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Let si be a C*-algebra acting on the Hilbert space H and let SP be the self-adjoint
elements of si. The following characterization of commutativity is due to I. Kaplansky (see
Dixmier [3, p. 58]).

THEOREM 1. si is commutative if and only ifO is the only nilpoient element of si.
In this note we use the above result of Kaplansky to give two numerical characterizations

of commutativity. Ogasawara [5], Sherman [6], and Fukamiya, Misonou and Takeda [4]
characterize commutativity for si in terms of the usual order structure on £f. We show that
Kaplansky's theorem reduces the proofs of these order characterizations to simple com-
putations.

1. Numerical characterizations. Taylor [7, Lemma 3.3] proves that, if A and B are self-
adjoint elements of si with 0 # || A | ^ || B | , then

£\A\+k\£[}, (1)
I I ^ II

where k may be taken as 2. If si is commutative, the inequality holds with k = 1. Taylor
asks if the converse is true; in Theorem 2 we prove this.

Note that an inequality of the form (1) can hold for all elements of a Banach algebra 28
only if 38 is commutative. For, setting B = A in (1), we obtain || A ||2 ^ k | A2 | and thence
\A\ ^kr(A), where r{A) is the spectral radius of A. Thus $5 is commutative (see, for
example, [1, p. 33]).

A simple argument shows that inequality (1) holds if and only if it holds for self-adjoint
A, B of norm 1.

REMARK. We assume that si has a unit element when there is no loss of generality in
so doing.

THEOREM 2. si is commutative if and only if

for all self-adjoint elements A, Be si with || A | = | B | = 1.

Proof. If si is commutative, the result follows from the inequality

Assume that si is not commutative. By Theorem 1, there exists nonzero Tesi such that
T2 = 0. Let Hi be the subspace (77/) ~ and let H2 be the orthogonal complement of H^ in
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H. If we represent H as Hx © H2, T, T* are represented by the 2 x 2 matrices of operators

[o oj' Is* oj
We may suppose that || S || = 1. Let

A = TT*, B =

where a, P > 0, a+j? = 1, so that A, Best. Then

A = \ss* o-i joss* ps I
|_ 0 OJ \_PS* aS*Sj

Clearly || A || = 1. Since || S\\ = 1, there exist xneHY such that | xJ = 1 and S5*xn-xn->0.
To see this, note that || SS*xn-xn \\2= \\ SS*xn \\

2-2\\ S*xn |
2 + | xn \\2 ^ 2(|| xn \\

2-\\ S*xn \\2),
and choose xn such that || S*xn \\->l- Hence

B(xn + S*xn)-(xn + S*xn)-+0,
and so || B \\ ^ 1. But

||fi|| ^ a
and so ||fi|| = 1. Next,

|| AB I = s u p { | <xSS*SS*x+pSS*Sy \\:\\x \\2 + \\y \\2

Let k - a + i + (i+/J2)*, so that X satisfies the equation

Let xa be as above and let yn - P(X-a)~1S*xn. Then

(A + B)(xn + yn)-X(xn+yn)->0,

so that || A +B || ^ K. If we choose a, p so that

then we have || A+B\\ > 1 +1| AB \\. It is enough to take

« = *, ^ = i-
RBMARK. If j / is commutative, we even have |.4+fi| | ^ l + |i4fi|| for all elements

A,Bes/ with | | ^ | = |fi | | = 1.
We recall that the numerical index n(sf) of si is defined by

n ( ^ ) = inf{w(A) : Aes/,\\A\\ = 1},

where w(A) = sup{| {Ax, x> | : xeH, || x | = 1},

and that ± g «(^) ^ 1 (see [1, pp. 43, 44]).
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THEOREM 3. si is commutative or not commutative according as n{si) is 1 or %.

Proof. If si is commutative, each Aesi is normal and so has w(A) = \A\. If JJ/ is
not commutative, then, by Theorem 1, there exists Tesf, with !T# 0, T2 = 0. A result of
Bouldin [2, Corollary 2, p. 214] shows that w{T) = ±|| r | | , so that n(si) = \. (The condition
T*H orthogonal to TH in [2] is equivalent to T2 = 0.)

2. Order characterizations. We recall that the usual order on y is defined by

A^Bo((A-B)x,x)^0 (xeH).

Let T, S be as in the proof of Theorem 2. Let
SS* °\P-( \ n( \ R( M

\ o oy' y " \,s*(ss*)* o ) ' [p s*s)'
so that P,Q,Resi. We make frequent use of the following lemma.

LEMMA 4. Let a, P, yeU with y > 0. Then ixP+PQ + yR ^ 0 if and only ifa.y — p2 ^ 0.

Proof. For xeHuyeH2v/e have

Since (TH)~ =HU for any x e / ^ there exist j n e ^ 2 such that y*Syn-* -/?
The result follows.

5^ is said to be lattice ordered if, for each UeSf, there exists U+ ̂  0 such that U+ ^U
and C/+ g F for any K such that K^ 0 and K^ U. ¥ is said to have the decomposition
property if, given ,4, 5, C e ^ with 0^A^B+C,B^0,C^0, there exist ^ 1 ; ^ e . ? ' with

THEOREM 5. ([4], [5], [6].) The following statements are equivalent.

(i) si is commutative.
(ii) A,Berf,A^B^0=>A2^B2.
(iii) ¥ is lattice ordered.
(iv) The dual space of y is lattice ordered.
(v) y has the decomposition property.

Proof. If jaf is commutative, the Gelfand-Naimark theorem readily shows that con-
ditions (ii)-(v) hold. Assume that si is not commutative and let T be as in the proof of
Theorem 2.

(ii)=>(i). With the above notation, let A = %P+2R, B = 4P+2Q+R. Then A, Besi
and A^B^O, by Lemma 4. For ysH2, we have {{A2-B2)y,y} = ~{(S*S)2y,y}, so
that A2 J B2.

(iii)=>(i). Let Sf be lattice ordered and let U = P—R. Then UeS and it is elementary
that U+ =i>. Let V=2P+2iQ+R, and we have VeA, V^O, V^ U, but V£ U+, by
Lemma 4.
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(iv) => (i). Let 9" be the (real) dual space of Sf with the induced dual order and let 9"
be lattice ordered. Given xeHy and yeH2, let/, geS^" be defined by

/(V) = <VlX, x > - <V3y, y\ g(V) = {V,x,.
where

V =
v3

If F^O, then F, ^ 0 and F3 ^ 0. Hence /g 5- and so f+^g, since # ^ 0. Then
/(/>) ^/+(/>) ^ #(/>) gives /+(/>) = (Px, x) and 0 ^/+CR) ^ #(#) gives /+CR) = 0. Also
(9-f+)(P ±Q + R) = +f+(Q) ^ 0, so that /+(0 = 0. Define he 9" by

h(V) = <y(px+y), 2*x+y) = 2<F^, x)
Then

(h-f)(V) — (V^x, x> + 22iRe<K2j>, x} + 2(V3y,y) = <F(x+2*^),,

which gives h-f£. 0. But

(h-f+)(P+Q + R) = (Px,xy + 22iRe(Q2y,x} + (Ry,y} = ((P+2iQ+R)(x+y), x+y},
and, by Lemma 4, we can choose x, y so that h^.f+.

(v)=>(i). Let A =$P, B = P+Q+R, C = 4P+2Q + R. Then 0^A^B+C, by
Lemma 4. Suppose that A = Al+A2, with 0^ A1^B,0 ^ A2^C. Since AY ^ /4, it is
easy to show that A j is of the form

A l l * 0
Then, since At ^ 5, for x e ^ and yeH2 we have <AAT, X} ^ <(/>+2 + ̂ )(-":+>')> Jf+J;> =
|| (SS^x+Sy ||2, from the proof of Lemma 4. Since Hv = (7W)~, we can choose yneH2

so that S^n -* -(SS*)*x. This gives /4t = 0. Hence $P = /4 = A2 g C, which contradicts
Lemma 4.
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