CHARACTERIZATIONS OF COMMUTATIVITY FOR C*-ALGEBRAS

by M. J. CRABB, J. DUNCAN and C. M. McGREGOR

(Received 6 November, 1973; revised 12 December, 1973)
Let \mathscr{A} be a C^{*}-algebra acting on the Hilbert space H and let \mathscr{S} be the self-adjoint elements of \mathscr{A}. The following characterization of commutativity is due to I. Kaplansky (see Dixmier [3, p. 58]).

Theorem 1. \mathscr{A} is commutative if and only if 0 is the only nilpotent element of \mathscr{A}.
In this note we use the above result of Kaplansky to give two numerical characterizations of commutativity. Ogasawara [5], Sherman [6], and Fukamiya, Misonou and Takeda [4] characterize commutativity for \mathscr{A} in terms of the usual order structure on \mathscr{S}. We show that Kaplansky's theorem reduces the proofs of these order characterizations to simple computations.

1. Numerical characterizations. Taylor [7, Lemma 3.3] proves that, if A and B are selfadjoint elements of \mathscr{A} with $0 \neq\|A\| \geqq\|B\|$, then

$$
\begin{equation*}
\|A+B\| \leqq\|A\|+k \frac{\|A B\|}{\|A\|} \tag{1}
\end{equation*}
$$

where k may be taken as 2 . If \mathscr{A} is commutative, the inequality holds with $k=1$. Taylor asks if the converse is true; in Theorem 2 we prove this.

Note that an inequality of the form (1) can hold for all elements of a Banach algebra \mathscr{B} only if \mathscr{B} is commutative. For, setting $B=A$ in (1), we obtain $\|A\|^{2} \leqq k\left\|A^{2}\right\|$ and thence $\|A\| \leqq k r(A)$, where $r(A)$ is the spectral radius of A. Thus \mathscr{B} is commutative (see, for example, [1, p. 33]).

A simple argument shows that inequality (1) holds if and only if it holds for self-adjoint A, B of norm 1 .

Remark. We assume that \mathscr{A} has a unit element when there is no loss of generality in so doing.

Theorem 2. \mathscr{A} is commutative if and only if

$$
\|A+B\| \leqq 1+\|A B\|
$$

for all self-adjoint elements $A, B \in \mathscr{A}$ with $\|A\|=\|B\|=1$.
Proof. If \mathscr{A} is commutative, the result follows from the inequality

$$
(I-A)(I-B) \geqq 0
$$

Assume that \mathscr{A} is not commutative. By Theorem 1 , there exists nonzero $T \in \mathscr{A}$ such that $T^{2}=0$. Let H_{1} be the subspace (TH $)^{-}$and let H_{2} be the orthogonal complement of H_{1} in
H. If we represent H as $H_{1} \oplus H_{2}, T, T^{*}$ are represented by the 2×2 matrices of operators

$$
T=\left[\begin{array}{ll}
0 & S \\
0 & 0
\end{array}\right], \quad T^{*}=\left[\begin{array}{ll}
0 & 0 \\
S^{*} & 0
\end{array}\right]
$$

We may suppose that $\|S\|=1$. Let

$$
A=T T^{*}, \quad B=\alpha T T^{*}+\alpha T^{*} T+\beta T+\beta T^{*},
$$

where $\alpha, \beta>0, \alpha+\beta=1$, so that $A, B \in \mathscr{A}$. Then

$$
A=\left[\begin{array}{cc}
S S^{*} & 0 \\
0 & 0
\end{array}\right], \quad B=\left[\begin{array}{cc}
\alpha S S^{*} & \beta S \\
\beta S^{*} & \alpha S^{*} S
\end{array}\right]
$$

Clearly $\|A\|=1$. Since $\|S\|=1$, there exist $x_{n} \in H_{1}$ such that $\left\|x_{n}\right\|=1$ and $S S^{*} x_{n}-x_{n} \rightarrow 0$. To see this, note that $\left\|S S^{*} x_{n}-x_{n}\right\|^{2}=\left\|S S^{*} x_{n}\right\|^{2}-2\left\|S^{*} x_{n}\right\|^{2}+\left\|x_{n}\right\|^{2} \leqq 2\left(\left\|x_{n}\right\|^{2}-\left\|S^{*} x_{n}\right\|^{2}\right)$, and choose x_{n} such that $\left\|S^{*} x_{n}\right\| \rightarrow 1$. Hence

$$
B\left(x_{n}+S^{*} x_{n}\right)-\left(x_{n}+S^{*} x_{n}\right) \rightarrow 0
$$

and so $\|B\| \geqq 1$. But

$$
\|B\| \leqq \alpha\left\|T T^{*}+T^{*} T\right\|+\beta\left\|T+T^{*}\right\| \leqq 1
$$

and so $\|B\|=1$. Next,

$$
\begin{aligned}
\|A B\| & =\sup \left\{\left\|\alpha S S^{*} S S^{*} x+\beta S S^{*} S y\right\|:\|x\|^{2}+\|y\|^{2}=1\right\} \\
& \leqq \sup \left\{\alpha\|x\|+\beta\|y\|:\|x\|^{2}+\|y\|^{2}=1\right\} \\
& =\left(\alpha^{2}+\beta^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Let $\lambda=\alpha+\frac{1}{2}+\left(\frac{1}{4}+\beta^{2}\right)^{\frac{1}{2}}$, so that λ satisfies the equation

$$
(\lambda-\alpha)(\lambda-\alpha-1)=\beta^{2} .
$$

Let x_{n} be as above and let $y_{n}=\beta(\lambda-\alpha)^{-1} S^{*} x_{n}$. Then

$$
(A+B)\left(x_{n}+y_{n}\right)-\lambda\left(x_{n}+y_{n}\right) \rightarrow 0,
$$

so that $\|A+B\| \geqq \lambda$. If we choose α, β so that

$$
\alpha+\frac{1}{2}+\left(\frac{1}{4}+\beta^{2}\right)^{\frac{1}{2}}>1+\left(\alpha^{2}+\beta^{2}\right)^{\frac{1}{2}},
$$

then we have $\|A+B\|>1+\|A B\|$. It is enough to take

$$
\alpha=\frac{2}{3}, \quad \beta=\frac{1}{3} .
$$

Rbmark. If \mathscr{A} is commutative, we even have $\|A+B\| \leqq 1+\|A B\|$ for all elements $A, B \in \mathscr{A}$ with $\|A\|=\|B\|=1$.

We recall that the numerical index $n(\mathscr{A})$ of \mathscr{A} is defined by
where

$$
n(\mathscr{A})=\inf \{w(A): A \in \mathscr{A},\|A\|=1\}
$$

$$
w(A)=\sup \{|\langle A x, x\rangle|: x \in H,\|x\|=1\},
$$

and that $\frac{1}{2} \leqq n(\mathscr{A}) \leqq 1$ (see [1, pp. 43, 44]).

Theorem 3. \mathscr{A} is commutative or not commutative according as $n(\mathscr{A})$ is 1 or $\frac{1}{2}$.
Proof. If \mathscr{A} is commutative, each $A \in \mathscr{A}$ is normal and so has $w(A)=\|A\|$. If \mathscr{A} is not commutative, then, by Theorem 1 , there exists $T \in \mathscr{A}$, with $T \neq 0, T^{2}=0$. A result of Bouldin [2, Corollary 2, p. 214] shows that $w(T)=\frac{1}{2}\|T\|$, so that $n(\mathscr{A})=\frac{1}{2}$. (The condition $T^{*} H$ orthogonal to $T H$ in [2] is equivalent to $T^{2}=0$.)
2. Order characterizations. We recall that the usual order on \mathscr{S} is defined by

$$
A \geqq B \Leftrightarrow\langle(A-B) x, x\rangle \geqq 0 \quad(x \in H) .
$$

Let T, S be as in the proof of Theorem 2. Let

$$
P=\left(\begin{array}{cc}
S S^{*} & 0 \\
0 & 0
\end{array}\right), \quad Q=\left(\begin{array}{cc}
0 & \left(S S^{*}\right)^{\frac{1}{2}} S \\
S^{*}\left(S S^{*}\right)^{\frac{1}{2}} & 0
\end{array}\right), \quad R=\left(\begin{array}{cc}
0 & 0 \\
0 & S^{*} S
\end{array}\right)
$$

so that $P, Q, R \in \mathscr{A}$. We make frequent use of the following lemma.
Lemma 4. Let $\alpha, \beta, \gamma \in \mathbb{R}$ with $\gamma>0$. Then $\alpha P+\beta Q+\gamma R \geqq 0$ if and only if $\alpha \gamma-\beta^{2} \geqq 0$.
Proof. For $x \in H_{1}, y \in H_{2}$ we have

$$
\langle(\alpha P+\beta Q+\gamma R)(x+y), x+y\rangle=\left\|\beta \gamma^{-\frac{1}{2}}\left(S S^{*}\right)^{\frac{1}{2}} x+\gamma^{\frac{1}{2}} S y\right\|^{2}+\gamma^{-1}\left(\alpha \gamma-\beta^{2}\right)\left\|S^{*} x\right\|^{2} .
$$

Since $(T H)^{-}=H_{1}$, for any $x \in H_{1}$ there exist $y_{n} \in H_{2}$ such that $\gamma^{\frac{1}{2}} S y_{n} \rightarrow-\beta \gamma^{-\frac{1}{2}}\left(S S^{*}\right)^{\frac{1}{2}} x$. The result follows.
\mathscr{S} is said to be lattice ordered if, for each $U \in \mathscr{P}$, there exists $U^{+} \geqq 0$ such that $U^{+} \geqq U$ and $U^{+} \leqq V$ for any V such that $V \geqq 0$ and $V \geqq U . \mathscr{S}$ is said to have the decomposition property if, given $A, B, C \in \mathscr{S}$ with $0 \leqq A \leqq B+C, B \geqq 0, C \geqq 0$, there exist $A_{1}, A_{2} \in \mathscr{S}$ with $A=A_{1}+A_{2}, 0 \leqq A_{1} \leqq B, 0 \leqq A_{2} \leqq C$.

Theorem 5. ([4], [5], [6].) The following statements are equivalent.
(i) \mathscr{A} is commutative.
(ii) $A, B \in \mathscr{A}, A \geqq B \geqq 0 \Rightarrow A^{2} \geqq B^{2}$.
(iii) \mathscr{S} is lattice ordered.
(iv) The dual space of \mathscr{S} is lattice ordered.
(v) \mathscr{S} has the decomposition property.

Proof. If \mathscr{A} is commutative, the Gelfand-Naimark theorem readily shows that conditions (ii)-(v) hold. Assume that \mathscr{A} is not commutative and let T be as in the proof of Theorem 2.
(ii) \Rightarrow (i). With the above notation, let $A=8 P+2 R, B=4 P+2 Q+R$. Then $A, B \in \mathscr{A}$ and $A \geqq B \geqq 0$, by Lemma 4. For $y \in H_{2}$, we have $\left\langle\left(A^{2}-B^{2}\right) y, y\right\rangle=-\left\langle\left(S^{*} S\right)^{2} y, y\right\rangle$, so that $A^{2} \geq B^{2}$.
(iii) \Rightarrow (i). Let \mathscr{S} be lattice ordered and let $U=P-R$. Then $U \in S$ and it is elementary that $U^{+}=P$. Let $V=2 P+2^{\frac{1}{2}} Q+R$, and we have $V \in A, V \geqq 0, V \geqq U$, but $V \nsupseteq U^{+}$, by Lemma 4.
(iv) \Rightarrow (i). Let \mathscr{S}^{\prime} be the (real) dual space of \mathscr{S} with the induced dual order and let \mathscr{S}^{\prime} be lattice ordered. Given $x \in H_{1}$ and $y \in H_{2}$, let $f, g \in \mathscr{S}^{\prime}$ be defined by

$$
f(V)=\left\langle V_{1} x, x\right\rangle-\left\langle V_{3} y, y\right\rangle, \quad g(V)=\left\langle V_{1} x, x\right\rangle,
$$

where

$$
V=\left[\begin{array}{ll}
V_{1} & V_{2} \\
V_{2}^{*} & V_{3}
\end{array}\right]
$$

If $V \geqq 0$, then $V_{1} \geqq 0$ and $V_{3} \geqq 0$. Hence $f \leqq g$ and so $f^{+} \leqq g$, since $g \geqq 0$. Then $f(P) \leqq f^{+}(P) \leqq g(P)$ gives $f^{+}(P)=\langle P x, x\rangle$ and $0 \leqq f^{+}(R) \leqq g(R)$ gives $f^{+}(R)=0$. Also $\left(g-f^{+}\right)(P \pm Q+R)=\mp f^{+}(Q) \geqq 0$, so that $f^{+}(Q)=0$. Define $h \in \mathscr{S}^{\prime}$ by

$$
h(V)=\left\langle V\left(2^{\frac{1}{2}} x+y\right), 2^{\frac{1}{2}} x+y\right\rangle=2\left\langle V_{1} x, x\right\rangle+22^{\frac{1}{2}} \operatorname{Re}\left\langle V_{2} y, x\right\rangle+\left\langle V_{3} y, y\right\rangle .
$$

Then

$$
(h-f)(V)=\left\langle V_{1} x, x\right\rangle+22^{\frac{1}{2}} \operatorname{Re}\left\langle V_{2} y, x\right\rangle+2\left\langle V_{3} y, y\right\rangle=\left\langle V\left(x+2^{\frac{1}{2}} y\right), x+2^{\frac{1}{2}} y\right\rangle,
$$

which gives $h-f \geqq 0$. But

$$
\left(h-f^{+}\right)(P+Q+R)=\langle P x, x\rangle+22^{\frac{1}{2}} \operatorname{Re}\left\langle Q_{2} y, x\right\rangle+\langle R y, y\rangle=\left\langle\left(P+2^{\frac{1}{2}} Q+R\right)(x+y), x+y\right\rangle,
$$

and, by Lemma 4, we can choose x, y so that $h \geq f^{+}$.
(v) \Rightarrow (i). Let $A=\frac{1}{2} P, B=P+Q+R, C=4 P+2 Q+R$. Then $0 \leqq A \leqq B+C$, by Lemma 4. Suppose that $A=A_{1}+A_{2}$, with $0 \leqq A_{1} \leqq B, 0 \leqq A_{2} \leqq C$. Since $A_{1} \leqq A$, it is easy to show that A_{1} is of the form

$$
A_{1}=\left[\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right]
$$

Then, since $A_{1} \leqq B$, for $x \in H_{1}$ and $y \in H_{2}$ we have $\langle X x, x\rangle \leqq\langle(P+Q+R)(x+y), x+y\rangle=$ $\left\|\left(S S^{*}\right)^{ \pm} x+S y\right\|^{2}$, from the proof of Lemma 4. Since $H_{1}=(T H)^{-}$, we can choose $y_{n} \in H_{2}$ so that $S y_{n} \rightarrow-\left(S S^{*}\right)^{\frac{1}{2}} x$. This gives $A_{1}=0$. Hence $\frac{1}{2} P=A=A_{2} \leqq C$, which contradicts Lemma 4.

REFERENCES

1. F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Notes Series No. 2, 1971.
2. R. Bouldin, The numerical range of a product, II, J. Math. Anal. Appl. 33 (1971), 212-219.
3. J. Dixmier, Les C^{*}-algèbres et leurs représentations, 2 me edition (Paris, 1969).
4. M. Fukamiya, M. Misonou and Z. Takeda, On order and commutativity of B^{*}-algebras, Tôhoku Math. J. (2) 6 (1954), 89-93.
5. T. Ogasawara, A theorem on operator algebras, J. Sci. Hiroshima Univ. Ser. A. 18 (1955), 307-309.
6. S. Sherman, Order in operator algebras, Amer. J. Math. 73 (1951), 227-232.
7. D. C. Taylor, The strict topology for double centralizer algebras, Trans. Amer. Math. Soc. 150 (1970), 633-643.
