quite erratic;
i
thus, if n is square-free f (n) =1, but on the other hand
1

fi(Zm) =p,(m). - It is well-known that

(m) ~ 1 eKi'\/—m
Py 4mn 3
30
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where K

1 - "V3¢

and therefore (for arbitrary & > 0)

£ (n)> (1 -¢)A eB'\llogn ’
1 log n

for infinitely many values of n,

log 2 _ [ 2
where A—4\/—3 ’ B--1r310g‘2

For the ring case we will obtain only a much cruder result.

From above we have

log pi(m) ~ 11'\/%- Nm

and we expect a somewhat larger value for log pz(m); we now
prove

2
log pz(m) "'—131— Nm .

For 0<x<1 we have*

0

log Py(x) = = -(n)log(1 - x)
n=1
0 0 mn
= T §@n) = =
n=1 m=1
00 0

-z L o5 s
m=1 7 n=1

* All the series in what follows are convergent for 0 <x< 1,
and the transformations can be justified by standard elementary
theorems.
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Using
k-1 k
kx (1-x)51-x5k(1-x)

wherever necessary,

2
0 1 tm c0
s 1 _x < s 1 X
m=1 1 - xt'm m=1 m t (1-x)
2
™ X
T 6
t (1 - x)
2
m
<
6t (1 - x)
and therefore
2 0 "
T
log P < s —
°g P,(x) < T T 2
t=1 t
4
_m /36
T 1-x
On the other hand,
0 00 mt
log PZ(X) > zZ — = }2{
m=1 t=14 mt (1 - x)
" o0 0 mt
= 7 1 s 15 X
TF m=1 m” t=1t
2
>—1_ T L (1 -¢)
1-x 6 6
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for arbitrary ¢ > 0 provided x is sufficiently close to 1
(by Abel' s theorem on the continuity of power series). Hence

4
. T /36
log PZ(X) 1 =
as x—=+1- .

We now appeal to the following Tauberian theorem:
If a > 0 and

C

1-x

log Ta x ~
a X
Og n

as x—+1-, then

~ 24 .
log (a0 +‘a1 + + an) Cn

If the a are monotone increasing (as our pz(n)) it is easy
n

to see that this implies

loga ~2ANCn.
n

Thus
PROPOSITION.
1TZ
~
log pz(n) 3 N
We mention finally the identity (familiar in the case i=1)
n
np.(n) = Z a (k)p,(n - k)
k=1
where
a(k) = X d 6i(d)
' d|k
33
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obtained by logarithmic differentiation of

..6. ‘
m-x) i) 5 pi(n)xn

and comparing coefficients. This recurrence relation was used
to calculate pz(n) up to n =100; although the values of pz(n)

tended to be very 'round', no congruence property of the
Ramanujan type was noticed.
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