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Abstract We find new properties for the space R(X), introduced by Soria in the study of the best
constant for the Hardy operator minus the identity. In particular, we characterize when R(X) coincides
with the minimal Lorentz space Λ(X). The condition that R(X) �= {0} is also described in terms of the
embedding (L1,∞ ∩ L∞) ⊂ X. Finally, we also show the existence of a minimal rearrangement-invariant
Banach function space (RIBFS) X among those for which R(X) �= {0} (which is the RIBFS envelope of
the quasi-Banach space L1,∞ ∩ L∞).
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1. Introduction

Let X be a rearrangement-invariant Banach function space (RIBFS) in Rn, endowed
with the Lebesgue measure, and with a function norm ‖ · ‖X (see [2] for further details).
Consider R(X) to be the class of all measurable functions such that

‖f‖R(X) =
∫ ∞

0
v−1

n λf (t)
∥∥∥∥ 1

v−1
n λf (t) + | · |n

∥∥∥∥
X

dt < +∞,

where λf (s) = |{x ∈ Rn : |f(x)| > s}| is the distribution function of f and vn is the
volume of the unit ball in Rn. We recall that the non-increasing rearrangement of f is
defined by

f∗(t) = inf{s > 0: λf (s) � t}.

The space R(X) was introduced in [10] and appears naturally in the study of the norm
of the Hardy operator minus the identity in the cone of radially decreasing functions (see
also [7]). More precisely, if Sn is the Hardy operator in Rn,

Snf(x) =
1

|B(0, |x|)|

∫
B(0,|x|)

f(y) dy,
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it can be proved that, for a positive radially decreasing function f ,

Snf(x) − f(x) =
1

vn|x|n
∫ ∞

f(x)
λf (t) dt,

and hence, using Minkowski’s integral inequality, we obtain

‖Snf − f‖X �
∫ ∞

0
v−1

n λf (t)
∥∥∥∥ 1

v−1
n λf (t) + | · |n

∥∥∥∥
X

dt = ‖f‖R(X),

and the inequality is sharp.
It is shown in [10, Theorem 13] that, in many cases, R(X) coincides with the minimal

Lorentz space Λ(X). One of the main goals of this paper is to characterize, in terms of
the upper fundamental index of X, the spaces where this happens (Theorem 2.5). More
properties for R(X) are considered in § 2.

In § 3, we study a general minimality property for quasi-Banach Lorentz spaces Λ(X).
In particular, we find the RIBFS envelope of the quasi-Banach space L1,∞ ∩ L∞, which
is also minimal among the RIBFS for which R(X) �= 0 (recall that L1,∞ is the weak-L1

quasi-Banach space defined by ‖f‖L1,∞ = sups>0 sf∗(s) < ∞).
We shall denote by X̄ a rearrangement-invariant function space on (R+, dt) endowed

with a function norm ‖ · ‖X̄ such that

‖f‖X = ‖f∗‖X̄ .

By [2, Theorem II.4.10] such a representation of the space X always exists. Let ϕX denote
the fundamental function of X; that is, the quasi-concave function on (0,∞) defined by

ϕX(t) = ‖χ[0,t)‖X̄ .

Let g(x) = 1/(1 + vn|x|n), so that g∗(s) = 1/(1 + s). Assuming that g ∈ X, define

WX(t) =
∥∥∥∥ 1

1 + vn| · |n/t

∥∥∥∥
X

= ‖E1/tg
∗‖X̄ ,

where Es denotes the usual dilation operator [2, Chapter III]. By the monotonicity of
the norm on X, WX(t) is increasing and

WX(t)
t

=
∥∥∥∥ 1

t + vn| · |n

∥∥∥∥
X

is non-increasing. That is, defining WX(0) = 0, WX(t) is a quasi-concave function on
(0,∞). Recall that, given such a function φ, the minimal Lorentz space Λφ [2, Defini-
tion II.5.12] is the RIBFS of all measurable functions f such that∫ ∞

0
φ(λf (t)) dt =

∫ ∞

0
f∗(s) dφ(s) = ‖f‖Λφ

< +∞. (1.1)

In particular, if X is an RIBFS and ϕX denotes its fundamental function, let Λ(X) be
the space ΛϕX

. In this way,
R(X) = ΛWX

.
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In particular, whenever R(X) is not trivial, it is an RIBFS. It is easy to see that, for
example, if X = L1, then R(X) = {0}. We have assumed that g ∈ X to obtain that R(X)
is not trivial. In the following proposition we shall show that the converse is true. To
this end, we will need the following characterization of the intersection space L1,∞ ∩L∞,
which follows directly from the definition of the space.

Lemma 1.1. L1,∞ ∩ L∞ is the quasi-Banach space of all measurable functions such
that

sup
s>0

f∗(s)(1 + s) < +∞.

Proposition 1.2. Let X be an RIBFS. The following are equivalent:

(i) R(X) �= {0};

(ii) there exists r > 0 such that WX(r) < +∞;

(iii) WX(r) < +∞, for every r > 0;

(iv) g∗(s) = 1/(1 + s) ∈ X̄;

(v) (L1,∞ ∩ L∞) ⊂ X.

Proof. If R(X) �= {0}, by the lattice property, it contains the characteristic function
of a set E of positive measure (say |E| = r > 0), and hence

‖χE‖R(X) =
∫ ∞

0
WX(rχ[0,1)(s)) ds = WX(r) < +∞, (1.2)

and (ii) follows from (i).
Assertion (iii) is easily seen to be equivalent to (ii), and can be proved by using the

boundedness of the dilation operator Es on X, which gives the existence, for every
r, s > 0, of a constant 0 < C(r, s) < +∞ such that WX(s) � C(r, s)WX(r).

Since WX(1) = ‖g∗‖X̄ , (iii) implies (iv). Using Lemma 1.1, (v) is trivial from (iv)
(in fact, they are equivalent). Using again this lemma, we find that (v) (or rather (iv))
implies that WX(1) < +∞, and hence χ(0,1) ∈ R(X), which shows (i). �

The equivalence between (iv) and (v) can be also found in [9, Proposition 2.7].
Another interesting property is the following.

Proposition 1.3. Let X, Y be RIBFS. Then

R(X ∩ Y ) = R(X) ∩ R(Y ).

Proof. We can assume that 1/(1 + s) ∈ X ∩ Y since otherwise the result is trivial.
Endowing X ∩ Y with the norm ‖ · ‖X∩Y = ‖ · ‖X + ‖ · ‖Y , it easily follows that for any
t > 0,

WX∩Y (t) = WX(t) + WY (t).

Hence, ‖ · ‖R(X∩Y ) = ‖ · ‖R(X) + ‖ · ‖R(Y ) and then the result follows. �
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Let us recall that, for a quasi-concave function φ, the Marcinkiewicz space Mφ (see [2,
Theorem II.5.13]) is the RIBFS that consists of all measurable functions f such that

‖f‖Mφ
= sup

t
f∗∗(t)φ(t) < +∞, (1.3)

where

f∗∗(t) =
1
t

∫ t

0
f∗(s) ds

is the maximal function of f . In particular, for any RIBFS X, the maximal Lorentz space
M(X) is defined as MϕX

.

Lemma 1.4. Let X be an RIBFS.

(i) If 1/(1 + s) ∈ X̄, then for any t > 0

ϕR(X)(t) = WX(t),

and

ϕX(t) � WX(t)
log 2

. (1.4)

(ii) The following embeddings hold:

R(Λ(X)) ⊂ R(X) ⊂ R(M(X)) ⊂ Λ(X). (1.5)

More precisely,

log 2‖f‖Λ(X) � ‖f‖R(M(X)) � ‖f‖R(X) � ‖f‖R(Λ(X)).

Proof. The first equality is just (1.2). To prove (1.4) observe that, for any r, t > 0,
and by Hölder’s inequality [2, Theorem I.2.4]:

t log
(

1 +
r

t

)
=

∫ ∞

0

χ[0,r)(s)
1 + s/t

ds � WX(t)ϕX′(r),

where X ′ is the associate space of X [2, Definition I.2.3]. Using the equality

ϕX′(r)ϕX(r) = r,

it follows that

ϕX(r) � Φ

(
r

t

)
WX(t),

where Φ(x) = x/log(1 + x). In particular, for r = t,

ϕX(t) � Φ(1)WX(t) =
WX(t)
log 2

.
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To prove (ii), observe that since Λ(M(X)) = Λ(X), by (1.4) it follows that

log 2‖f‖Λ(X) � ‖f‖R(M(X)).

On the other hand, as ‖ · ‖M(X) � ‖ · ‖X � ‖ · ‖Λ(X), we trivially get

‖f‖R(M(X)) � ‖f‖R(X) � ‖f‖R(Λ(X)).

�

Remark 1.5. It is easy to see that 1/log 2 is the best possible constant in the inequal-
ity (1.4). In fact, taking X = L1+L∞, then ϕX(t) = min(1, t) and WX(t) = t log(1+1/t).
Hence, at t = 1 we get the equality

ϕX(1)
WX(1)

=
1

log 2
.

Also, if we only assume that X is a quasi-Banach space (satisfying 1/(1 + s) ∈ X̄),
then it is easy to show that we can still prove an inequality like (1.4) replacing 1/log 2
by 2.

2. Main result

Before proving our main result (Theorem 2.5) we collect in Lemma 2.3 some of the
embeddings between function spaces we shall use later. First, we need the following
definition.

Definition 2.1. Given an increasing and positive function W , we define the weighted
weak-type Lorentz space

Λ1,∞
W =

{
f : ‖f‖Λ1,∞

W
= sup

t>0
f∗(t)W (t) < ∞

}
.

Remark 2.2. If

W (t) =
∫ t

0
w(s) ds,

where w is a weight on R+, then Λ1,∞
W = Λ1,∞(w) (see [4] for the definition of this space).

It was proved in [9, Theorem 3.1] that Λ1,∞(w) is a Banach space if and only if w ∈ B1,
where

B1 =
{

w :
∫ ∞

t

w(s)
s

ds � C

t

∫ t

0
w(s) ds for every t > 0

}
.

In this case,
Λ1,∞(w) = MW ;

see (1.3).
This class of weights was introduced in [1] and gives a characterization of the bound-

edness of the Hardy operator for decreasing functions in L1(w) (see also [4,6]).
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Lemma 2.3. Let V , W be two quasi-concave increasing functions. Then

(i) ΛW ⊂ ΛV if and only if

sup
t>0

V (t)
W (t)

< ∞.

(ii) Λ1,∞
W ⊂ MV if and only if

sup
t>0

V (t)
t

∫ t

0

1
W (s)

ds < ∞.

(iii) MV ⊂ Λ1,∞
W if and only if

sup
t>0

V (t)
t sups�t s−1W (s)

< ∞.

Proof. For the definition of the various spaces see (1.1), (1.3) and Definition 2.1. The
embedding (i) is proved in [5, Corollary 2.7], (ii) is a consequence of [9, Theorem 4.1]
and condition (iii) can be found in [3, Theorem 5.3]. �

Definition 2.4. For any RIBFS X, we define [2, pp. 177–178]

ϕ̄X(s) := sup
t>0

ϕX(st)
ϕX(t)

,

and the upper fundamental index

β̄X = inf
s>1

log ϕ̄X(s)
log s

.

Theorem 2.5. Let X be an RIBFS. The following are equivalent:

(i) Λ(X) = R(Λ(X));

(ii) Λ(X) = R(X);

(iii) Λ(X) = R(M(X));

(iv) β̄X < 1.

Proof. Using (1.5) it is clear that (i) implies (ii) and, similarly, (ii) implies (iii).
Assume now that Λ(X) = R(M(X)) holds. Observe that

WM(X)(t) = sup
s>0

log(1 + s)
s

ϕX(st).

Hence, using Lemma 2.3 (i), Λ(X) = ΛϕX
⊂ ΛWM(X) = R(M(X)) if and only if

L := sup
t>0

WM(X)(t)
ϕX(t)

= sup
s>0

log(1 + s)
s

ϕ̄X(s) < +∞.
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Thus, by the definition of the fundamental index, for any s > 1

sβ̄X � ϕ̄X(s) � L
s

log(1 + s)
,

which implies that β̄X < 1.
Finally, assume that β̄X < 1. We have already seen that Λ(X) ⊃ R(Λ(X)). Integrating

by parts, it follows that

WΛ(X)(t) = t lim
s→∞

ϕX(s)
s

+
∫ ∞

0
(ϕX(ts) − ϕX(0+))

ds

(1 + s)2
.

Thus,

WΛ(X)(t)
ϕX(t)

=
t

ϕX(t)
lim

s→∞

ϕX(s)
s

+
∫ ∞

0

ϕX(ts) − ϕX(0+)
ϕX(t)

ds

(1 + s)2
.

Hence, since

sup
t>0

t

ϕX(t)
= lim

t→+∞

t

ϕX(t)
,

we have

sup
t>0

WΛ(X)(t)
ϕX(t)

� 1 + sup
t>0

∫ ∞

0

ϕX(ts) − ϕX(0+)
ϕX(t)

ds

(1 + s)2

� 1 +
∫ ∞

0
ϕ̄X(s)

ds

(1 + s)2
,

and the finiteness of the last term is equivalent to the finiteness of
∫ ∞

1
ϕ̄X(s)

ds

s2 .

But, by [2, Lemma III.5.9] this is equivalent to β̄X < 1. That is, we have obtained that

sup
t>0

WΛ(X)(t)
ϕX(t)

< +∞,

which, by Lemma 2.3 (i), implies that Λ(X) ⊂ R(Λ(X)). �

Remark 2.6. If X is an RIBFS and we define DX = ϕ̄X(2), it is known that DX ∈
[1, 2] and it is clear that

2β̄X � DX ,

which implies that if DX < 2, then β̄X < 1. This and the previous result recover [10,
Theorem 13.ii].

Observe also that if β̄X < 1, then R(X) = Λ(X) �= {0}.

Remark 2.7. If β̄X = 1, we know by Theorem 2.5 that R(X) � Λ(X). In this case,
R(X) can be either trivial or a proper subspace of Λ(X). We now give some examples.
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(i) If X = L1(Rn), then β̄X = 1 and R(X) = {0}.

(ii) If X = L1 + L∞, then

R(L1 + L∞) = ΛΨ � L1 + L∞ = Λ(L1 + L∞),

where Ψ(t) = t log(1 + 1/t).

(iii) Consider the quasi-concave function Φ(t) = t/log(1+ t) and let X = MΦ. It is easy
to see that 1/(1 + s) ∈ X̄, which implies that R(X) �= {0}. On the other hand, for
any t > 0,

ϕ̄X(t) = t sup
s>0

log(1 + s)
log(1 + st)

= max(1, t),

whence it follows that β̄X = 1. As before, it is easy to see that 1/(1 + s) �∈ Λ(X),
which implies that R(R(X)) = {0}.

It was proved in [10] that for X = Lp,q, the classical Lorentz spaces, ‖ · ‖R(X) is a
multiple of ‖ · ‖Λ(X), and that this is not true for a general RIBFS. In the following
proposition we show that, in order to have this relationship, it is necessary and sufficient
that this condition holds for characteristic functions.

Proposition 2.8. Let X be an RIBFS such that 1/(1 + s) ∈ X̄. Then, there exists a
constant c > 0 such that, for any measurable function f ,

‖f‖R(X) = c‖f‖Λ(X),

if and only if, for any t > 0,

WX(t) = cϕX(t). (2.1)

Proof. The first assumption implies that Λ(X) = R(X), which is equivalent, using
that R(X) = ΛWX

and [11, Proposition 1], to the fact that the norms satisfy

‖f‖Λ(X) � c1‖f‖R(X) and ‖f‖R(X) � c2‖f‖Λ(X),

where c1 = supt>0 ϕX(t)/WX(t) and c2 = supt>0 WX(t)/ϕX(t) are the best constants in
the inequalities. Then

‖f‖R(X) = c‖f‖Λ(X),

if and only if c = c2 = c−1
1 . That is, if and only if, for any t > 0,

WX(t) = cϕX(t).

�

Remark 2.9. Let Λq(v) be the weighted Lorentz space, where v is a decreasing func-
tion and q � 1, endowed with the norm

‖f‖Λq(v) =
( ∫ ∞

0
f∗(t)qv(t) dt

)1/q
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(see [8]). Let

V (t) =
∫ t

0
v(s) ds.

Then, condition (2.1) holds for X = Λq(v) if and only if TV (t) = KV (t), where

Tg(t) =
∫ ∞

0

tq

(t + s)q+1 g(s) ds,

and K = cq/q; that is, V is an increasing and concave eigenvector of the operator T . In
particular, if X = Λq(tα), −1 < α � 0 and 1 < q < ∞, then X = Lp,q, with p = q/(1+α),
1/(1 + s) ∈ Lp,q, V (t) = tα+1/(α + 1) is an eigenvector of T and

K =
∫ ∞

0

u1+α

(1 + u)q+1 du =
Γ (2 + α)Γ (−1 − α + q)

Γ (1 + q)
,

which gives (see also [10, Proposition 8])

c = p−1/q′
(

1
Γ (1 + q)

Γ

(
q

p′

)
Γ

(
q + p

p

))1/q

.

An example for which (2.1) does not hold is X = Λq(v), for every weight v with
compact support.

3. Minimal space

We shall show that there exists a minimal RIBFS M satisfying that R(M) �= 0, and prove
that, in fact, it is also minimal among the RIBFS M for which (L1,∞∩L∞) ⊂ M . Thus, if
X is an RIBFS such that R(X) �= {0} (and hence, by Proposition 1.2, (L1,∞∩L∞) ⊂ X),
then

(L1,∞ ∩ L∞) ⊂ M ⊂ X (3.1)

(recall that L1,∞∩L∞ is just a quasi-Banach space). We observe that if Φ(t) = t/log(1+t),
then (L1,∞ ∩ L∞) ⊂ MΦ and

R(L1,∞ ∩ L∞) = R(MΦ) = (L1 ∩ L∞) ⊂ R(X).

Thus, R(MΦ) is minimal among all the non-trivial R(X) spaces. Hence, a natural can-
didate for the minimal space in condition (3.1) is given by M = MΦ. We show in Propo-
sition 3.3 that this is true. We will obtain this result as a consequence of a more general
argument involving weighted weak-type Lorentz spaces. Observe that (3.1) tells us that
M is the RIBFS envelope of L1,∞ ∩ L∞, which is characterized in terms of its second
associate space [3, Theorem 9.1]. For the sake of completeness, we will give a direct proof
of this result.

Theorem 3.1. Let W be an increasing and positive function such that 1/W is locally
integrable at zero, and let

W̃ (t) =
(

1
t

∫ t

0

1
W (s)

ds

)−1

.

Then, MW̃ is the minimal RIBFS containing Λ1,∞
W .
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Proof. First of all, we prove that W̃ is a quasi-concave function: it is clear that W̃

is an increasing and positive function such that, for every 0 < t < ∞, we have that
0 < W̃ (t) < ∞ and

W̃ (t)
t

=
( ∫ t

0

1
W (s)

ds

)−1

is a decreasing function.
Let us see that Λ1,∞

W ⊂ MW̃ . Using Lemma 2.3 (ii), this embedding is equivalent to the
condition

sup
t>0

W̃ (t)
t

∫ t

0

1
W (s)

ds < ∞,

which is trivial by the definition of W̃ .
We now show that if X is an RIBFS satisfying that Λ1,∞

W ⊂ X, then MW̃ ⊂ X. It is
easy to see that Λ1,∞

W ⊂ X is equivalent to 1/W ∈ X, and hence, by duality,
∥∥∥∥ 1

W

∥∥∥∥
X̄

= sup
f∈X′

1
‖f‖X′

∫ ∞

0

f∗(t)
W (t)

dt < ∞,

that is, X ′ ⊂ Λ1(1/W ). Again using duality, this turns out to be equivalent to
(Λ1(1/W ))′ ⊂ X ′′ = X. But, using [11, Proposition 1] and Lemma 2.3 (i), we have

‖h‖(Λ1(1/W ))′ = sup
g∈Λ1(1/W )

∫ ∞

0
h∗(t)g∗(t) dt

( ∫ ∞

0

g∗(t)
W (t)

dt

)−1

= sup
r>0

∫ r

0
h∗(t) dt

( ∫ r

0

1
W (t)

dt

)−1

= ‖h‖MW̃
,

which shows that MW̃ ⊂ X. �

Remark 3.2. As a consequence of Theorem 3.1, we observe that if

W (t) =
∫ t

0
w(s) ds,

where w is a weight on R+, then Λ1,∞(w) = MW̃ if and only if Λ1,∞(w) is an RIBFS,
which, by Remark 2.2, is equivalent to the condition w ∈ B1. We can also give a direct
proof of this fact by using Lemma 2.3 (iii) and [9, Theorem 2.5]:

MW̃ ⊂ Λ1,∞(w) = Λ1,∞
W ⇐⇒ sup

t>0

W (t)
t sups�t s−1W̃ (s)

< ∞

⇐⇒ sup
t>0

1
t

(
W (t)

∫ t

0

1
W (s)

ds

)
< ∞

⇐⇒ w ∈ B1.
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Proposition 3.3. Let X be an RIBFS such that (L1,∞ ∩ L∞) ⊂ X and let Φ be the
quasi-concave function given by Φ(t) = t/log(1 + t). Then

(L1,∞ ∩ L∞) ⊂ MΦ ⊂ X. (3.2)

Proof. By Lemma 1.1, L1,∞ ∩ L∞ = Λ1,∞
W , with W (t) = 1 + t. Hence, (3.2) follows

from Theorem 3.1, observing that

W̃ (t) =
(

1
t

∫ t

0

1
1 + s

ds

)−1

=
t

log(1 + t)
= Φ(t).

Therefore, MΦ = MW̃ ⊂ X. �

Remark 3.4. Propositions 1.2 and 3.3 show that MΦ is the minimal RIBFS X sat-
isfying the condition that R(X) �= {0}. Hence, for any RIBFS X, either R(X) = {0}
or

R(MΦ) = (L1 ∩ L∞) ⊂ R(X) ⊂ ΛΨ = R(L1 + L∞),

with Φ(t) = t/log(1 + t) and Ψ(t) = t log(1 + 1/t).
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