A NUMBER THEORY PROBLEM CONCERNING FINITE GROUPS AND RINGS

Ian G. Connell

(received March 5, 1963)

Let $f_1(n)$ denote the number of abelian groups of order n and $f_2(n)$ the number of semi-simple rings with n elements. What can be said about the magnitude of $f_i(n)$? We shall prove that one can expect, on the average, about 2.3 groups and 2.5 rings of the kind stated for a given order. * First we state without proof the two relevant structure theorems (which are readily available in standard texts).

Let G be an abelian group of order $n = q_1^{e_1} q_2^{e_2} \dots$ where the q_i are the distinct primes dividing n. Then G is the direct product of groups G_i of order q_i^{i} and each G_i is in turn a direct product of cyclic groups G_{ij} of orders $e_{ij}^{e_j}$ such that

 $\sum_{j} e_{j} = e_{j}$

G determines uniquely the set of integers $\{q_i^{ij}\}$, and conversely, each such set determines a G unique (up to isomorphism).

* I find I have been anticipated in the group case by Erdős and Szekeres [1]; however my method is different from theirs and I believe the ring case is new.

Canad. Math. Bull. vol. 7, no. 1, January 1964

It follows immediately that

$$f_1(n) = p_1(e_1)p_1(e_2) \dots$$

where $p_1(n)$ is the usual partition function. Obviously $f_1(n)$ is multiplicative, that is, if the g.c.d. (m,n) = 1 then $f_1(mn) = f_1(m)f_1(n)$.

Let R be a ring with $n = q_1^{e_1} q_2^{e_2} \dots$ elements which is semi-simple, that is has zero radical. Then R is the direct product of rings R_i of $q_i^{e_i}$ elements and each R_i is the direct product of rings R_{ij} of $q_i^{e_{ij}}$ elements where R_{ij} is the full ring of $r_{ij}xr_{ij}$ matrices over the finite field^{*} $GF(q_i^{ij})$, and

$$\Sigma \mathbf{e}_{ij} = \Sigma \mathbf{r}_{ij}^2 \mathbf{s}_{ij} = \mathbf{e}_i.$$

R determines uniquely the set of pairs $\{(r_{ij}, q_i^{ij})\}$, and conversely each such set determines a unique semi-simple R.

Again we see that $f_2(n)$ is multiplicative and

 $f_2(n) = p_2(e_1)p_2(e_2) \dots$

where $p_2(n)$ is a modified partition function defined as follows. Let $\delta(n)$ denote the number of squares dividing n :

$$\delta(n) = \sum 1$$
$$d^{2} | n$$

^{*} In the general theorem one has skew fields but in our case they are finite and therefore commutative.

Then $p_2(n)$ is the number of partitions of n, where we now recognize $\delta(m)$ different 'kinds' of the integer m when it occurs as a summand in a partition. For example, the partition

$$12 + 4 + 1$$

contributes 1 to $p_1(17)$ but 4 to $p_2(17)$ corresponding to

$$12 + 4 + 1$$

3. 2² + 4 + 1
12 + 2² + 1
3. 2² + 2² + 1

If R has q^{17} elements then 12 + 4 + 1 corresponds to the direct product

$$GF(q^{12}) \times GF(q^4) \times GF(q)$$
;

 $3.2^2 + 4 + 1$ corresponds to

$${\rm GF(q}^3)_2 \times {\rm GF(q}^4) \times {\rm GF(q)}$$
 ,

where the subscript 2 indicates the ring of 2×2 matrices; and so on.

The generating function for $p_4(n)$ is well known:

$$P_{1}(x) = \prod_{n=1}^{\infty} (1 - x^{n})^{-1} = \sum_{n=0}^{\infty} p_{1}(n)x^{n}$$

(where $p_4(0) = 1$), and a moment's consideration shows that

$$P_{2}(\mathbf{x}) = \prod_{n=1}^{\infty} (1 - \mathbf{x}^{n}) = \sum_{n=0}^{\infty} P_{2}(n) \mathbf{x}^{n}$$

25

(where $p_2(0) = 1$). Clearly

$$P_2(x) = P_1(x)P_1(x^4)P_1(x^9) \dots$$

The generating function for $f_i(n)$ is of the Dirichlet series type; formally,

$$\sum_{n=1}^{\infty} f_1(n)n^{-s} = \prod \{1 + p_1(1)p^{-s} + p_1(2)p^{-2s} + \dots \}$$

(where the product is extended over all primes)

$$= \prod_{p} P_{1}(p^{-s})$$

$$= \prod_{p} \Pi_{n=1} (1 - p^{-ns})^{-1}$$

$$= \prod_{n=1}^{\infty} \prod_{p=1} (1 - p^{-ns})^{-1}$$

$$= \prod_{n=1}^{\infty} \zeta(ns) ,$$

$$= \prod_{n=1}^{\infty} \zeta(ns) ,$$

where $\zeta(s)$ is the Riemann ζ -function; and similarly for $f_2(n)$. Thus we have the formal identities

$$Z_{1}(s) = \prod_{n=1}^{\infty} \zeta(ns) = \sum_{n=1}^{\infty} f_{1}(n)n^{-s}$$

$$Z_{2}(s) = \prod_{n=1}^{\infty} \zeta(ns)^{\delta(n)} = \sum_{n=1}^{\infty} f_{2}(n)n^{-s}.$$

Note

$$Z_2(s) = Z_1(s)Z_1(4s)Z_1(9s) \dots$$

In order to deal with the two cases simultaneously, we write $\delta_1(n) = 1$, $\delta_2(n) = \delta(n)$. We regard $Z_i(s)$ as being defined by the infinite product. $s = \sigma + i\tau$ is a complex variable.

PROPOSITION. $Z_{i}(s)$ is a regular function of s for $\sigma > 0$ except for poles of order $\delta_i(n)$ at 1/n (n = 1, 2, ...). The line $\sigma = 0$ is a natural boundary. The series

$$\Sigma f_i(n)n^{-s}$$

converges absolutely for $\sigma > 1$ to $Z_{i}(s)$.

Proof. The first statement will follow if we prove for $N = 1, \overline{2, \ldots}$ that $Z_{i}(s)$ is regular for $\sigma \geq 2/(N+1)$ except for poles of order $\delta_i(n)$ at 1/n (n = 1, 2, ..., [(N+1)/2]). Since $\zeta(s)$ is regular except for a simple pole (with residue 1) at s = 1, this will follow if we prove that the product

$$Z_{i}(s)/Z_{i}(s,N) = \prod_{n=N+1}^{\infty} \{1 + (\zeta(ns) - 1)\}^{i}$$

where
$$Z_i(s,N) = \prod_{i=1}^{N} \zeta_i(n)$$
, $n=1$

is uniformly convergent in the half-plane $\sigma > 2/(N + 1)$, and this will be guaranteed if the sum

$$\begin{array}{c} \infty & \delta_{i}(n) \\ \Sigma & \left| \zeta(ns) - 1 \right|^{i} \\ n=N+1 \end{array}$$

converges uniformly. Since $n\sigma > 2$,

$$\begin{aligned} |\zeta(ns) - 1| &= |2^{-ns} + 3^{-ns} + \dots | \\ &\leq 2^{-n\sigma} + 3^{-n\sigma} + \dots \\ &= (1 - 2^{1-n\sigma})^{-1} (1 - 2^{-n\sigma} + 3^{-n\sigma} - \dots) - 1 \\ &< (1 - 2^{1-n\sigma})^{-1} - 1 = (2^{n\sigma-1} - 1)^{-1} \\ &\leq 2^{-n\sigma} 4 \quad (\leq 1) , \end{aligned}$$

whence

$$\begin{array}{ccc} \infty & \delta_{i}(n) & \infty \\ \Sigma & \left| \zeta(ns) - 1 \right|^{i} < 4 \Sigma 2^{-n\sigma} \\ n=m & n=m \end{array}$$

for any $m \ge N + 1$, which clearly proves the uniform convergence.

 $\zeta(s)$ has infinitely many zeros s_1, s_2, \ldots in the strip $0 < \sigma < 1$, and the conjugate of a zero is also a zero. Thus $Z_i(s)$ has zeros at s_k/n , $(k, n = 1, 2, \ldots)$ and it follows readily that each point on the line $\sigma = 0$ is a limit point of zeros, thus an essential singularity, and therefore $\sigma = 0$ is a natural boundary.

Each of the finitely many series $\zeta(ns)$ in the product $Z_i(s,N)$ is absolutely convergent for $\sigma > 1$ and therefore the terms may be rearranged to give

$$Z_{i}(s,N) = \sum_{n=1}^{\infty} f_{i}(n,N)n^{-s}$$

where the series is absolutely convergent and $1 \le f_i(n, N) \le f_i(n)$, with $f_i(n, N) = f_i(n)$ for $n \le N$. Thus

 $\sum_{\substack{n=1}}^{N} f_{i}(n)n^{-\sigma} < \sum_{\substack{n=1}}^{\infty} f_{i}(n,N)n^{-\sigma}$

28

$$N \qquad \delta_{i}(n) = \prod_{n=1}^{N} \zeta(n\sigma)^{i}$$
$$< Z_{i}(\sigma) .$$

Hence the series $\Sigma f_i(n)n^{-\sigma}$ of positive terms is bounded above and is therefore convergent for any $\sigma > 1$. Because of the convergence of $\Sigma f_i(n, N)n^{-\sigma}$ and of the product $Z_i(\sigma)$ we clearly have

$$\sum_{n=1}^{\infty} f_{i}(n)n^{-\sigma} > \sum_{n=1}^{\infty} f_{i}(n, N)n^{-\sigma}$$
$$> Z_{i}(\sigma) - \varepsilon$$

for arbitrary $\varepsilon > 0$ and N sufficiently large, so that $\Sigma f_i(n)n^{-\sigma}$ converges to $Z_i(\sigma)$ for $\sigma > 1$. It follows [2] that $\Sigma f_i(n)n^{-s}$ converges absolutely to $Z_i(s)$ for $\sigma > 1$. This completes the proof.

 $Z_i(s)$ has a simple pole at s = 1; let the residue be C_i . Then since $\zeta(s)$ has residue 1 at s = 1, we have

$$C_{1} = \zeta(2) \zeta(3) \dots \zeta(n) \dots = 2.294842 \dots$$
$$C_{2} = \zeta(2) \zeta(3) \zeta(4)^{2} \dots \zeta(n)^{\delta(n)} \dots = 2.499598 \dots$$

(expressions for the residues at the other poles can be given without difficulty). We now appeal to Ikehara's theorem [3, p. 125]: If

$$F(s) = \sum_{n=1}^{\infty} a_n^{-s}, \quad a \ge 0$$

is convergent for $\sigma > 1$, and F(s) is regular on $\sigma = 1$ except for a simple pole with residue C at s = 1, then

 $a_1 + a_2 + ... + a_n \sim Cn$,

(where, as usual, $f(n) \sim g(n)$ means that

$$\lim_{n\to\infty} f(n)/g(n)$$

exists and has the value 1).

The conditions are satisfied by $Z_{i}(s)$ and we have

COROLLARY.

$$f_i(1) + f_i(2) + \ldots + f_i(n) \sim C_i n$$
.

Hence, on the average, there are C_1 abelian groups and C_2 semi-simple rings of each order.

Erdős and Szekeres show that the error in the above asymptotic formula in the case i = 1 is $0(\sqrt{n})$. I would conjecture that a more detailed analysis of $Z_i(s)$ should yield

$$f_{i}(1) + f_{i}(2) + \ldots + f_{i}(n) = C_{i1}^{n} + 2C_{i2}^{n}^{1/2} + \ldots + kC_{ik}^{n} + O(n^{1/(k+1)}),$$

where C_{ik} is the residue of $Z_i(s)$ at s = 1/k.

The behaviour of $f_i(n)$ itself is of course quite erratic; thus, if n is square-free $f_i(n) = 1$, but on the other hand $f_i(2^m) = p_i(m)$. It is well-known that

$$p_1(m) \sim \frac{1}{4m\sqrt{3}} e^{K_1\sqrt{m}}$$

where

$$K_1 = \pi \sqrt{\frac{2}{3}},$$

and therefore (for arbitrary $\varepsilon > 0$)

$$f_1(n) > \frac{(1 - \varepsilon)A}{\log n} e^{B\sqrt{\log n}}$$

for infinitely many values of n,

where
$$A = \frac{\log 2}{4\sqrt{3}}$$
, $B = \pi \sqrt{\frac{2}{3 \log 2}}$

For the ring case we will obtain only a much cruder result. From above we have

$$\log p_1(m) \sim \pi \sqrt{\frac{2}{3}} \cdot \sqrt{m}$$

and we expect a somewhat larger value for $\log p_2(m)$; we now prove

$$\log p_2(m) \sim \frac{\pi^2}{3} \sqrt{m}$$

For 0 < x < 1 we have*

$$\log P_2(x) = \sum_{n=1}^{\infty} -\delta(n)\log(1 - x^n)$$
$$= \sum_{n=1}^{\infty} \delta(n) \sum_{m=1}^{\infty} \frac{x^m}{m}$$
$$= \sum_{m=1}^{\infty} \frac{1}{m} \sum_{n=1}^{\infty} \delta(n) x^m n$$

^{*} All the series in what follows are convergent for 0 < x < 1, and the transformations can be justified by standard elementary theorems.

$$= \sum_{m=1}^{\infty} \frac{1}{m} \left\{ \frac{x^{m}}{x^{m}} + \frac{x^{m}}{x^{m}} + \frac{x^{m}}{x^{m}} + \frac{x^{m}}{x^{m}} + \frac{x^{m}}{x^{m}} + \frac{x^{m}}{x^{m}} + \dots \right\}$$

Using

$$kx^{k-1}(1 - x) \le 1 - x^{k} \le k(1 - x)$$

wherever necessary,

$$\sum_{m=1}^{\infty} \frac{1}{m} \frac{x^{t^{2}m}}{1 - x^{t^{2}m}} < \sum_{m=1}^{\infty} \frac{1}{m^{2}} \frac{x}{t^{2}(1 - x)}$$
$$= \frac{\pi^{2}}{6} \frac{x}{t^{2}(1 - x)}$$
$$< \frac{\pi^{2}}{6t^{2}(1 - x)}$$

and therefore

$$\log P_2(x) < \frac{\pi}{6(1-x)} \sum_{t=1}^{\infty} \frac{1}{t^2}$$
$$= \frac{\pi^4/36}{1-x} .$$

On the other hand,

$$\log P_{2}(x) > \sum_{m=1}^{\infty} \frac{1}{m} \sum_{t=1}^{\infty} \frac{x^{mt}}{mt^{2}(1-x)}$$
$$= \frac{1}{1-x} \sum_{m=1}^{\infty} \frac{1}{m^{2}} \sum_{t=1}^{\infty} \frac{x^{mt}}{t^{2}}$$
$$> \frac{1}{1-x} \frac{\pi^{2}}{6} \frac{\pi^{2}}{6} (1-\varepsilon)$$

32

for arbitrary $\varepsilon > 0$ provided x is sufficiently close to 1 (by Abel's theorem on the continuity of power series). Hence

$$\log P_2(x) \sim \frac{\pi^4/36}{1-x}$$

as $x \rightarrow 1-$.

We now appeal to the following Tauberian theorem: If $a_n \ge 0$ and

$$\log \Sigma a_n^{n} \sim \frac{C}{1 - x}$$

as $x \rightarrow 1$ -, then

$$\log (a_0 + a_1 + ... + a_n) \sim 2\sqrt{Cn}$$
.

If the a are monotone increasing (as our $p_2(n)$) it is easy to see that this implies

$$\log a_n \sim 2\sqrt{Cn}$$
.

Thus

PROPOSITION.

$$\log p_2(n) \sim \frac{\pi^2}{3} \sqrt{n} .$$

We mention finally the identity (familiar in the case i = 1)

$$np_{i}(n) = \sum_{k=1}^{n} a_{i}(k)p_{i}(n-k)$$

where

$$a_{i}(k) = \sum_{\substack{d \\ d \mid k}} d\delta_{i}(d)$$

obtained by logarithmic differentiation of

$$\Pi (1 - \mathbf{x}^{n})^{-\delta} \mathbf{i}^{(n)} = \Sigma \mathbf{p}_{\mathbf{i}}^{(n)} \mathbf{x}^{n}$$

and comparing coefficients. This recurrence relation was used to calculate $p_2(n)$ up to n = 100; although the values of $p_2(n)$ tended to be very 'round', no congruence property of the Ramanujan type was noticed.

REFERENCES

- P. Erdős and G. Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem. Acta Litt. Sci. Szeged, v. 7(1934), pp. 95-102.
- 2. G. H. Hardy and M. Riesz, The General Theory of Dirichlet Series. Cambridge Tract No. 18.
- 3. N. Wiener, The Fourier Integral.

McGill University