CHARACTERIZATIONS OF COMMUTATIVITY FOR C*-ALGEBRAS

by M. J. CRABB, J. DUNCAN and C. M. McGREGOR

(Received 6 November, 1973; revised 12 December, 1973)

Let \mathscr{A} be a C^* -algebra acting on the Hilbert space H and let \mathscr{S} be the self-adjoint elements of \mathscr{A} . The following characterization of commutativity is due to I. Kaplansky (see Dixmier [3, p. 58]).

THEOREM 1. \mathcal{A} is commutative if and only if 0 is the only nilpotent element of \mathcal{A} .

In this note we use the above result of Kaplansky to give two numerical characterizations of commutativity. Ogasawara [5], Sherman [6], and Fukamiya, Misonou and Takeda [4] characterize commutativity for $\mathscr A$ in terms of the usual order structure on $\mathscr S$. We show that Kaplansky's theorem reduces the proofs of these order characterizations to simple computations.

1. Numerical characterizations. Taylor [7, Lemma 3.3] proves that, if A and B are self-adjoint elements of \mathscr{A} with $0 \neq ||A|| \geq ||B||$, then

$$||A+B|| \le ||A|| + k \frac{||AB||}{||A||},$$
 (1)

where k may be taken as 2. If $\mathscr A$ is commutative, the inequality holds with k=1. Taylor asks if the converse is true; in Theorem 2 we prove this.

Note that an inequality of the form (1) can hold for all elements of a Banach algebra \mathcal{B} only if \mathcal{B} is commutative. For, setting B = A in (1), we obtain $||A||^2 \le k ||A^2||$ and thence $||A|| \le kr(A)$, where r(A) is the spectral radius of A. Thus \mathcal{B} is commutative (see, for example, [1, p. 33]).

A simple argument shows that inequality (1) holds if and only if it holds for self-adjoint A, B of norm 1.

REMARK. We assume that \mathcal{A} has a unit element when there is no loss of generality in so doing.

THEOREM 2. \mathcal{A} is commutative if and only if

$$||A+B|| \le 1 + ||AB||$$

for all self-adjoint elements $A, B \in \mathcal{A}$ with ||A|| = ||B|| = 1.

Proof. If \mathscr{A} is commutative, the result follows from the inequality

$$(I-A)(I-B) \ge 0.$$

Assume that \mathscr{A} is not commutative. By Theorem 1, there exists nonzero $T \in \mathscr{A}$ such that $T^2 = 0$. Let H_1 be the subspace $(TH)^-$ and let H_2 be the orthogonal complement of H_1 in

H. If we represent H as $H_1 \oplus H_2$, T, T^* are represented by the 2×2 matrices of operators

$$T = \begin{bmatrix} 0 & S \\ 0 & 0 \end{bmatrix}, \quad T^* = \begin{bmatrix} 0 & 0 \\ S^* & 0 \end{bmatrix}.$$

We may suppose that ||S|| = 1. Let

$$A = TT^*$$
, $B = \alpha TT^* + \alpha T^*T + \beta T + \beta T^*$,

where $\alpha, \beta > 0$, $\alpha + \beta = 1$, so that $A, B \in \mathcal{A}$. Then

$$A = \begin{bmatrix} SS^* & 0 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} \alpha SS^* & \beta S \\ \beta S^* & \alpha S^*S \end{bmatrix}.$$

Clearly ||A|| = 1. Since ||S|| = 1, there exist $x_n \in H_1$ such that $||x_n|| = 1$ and $SS^*x_n - x_n \to 0$. To see this, note that $||SS^*x_n - x_n||^2 = ||SS^*x_n||^2 - 2||S^*x_n||^2 + ||x_n||^2 \le 2(||x_n||^2 - ||S^*x_n||^2)$, and choose x_n such that $||S^*x_n|| \to 1$. Hence

$$B(x_n + S^*x_n) - (x_n + S^*x_n) \to 0$$
,

and so $||B|| \ge 1$. But

$$\|B\| \le \alpha \|TT^* + T^*T\| + \beta \|T + T^*\| \le 1,$$

and so ||B|| = 1. Next,

$$||AB|| = \sup \{ ||\alpha SS^*SS^*x + \beta SS^*Sy|| : ||x||^2 + ||y||^2 = 1 \}$$

$$\leq \sup \{ \alpha ||x|| + \beta ||y|| : ||x||^2 + ||y||^2 = 1 \}$$

$$= (\alpha^2 + \beta^2)^{\frac{1}{2}}.$$

Let $\lambda = \alpha + \frac{1}{2} + (\frac{1}{4} + \beta^2)^{\frac{1}{2}}$, so that λ satisfies the equation

$$(\lambda-\alpha)(\lambda-\alpha-1)=\beta^2.$$

Let x_n be as above and let $y_n = \beta(\lambda - \alpha)^{-1} S^* x_n$. Then

$$(A+B)(x_n+y_n)-\lambda(x_n+y_n)\to 0,$$

so that $||A+B|| \ge \lambda$. If we choose α , β so that

$$\alpha + \frac{1}{2} + (\frac{1}{4} + \beta^2)^{\frac{1}{2}} > 1 + (\alpha^2 + \beta^2)^{\frac{1}{2}}$$

then we have ||A+B|| > 1 + ||AB||. It is enough to take

$$\alpha = \frac{2}{3}, \quad \beta = \frac{1}{3}.$$

REMARK. If $\mathscr A$ is commutative, we even have $||A+B|| \le 1 + ||AB||$ for all elements $A, B \in \mathscr A$ with ||A|| = ||B|| = 1.

We recall that the numerical index $n(\mathcal{A})$ of \mathcal{A} is defined by

$$n(\mathscr{A}) = \inf \{ w(A) : A \in \mathscr{A}, \| A \| = 1 \},$$

where

$$w(A) = \sup \{ |\langle Ax, x \rangle| : x \in H, ||x|| = 1 \},$$

and that $\frac{1}{2} \le n(\mathcal{A}) \le 1$ (see [1, pp. 43, 44]).

F

THEOREM 3. A is commutative or not commutative according as n(A) is 1 or $\frac{1}{2}$.

Proof. If \mathscr{A} is commutative, each $A \in \mathscr{A}$ is normal and so has w(A) = ||A||. If \mathscr{A} is not commutative, then, by Theorem 1, there exists $T \in \mathscr{A}$, with $T \neq 0$, $T^2 = 0$. A result of Bouldin [2, Corollary 2, p. 214] shows that $w(T) = \frac{1}{2} ||T||$, so that $n(\mathscr{A}) = \frac{1}{2}$. (The condition T^*H orthogonal to TH in [2] is equivalent to $T^2 = 0$.)

2. Order characterizations. We recall that the usual order on $\mathcal S$ is defined by

$$A \ge B \Leftrightarrow \langle (A-B)x, x \rangle \ge 0 \quad (x \in H).$$

Let T, S be as in the proof of Theorem 2. Let

$$P = \begin{pmatrix} SS^* & 0 \\ 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 0 & (SS^*)^{\frac{1}{2}}S \\ S^*(SS^*)^{\frac{1}{2}} & 0 \end{pmatrix}, \quad R = \begin{pmatrix} 0 & 0 \\ 0 & S^*S \end{pmatrix},$$

so that $P, Q, R \in \mathcal{A}$. We make frequent use of the following lemma.

LEMMA 4. Let $\alpha, \beta, \gamma \in \mathbb{R}$ with $\gamma > 0$. Then $\alpha P + \beta Q + \gamma R \ge 0$ if and only if $\alpha \gamma - \beta^2 \ge 0$.

Proof. For $x \in H_1$, $y \in H_2$ we have

$$\langle (\alpha P + \beta Q + \gamma R)(x + y), x + y \rangle = \|\beta \gamma^{-\frac{1}{2}} (SS^*)^{\frac{1}{2}} x + \gamma^{\frac{1}{2}} Sy \|^2 + \gamma^{-1} (\alpha \gamma - \beta^2) \|S^*x\|^2.$$

Since $(TH)^- = H_1$, for any $x \in H_1$ there exist $y_n \in H_2$ such that $\gamma^{\frac{1}{2}} S y_n \to -\beta \gamma^{-\frac{1}{2}} (SS^*)^{\frac{1}{2}} x$. The result follows.

 \mathscr{S} is said to be *lattice ordered* if, for each $U \in \mathscr{S}$, there exists $U^+ \geq 0$ such that $U^+ \geq U$ and $U^+ \leq V$ for any V such that $V \geq 0$ and $V \geq U$. \mathscr{S} is said to have the *decomposition property* if, given $A, B, C \in \mathscr{S}$ with $0 \leq A \leq B + C, B \geq 0, C \geq 0$, there exist $A_1, A_2 \in \mathscr{S}$ with $A = A_1 + A_2, 0 \leq A_1 \leq B, 0 \leq A_2 \leq C$.

THEOREM 5. ([4], [5], [6].) The following statements are equivalent.

- (i) A is commutative.
- (ii) $A, B \in \mathcal{A}, A \ge B \ge 0 \Rightarrow A^2 \ge B^2$.
- (iii) \mathcal{S} is lattice ordered.
- (iv) The dual space of \mathcal{G} is lattice ordered.
- (v) \mathcal{S} has the decomposition property.

Proof. If \mathscr{A} is commutative, the Gelfand-Naimark theorem readily shows that conditions (ii)-(v) hold. Assume that \mathscr{A} is not commutative and let T be as in the proof of Theorem 2.

- (ii) \Rightarrow (i). With the above notation, let A = 8P + 2R, B = 4P + 2Q + R. Then $A, B \in \mathcal{A}$ and $A \ge B \ge 0$, by Lemma 4. For $y \in H_2$, we have $\langle (A^2 B^2)y, y \rangle = -\langle (S^*S)^2y, y \rangle$, so that $A^2 \ge B^2$.
- (iii) \Rightarrow (i). Let $\mathscr S$ be lattice ordered and let U=P-R. Then $U\in S$ and it is elementary that $U^+=P$. Let $V=2P+2^{\frac{1}{2}}Q+R$, and we have $V\in A$, $V\geq 0$, $V\geq U$, but $V\geq U^+$, by Lemma 4.

(iv) \Rightarrow (i). Let \mathscr{S}' be the (real) dual space of \mathscr{S} with the induced dual order and let \mathscr{S}' be lattice ordered. Given $x \in H_1$ and $y \in H_2$, let $f, g \in \mathscr{S}'$ be defined by

$$f(V) = \langle V_1 x, x \rangle - \langle V_3 y, y \rangle, \quad g(V) = \langle V_1 x, x \rangle,$$

where

$$V = \begin{bmatrix} V_1 & V_2 \\ V_2^* & V_3 \end{bmatrix}.$$

If $V \ge 0$, then $V_1 \ge 0$ and $V_3 \ge 0$. Hence $f \le g$ and so $f^+ \le g$, since $g \ge 0$. Then $f(P) \le f^+(P) \le g(P)$ gives $f^+(P) = \langle Px, x \rangle$ and $0 \le f^+(R) \le g(R)$ gives $f^+(R) = 0$. Also $(g-f^+)(P \pm Q + R) = \mp f^+(Q) \ge 0$, so that $f^+(Q) = 0$. Define $h \in \mathscr{S}'$ by

$$h(V) = \langle V(2^{\frac{1}{2}}x + y), 2^{\frac{1}{2}}x + y \rangle = 2\langle V_1 x, x \rangle + 22^{\frac{1}{2}} \operatorname{Re} \langle V_2 y, x \rangle + \langle V_3 y, y \rangle.$$

Then

$$(h-f)(V) = \langle V_1 x, x \rangle + 22^{\frac{1}{2}} \operatorname{Re} \langle V_2 y, x \rangle + 2 \langle V_3 y, y \rangle = \langle V(x+2^{\frac{1}{2}}y), x+2^{\frac{1}{2}}y \rangle,$$

which gives $h-f \ge 0$. But

$$(h-f^+)(P+Q+R) = \langle Px, x \rangle + 22^{\frac{1}{2}} \operatorname{Re} \langle Q_2 y, x \rangle + \langle Ry, y \rangle = \langle (P+2^{\frac{1}{2}}Q+R)(x+y), x+y \rangle,$$

and, by Lemma 4, we can choose x, y so that $h \ge f^+$.

 $(v) \Rightarrow (i)$. Let $A = \frac{1}{2}P$, B = P + Q + R, C = 4P + 2Q + R. Then $0 \le A \le B + C$, by Lemma 4. Suppose that $A = A_1 + A_2$, with $0 \le A_1 \le B$, $0 \le A_2 \le C$. Since $A_1 \le A$, it is easy to show that A_1 is of the form

$$A_1 = \begin{bmatrix} X & 0 \\ 0 & 0 \end{bmatrix}.$$

Then, since $A_1 \leq B$, for $x \in H_1$ and $y \in H_2$ we have $\langle Xx, x \rangle \leq \langle (P+Q+R)(x+y), x+y \rangle = \|(SS^*)^{\frac{1}{2}}x + Sy\|^2$, from the proof of Lemma 4. Since $H_1 = (TH)^-$, we can choose $y_n \in H_2$ so that $Sy_n \to -(SS^*)^{\frac{1}{2}}x$. This gives $A_1 = 0$. Hence $\frac{1}{2}P = A = A_2 \leq C$, which contradicts Lemma 4.

REFERENCES

- 1. F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, *London Math. Soc. Lecture Notes Series No. 2*, 1971.
 - 2. R. Bouldin, The numerical range of a product, II, J. Math. Anal. Appl. 33 (1971), 212–219.
 - 3. J. Dixmier, Les C*-algèbres et leurs représentations, 2me edition (Paris, 1969).
- 4. M. Fukamiya, M. Misonou and Z. Takeda, On order and commutativity of B*-algebras, Tôhoku Math. J. (2) 6 (1954), 89-93.
- 5. T. Ogasawara, A theorem on operator algebras, J. Sci. Hiroshima Univ. Ser. A. 18 (1955), 307-309.
 - 6. S. Sherman, Order in operator algebras, Amer. J. Math. 73 (1951), 227-232.
- 7. D. C. Taylor, The strict topology for double centralizer algebras, *Trans. Amer. Math. Soc.* 150 (1970), 633-643.

University of Glasgow University of Stirling University of Glasgow

F2