ON HOLOMORPHIC EXTENSION FROM THE BOUNDARY

KIYOSHI SHIGA

0. Introduction

Let D be a bounded domain of the complex n-space $C^{n}(n \geq 2)$, or more generally a pair (M, D) a finite manifold (c.f. Definition 2.1), and we assume the boundary ∂D is a smooth and connected submanifold. It is well known by Hartogs-Osgood's theorem that every holomorphic function on a neighbourhood of ∂D can be continued holomorphically to D. Generalizing the above theorem we shall prove that if a differentiable function on ∂D satisfies certain conditions which are satisfied for the trace of a holomorphic function on a neighbourhood of ∂D, then it can be continued holomorphically to D (Theorem 2-5). The above conditions will be called the tangential Cauchy Riemann equations.

Using the above result, we shall determine the condition for a diffeomorphism of ∂D to be continued to a holomorphic automorphism of D (Theorem 3-3). Finally as its corollary the analogy to functions holds for crosssections of a holomorphic vector bundle. (Theorem 3-5)

In preparing this paper, I have received many advices from Professor M. Ise and Professor T. Nagano. I would like to express my cordial thanks to them.

1. Tangential Cauchy-Riemann equations

Let N be an n-dimensional complex manifold. From now on we always assume $n \geq 2$. Let M be a real smooth submanifold of N. We denote by $T_{p}(M)$ the real tangent space of M at p. Let J be the complex structure of N.

$$
C_{p}=T_{p}(M) \cap J T_{p}(M)
$$

is the maximum complex subspace of $T_{p}(M)$, and we denote its complex dimension by $m(p)$ and we assume $m(p)$ is constant on M.

Received March 13, 1970.

Then $T_{p}(M) \otimes \boldsymbol{C}$ is decomposed to

$$
\left.T_{p}(M) \otimes \boldsymbol{C}=H_{p}+\bar{H}_{p}+L_{p} \quad \text { (direct sum }\right)
$$

where

$$
\begin{aligned}
H_{p} & =\left\{X \in T_{p}(M) \otimes \boldsymbol{C} ; X \text { is a } \sqrt{-1} \text { eigen vector of } J\right\} \\
\bar{H}_{p} & =\left\{X \in T_{p}(M) \otimes \boldsymbol{C} ; X \text { is a }-\sqrt{-1} \text { eigen vector of } J\right\},
\end{aligned}
$$

and L_{p} is a complemental subspace of $H_{p}+\bar{H}_{p}$. We call an element of H_{p}, \bar{H}_{p}, holomorphic and anti-holomorphic tangent vector respectively. It is evident that $\left(\overline{H_{p}}\right)=\bar{H}_{p}$, where the upper bar means complex conjugate with respect to $T_{p}(M)$, and that $\operatorname{dim}_{\boldsymbol{C}} H_{p}=\operatorname{dim}_{\boldsymbol{C}} \bar{H}_{p}=m(p)$. Now we define

Definition 1-1. Let f be a complex valued differentiable function defined on a neighbourhood of $p \in M$. If $X f=0$ for every $X \in \bar{H}_{p}$, we call that f satisfies the tangential Cauchy-Riemann equations at p.

If f satisfies the tangential Cauchy-Riemann equations at every point of the domain of f, we call f satisfies the tangential Cauchy-Riemann equations (in short, $T-C-R$ equations).

In the following we consider only the case when M is a real hypersurface of N. In this case we define

Definition 1-2. Let M be a real hypersurface of N. We call a real valued differentiable function φ a defining function of M if it satisfies the following conditions.
1). $M=\{z \in N ; \varphi(z)=0\}$
2). $\operatorname{grad} \varphi$ does not vanish on M.

Let φ be a defining function of M and p_{0} a point of M. Let $\left(z_{1}, \cdots, z_{n}\right)$ be a local coordinate system at p_{0}. Since grad φ does not vanish on M, then we can assume $\varphi_{\bar{z}_{n}}:=\frac{\partial \varphi}{\partial \bar{z}_{n}}$ does not vanish on some neighbourhood U of p_{0}. We can choose a base of H_{p}, \bar{H}_{p}, and L_{p} at $p \in U$ as following

$$
H_{p}:\left\{\begin{array}{l}
\left(X_{1}\right)_{p}=\left(\varphi_{z_{n}}\right)_{p}\left(\frac{\partial}{\partial z_{1}}\right)_{p}-\left(\varphi_{z_{1}}\right)_{p}\left(\frac{\partial}{\partial z_{n}}\right)_{p} \\
\cdot \cdot \cdot \cdot \\
\left(X_{n-1}\right)_{p}=\left(\varphi_{z_{n}}\right)_{p}\left(\frac{\partial}{\partial z_{n-1}}\right)_{p}-\left(\varphi_{z_{n-1}}\right)_{p}\left(\frac{\partial}{\partial z_{n}}\right)_{p}
\end{array}\right.
$$

$$
\begin{gathered}
\bar{H}_{p}:\left\{\begin{array}{l}
\left(\bar{X}_{1}\right)_{p}=\left(\varphi_{\bar{z}_{n}}\right)_{p}\left(\frac{\partial}{\partial \bar{z}_{1}}\right)_{p}-\left(\varphi_{\bar{z}_{1}}\right)_{p}\left(\frac{\partial}{\partial \bar{z}_{n}}\right)_{p} \\
\cdots \cdots \cdot \\
\left(\bar{X}_{n-1}\right)_{p}=\left(\varphi_{\bar{z}_{n}}\right)_{p}\left(\frac{\partial}{\partial \bar{z}_{n-1}}\right)_{p}-\left(\varphi_{\bar{z}_{n-1}}\right)_{p}\left(\frac{\partial}{\partial \bar{z}_{n}}\right)_{p}
\end{array}\right. \\
L_{p}: \quad Y_{p}=\left(\varphi_{\bar{z}_{n}}\right)_{p}\left(\frac{\partial}{\partial z_{n}}\right)_{p}-\left(\varphi_{\bar{z}_{n}}\right)_{p}\left(\frac{\partial}{\partial \bar{z}_{n}}\right)_{p}
\end{gathered}
$$

It means $H=\underset{p \in M}{\cup} H_{p}, \bar{H}=\underset{p \in M}{\cup} \bar{H}_{p}$ are subbundles of $T(M) \otimes \boldsymbol{C}$.

2. Holomorphic extension of functions.

Let M be a Stein manifold and D be a domain of M. Now we introduce the following definition.

Definition 2-1. A pair (M, D) is called a finite manifold, if the following conditions are satisfied.
0). $\quad M$ is a Stein manifold and $\operatorname{dim} M \geq 2$
1). $\quad D$ is a connected relatively compact domain of M.
2). the boundary of D, denoted by ∂D, is a connected smooth real hypersurface of M.

Let (M, D) be a finite manifold. We use the following notations.

$$
\begin{aligned}
& C^{\infty}(\bar{D})=\{\text { a differentiable function on } \bar{D}\} \\
& H(\bar{D})=\left\{f \in C^{\infty}(\bar{D}) ;\left.f\right|_{D} \text { is a holomorphic function }\right\}
\end{aligned}
$$

where $f l_{D}$ is the restriction of f to D.
We choose a defining function φ of ∂D such that

$$
D=\{z ; \varphi(z)<0\} \text { and } M-D=\{z ; \varphi(z) \geq 0\}
$$

Since φ is a defining function, grad φ does not vanish on ∂D.
It is convenient to express the $T-C-R$ equations in another way. Let f be a differentiable function on ∂D. There exists $F \in C^{\infty}(\bar{D})$ so that $F \mid \partial D=f$.

Lemma 2-2. A differentiable function f on ∂D satisfies $T-C-R$ equations if and only if $\bar{\partial} F \wedge \bar{\partial} \varphi=0$ on ∂D, where F is a differentiable function on \bar{D} as above and $\bar{\partial}$ is the Cauchy-Riemann operator.

Proof is clear from Definition 1-1.

Lemma 2-3. (Hörmander [1] p. 137) Let M be a Stein manifold and α $a(0,1)$ type 1 -form of class C^{k}. If $\bar{\partial} \alpha=0$, there exists $a k-n$ time differentiable function u such that $\bar{\partial} u=\alpha$.

We shall prove the following corollary, using the above lemma.
Corollary 2-4. Let a be a $(0,1)$ type 1-form of class C^{k} on a Stein manifold M. If $\bar{\partial} \alpha=0$ and $K=\operatorname{supp} \alpha$ is compact and $M-K$ is connected, there exists $k-n$ time differentiable function u so that $\bar{\partial} u=\alpha$ and supp $u \subset K$.

Proof. There exists a $k-n$ time differentiable function v such that $\bar{\partial} v=\alpha$ by lemma 2-3. Since $\bar{\partial} v=0$ on $M-K, v$ is holomorphic on $M-K$. By Hartogs-Osgood's theorem (Kasahara [2]) $\left.v\right|_{M-K}$ can be continued to a holomorphic function w on M. We put $u=v-w$, it follows that $\bar{\partial} u=\bar{\partial} v-\bar{\partial} w$ $=\bar{\partial} v=\alpha$, and supp $u \subset K$.
Q.E.D.

We shall prove the following theorem by the method of Hörmander [1].

Theorem 2-5. Let (M, D) be a finite manifold, and f a differentiable function on ∂D. If f satisfies $T-C-R$ equations, there exists $\tilde{f} \in H(\bar{D})$ such that $\tilde{f} \mid \partial D=f$.

Proof. (1-st step) We construct by induction a differentiable function $U_{k} \in C^{\infty}(\widetilde{D})$ for every positive integer k which satisfies the following conditions;

$$
\begin{equation*}
\left.U_{k}\right|_{\partial D}=f \text { and } \bar{\partial} U_{k}=0\left(\varphi^{k}\right) . \tag{2-1}
\end{equation*}
$$

We extend f to a function on \bar{D} as an element of $C^{\infty}(\bar{D})$, and we denote it by f also. By lemma $2-2 \bar{\partial} f \wedge \bar{\partial} \varphi=0$ on ∂D. Then we can decompose $\bar{\partial} f$ as

$$
\bar{\partial} f=h_{1} \bar{\partial} \varphi+\varphi h_{2}
$$

where $h_{1} \in C^{\infty}(\bar{D})$ and h_{2} is a differentiable (0,1) type 1-form. We write it by $h_{2} \in C_{(0,1)}^{\infty}(\bar{D})$ in the following.

By simple calculation we have

$$
\begin{aligned}
\bar{\partial}\left(f-h_{1} \varphi\right) & =\bar{\partial} f-\left(\bar{\partial} h_{1}\right) \varphi-h_{1} \bar{\partial} \varphi \\
& =\varphi h_{2}-\left(\bar{\partial} h_{1}\right) \varphi \\
& =\varphi\left(h_{2}-\bar{\partial} h_{1}\right) .
\end{aligned}
$$

Put $U_{1}:=f-\varphi h_{1}$, then $\left.U_{1}\right|_{\partial D}=f$ and $\bar{\partial} U_{1}=0(\varphi)$. We have thus constructed U_{1}.

Now we assume that U_{k-1} is constructed, i.e.

$$
\left.U_{k-1}\right|_{\partial D}=f, \quad \bar{\partial} U_{k-1}=0\left(\varphi^{k-1}\right) .
$$

Then we can write $\bar{\partial} U_{k-1}=\varphi^{k-1} h, h \in C_{(0,1)}^{\infty}(\bar{D})$. Then

$$
\begin{aligned}
\bar{\partial} \bar{\partial} U_{k-1} & =0 \\
& =(k-1) \varphi^{k-2} \bar{\partial} \varphi \wedge h+\varphi^{k-1} \bar{\partial} h \\
& =\varphi^{k-2}((k-1) \bar{\partial} \varphi \wedge h+\varphi \cdot \bar{\partial} h)
\end{aligned}
$$

Hence $(k-1) \bar{\partial} \varphi \wedge h+\varphi \bar{\partial} h=0$. However $\varphi \bar{\partial} h$ vanishes on ∂D, so that h must satisfies $\bar{\partial} \varphi \wedge h=0$ on ∂D.
This imples that $h=\bar{\partial} \varphi \wedge h_{2 k-1}+\varphi h_{2 k}$, where $h_{2 k-1} \in C^{\infty}(\bar{D}), \quad h_{2 k} \in C_{(0,1)}^{\infty}(\bar{D})$. Put $U_{k}:=U_{k-1}-\left(\frac{1}{k} \cdot \varphi^{k}\right) h_{2 k-1}$. We see that the function U_{k} satisfies the condition ($2-1$), because

$$
\begin{aligned}
\bar{\partial} U_{k} & =\bar{\partial} U_{k-1}-\left(\varphi^{k-1} \bar{\partial} \varphi\right) h_{2 k-1}-\left(\frac{1}{k} \cdot \varphi^{k}\right) \bar{\partial} h_{2 k-1} \\
& =\varphi^{k} \cdot h_{2 k}-\left(\frac{1}{k} \cdot \varphi^{k}\right) \bar{\partial} h_{2 k-1} \\
& =\varphi^{k}\left(h_{2 k}-\frac{1}{k} \bar{\partial} h_{2 k-1}\right) .
\end{aligned}
$$

(2-nd step) Let $k \geq n+2$. We define $v_{k} \in C_{(0,0)}^{k}(M)$ with

$$
\left.v_{k}\right|_{\bar{D}}=\bar{\partial} U_{k} \quad \text { and }\left.v_{k}\right|_{M-\bar{D}}=0 .
$$

Note that supp. $\quad v_{k} \subset \bar{D}$. By corollary 2-4 there exists $w_{k} \in C^{k-1-n}(M)$ which satisfies $\bar{\partial} w_{k}=v_{k}$ and supp. $w_{k} \subset \bar{D}$. Put $f_{k}=U_{k}-w_{k}$. Then we have $f_{k} \in C^{(k-1-n)}(\bar{D}),\left.f_{k}\right|_{\partial D}=f$ and $\bar{\partial} f_{k}=\bar{\partial} U_{k}-\bar{\partial} U_{k}-\bar{\partial} w_{k}=0$. Thus f_{k} is holomorphic on D and its boundary value is f. Then by the uniqueness of continuation

$$
f_{k}=f_{k+1}=f_{k+2}=\cdots
$$

We put $\tilde{f}=f_{k}=f_{k+1}=f_{k+2}=\cdots$, it is the desired one.
Q.E.D.

3. Holomorphic extension of mappings

Let M be a complex manifold and S a real hypersurface of M. As we saw in $\S 1, T_{p}(S) \otimes \boldsymbol{C}$ is decomposed at $p \in S$ as follows:

$$
T_{p}(S) \otimes \boldsymbol{C}=H_{p}+\bar{H}_{p}+L_{p} \quad \text { (direct sum) }
$$

where H_{p}, \bar{H}_{p}, are holomorphic and anti-holomorphic tangent space at p,
respectively. Here we define the tangential Cauchy-Riemann equations for mapping.

Definition 3-1. Let M, M^{\prime}, be complex manifolds and S, S^{\prime} real hypersurfaces of M, M^{\prime}, respectively. Let μ be a differentiable mapping from S to S^{\prime}. The following conditions 1), 1^{\prime}), 2), 3) are equivalent. If μ satisfies one of the conditions, we say that μ satisfies the tangential CauchyRiemann equations (in short, $T-C-R$ equations).
1). $\mu_{*}\left(H_{p}(S)\right) \subset H_{\mu(p)}\left(S^{\prime}\right)$ for every point $p \in S$
1)'. $\quad \mu_{*}\left(\bar{H}_{p}(S)\right) \subset \bar{H}_{\mu(p)}\left(S^{\prime}\right)$ for every point $p \in S$
2). a differentiable function f on an open set of S^{\prime} satisfies $T-C-R$ equations, then $\mu^{*} f$ satisfies $T-C-R$ equations on its domain.
3). Let $\left(z_{1}^{\prime}, \cdots, z_{m}^{\prime}\right)$ be a local coordinate system at $q=\mu(p)$ of M. Then $f_{i}:=\mu^{*} z_{i}^{\prime}:(i=1, \cdots, m)$ satisfies $T-C-R$ equations.

We shall prove that four conditions of definition are equivalent.
$\left.1) \Longrightarrow 1^{\prime}\right)$. We choose a local coordinate system $\left(z_{1}, \cdots, z_{n}\right)$ of M at p as follows.

$$
H_{p}=\left\{\left\{\left(\frac{\partial}{\partial z_{1}}\right)_{p}, \cdots,\left(\frac{\partial}{\partial z_{n-1}}\right)\right\}\right\}, \quad \bar{H}_{p}=\left\{\left\{\left(\frac{\partial}{\partial \bar{z}_{1}}\right)_{p}, \cdots,\left(\frac{\partial}{\partial \bar{z}_{n-1}}\right)_{p}\right\}\right\}
$$

Take some local coordinate system $\left(z_{1}^{\prime}, \cdots, z_{m}^{\prime}\right)$ of M^{\prime} at $q=\mu(p)$ and put $f_{i}=\mu^{*} z_{i}^{\prime}$, then

$$
\mu_{*}\left(\frac{\partial}{\partial z_{i}}\right)_{p}=\sum_{j}\left(\frac{\partial f_{j}}{\partial z_{i}}\right)_{p}\left(\frac{\partial}{\partial z_{j}^{\prime}}\right)_{\mu(p)}+\sum_{j}\left(\frac{\partial \bar{f}_{j}}{\partial z_{i}}\right)_{p}\left(\frac{\partial}{\partial \bar{z}_{j}^{\prime}}\right)_{\mu(p)} \quad i=1, \cdots, n
$$

But from the condition 1) $\mu_{*}\left(\frac{\partial}{\partial z_{i}}\right) \in H\left(S^{\prime}\right)$, so that

$$
\left(\frac{\partial \bar{f}_{j}}{\partial z_{i}}\right)_{p}=\left(\frac{\overline{\partial f_{j}}}{\partial \bar{z}_{i}}\right)_{p}=0 \quad j=1, \cdots, m
$$

Hence it follows that

$$
\begin{aligned}
\mu_{*}\left(\frac{\partial}{\partial \bar{z}_{i}}\right)_{p} & =\sum_{j=1}^{m}\left(\frac{\partial f_{j}}{\partial \bar{z}_{i}}\right)_{p}\left(\frac{\partial}{\partial z_{j}^{\prime}}\right)_{\mu(p)}+\sum_{j=1}^{m}\left(\frac{\partial \bar{f}_{j}}{\partial \bar{z}_{i}}\right)_{p}\left(\frac{\partial}{\partial \bar{z}_{j}^{\prime}}\right)_{\mu(p)} \\
& =\sum_{j=1}^{m}\left(\frac{\partial \bar{f}_{j}}{\partial \bar{z}_{i}}\right)_{p}\left(\frac{\partial}{\partial \bar{z}_{j}^{\prime}}\right)_{\mu(p)} \in \bar{H}_{\mu(p)}\left(S^{\prime}\right)
\end{aligned}
$$

$\left.1^{\prime}\right) \Longrightarrow 1$) is now obvious.
2) $\Longrightarrow 3$). Since $\left(z_{1}^{\prime}, \cdots, z_{m}^{\prime}\right)$ is a local coordinate of M^{\prime} at $\mu(p)=q$, it is trivial that z_{i}^{\prime} satisfies $T-C-R$ equations. By condition 2), $f_{i}=\mu_{*}\left(z_{i}^{\prime}\right)$ satisfies $T-C-R$ equations.

1) $\Longrightarrow 2$). Let g be a differentiable function defined on a neighbourhood (in S^{\prime}) of $q=\mu(p)$ which satisfies $T-C-R$ equations. Let X be any element of $\bar{H}_{p}(S)$. By $\left.1^{\prime}\right) \mu_{*} X \in \bar{H}_{\mu(p)}\left(S^{\prime}\right)$, and $X\left(\mu^{*} g\right)=\left(\mu_{*} X\right) g=0$. Thus g satisfies $T-C-R$ equations.
2) $\Longrightarrow 1$). We choose a local coordinate system at p as above. We also have

$$
\mu_{*}\left(\frac{\partial}{\partial z_{i}}\right)_{p}=\sum_{j=1}^{m}\left(\frac{\partial f_{j}}{\partial z_{i}}\right)_{p}\left(\frac{\partial}{\partial z_{i}^{\prime}}\right)_{\mu(p)}+\left(\frac{\partial \bar{f}_{j}}{\partial z_{i}}\right)_{p}\left(\frac{\partial}{\partial \bar{z}_{j}}\right)_{\mu(p)} \quad(1 \leq i \leq n-1)
$$

Since f satisfies $T-C-R$ equations, we have $\left(\frac{\partial f_{j}}{\partial \bar{z}_{i}}\right)_{p}=\overline{\left(\frac{\partial \bar{f}_{j}}{\partial z_{i}}\right)}=0$. Then $\mu_{*}\left(\frac{\partial}{\partial z_{i}}\right)_{p} \in H_{\mu(p)}\left(S^{\prime}\right) . \quad$ This means $\mu_{*}\left(H_{p}(S)\right) \subset H_{\mu(p)}\left(S^{\prime}\right)$.

Lemma 3-2. Let M be a complex manifold and S be a real hypersurface of M. The set of all diffeomorphisms of S which satisfies $T-C-R$ equations is a group.

Proof is clear by the condition 1) of Definition 3-1. But I don't know the group of lemma $3-2$ is a Lie group or not.

Let (M, D) be a finite manifold. We introduce the following notations.
Let $\operatorname{Diff}(\bar{D})$ be the group of all C^{∞}-diffeomorphisms of \bar{D}, and
Aut $(\bar{D})=\left\{\mu \in \operatorname{Diff}(\bar{D}) ;\left.\mu\right|_{D}\right.$ is a holomorphic automorphism of $\left.D\right\}$
Now we shall prove the following
Theorem 3-3. If a diffeomorphism $\mu: \hat{o} D \rightarrow \partial D$ satisfies $T-C-R$ equations, there exists $\tilde{\mu} \in \operatorname{Aut}(\bar{D})$ such that $\left.\tilde{\mu}\right|_{\partial D}=\mu$.

Proof. Let p be any point of ∂D. Since M is a Stein manifold, there is a local coordinate system $\left(f_{1}, \cdots, f_{n}\right)$ of M at $q=\mu(p)$, where f_{1}, \cdots, f_{n} are holomorphic functions on M. By definition 3-1 $\mu^{*} f_{i}$ satisfies $T-C-R$ equations. Then by theorem 2-5 there exist $\tilde{f}_{i} \in H(\bar{D})$ such that $\left.\tilde{f}_{i}\right|_{\partial D}=\mu^{*} f_{i}$. We take a sufficiently small neighbourhood U_{p} of p, and define the mapping $\mu_{U p}: U_{p} \cap \bar{D} \rightarrow M$, using the above local coordinate system $\left(f_{1}, \cdots, f_{n}\right)$ at q, by

$$
\mu_{U_{p}}\left(p^{\prime}\right)=\left(\tilde{f}_{1}\left(p^{\prime}\right), \cdots, \tilde{f}_{n}(p)\right), \quad p^{\prime} \in U_{p} \cap \bar{D}
$$

By the uniqueness of the holomorphic continuation of functions, there exist
a small neighbourhood U of ∂D, so that $U \cap \widetilde{D}$ is connected, and there exists a holomorphic mapping

$$
\mu_{U}: \bar{D} \cap U \rightarrow M \text { with }\left.\mu_{U}\right|_{U_{p}} \cap_{\bar{D}}=\mu_{U_{p}}
$$

Since $D-D \cap U$ is compact, there exists a holomorphic mapping $\mu: D \rightarrow M$ so that $\left.\tilde{\mu}\right|_{D \cap U}=\tilde{\mu}_{U}$ by Hartogs-Osgood's theorem (K. Kasahara [2]). We shall prove that the mapping $\tilde{\mu}$ is the desired one.

By the construction of $\tilde{\mu}, \tilde{\mu}$ is holomorphic on D and $\left.\tilde{\mu}\right|_{\partial D}=\mu$. First we shall prove the rank of $\tilde{\mu}$ is $2 n$ at each point of a neighbourhood of ∂D in \bar{D}. Here we may assume that there exist real vector fields X_{1}, \cdots, X_{n}, $J X_{1}, \cdots, J X_{n-1}$ on a small neighbourhood $V_{p_{0}}$ of p_{0} in ∂D, such that they form a base of $T_{p}(\partial D)$ at every point p of $V_{p_{0}}$. We can construct them taking real parts of the base of H and a real vector contained in L given in $\S 1$.

We extend X_{1}, \cdots, X_{n} to a neighbourhood $W_{p_{0}}$ of $V_{p_{0}}$ and we denote them $\tilde{X}_{1}, \cdots, \tilde{X}_{n}$ and we can assume $\tilde{X}_{1}, \cdots, \tilde{X}_{n}, J \tilde{X}_{1}, \cdots, J \tilde{X}_{n-1}$ are linearly independent at each point of $W_{p_{0}}$, taking $W_{p_{0}}$ sufficiently small. Since μ is a diffeomorphisms, $\mu_{*}\left(X_{1}\right), \mu_{*}\left(X_{2}\right), \cdots, \mu_{*}\left(X_{n}\right), \mu_{*}\left(J X_{1}\right), \cdots, \mu_{*}\left(J X_{n-1}\right)$ are linearly independent at each point of $\mu\left(V_{p}\right)$, and hence $\tilde{\mu}_{*}\left(\tilde{X}_{1}\right), \cdots, \tilde{\mu}_{*}\left(\tilde{X}_{n}\right)$, $\tilde{\mu}_{*}\left(J \tilde{X}_{1}\right), \cdots, \tilde{\mu}_{*}\left(J \tilde{X}_{n-1}\right)$ are independent at every point of $\tilde{\mu}\left(W_{p} \cap D\right)$, changing $W_{p_{0}}$ smaller if necessary. Since $\tilde{\mu}$ is holomorphic on D,

$$
\tilde{\mu}_{*}\left(J \tilde{X}_{i}\right)=J \tilde{\mu}_{*}\left(\tilde{X}_{i}\right), \quad 1 \leq i \leq n
$$

Then $\tilde{\mu}_{*}\left(\tilde{X}_{1}\right), \tilde{\mu}_{*}\left(\tilde{X}_{2}\right), \cdots, \tilde{\mu}_{*}\left(\tilde{X}_{n}\right), \tilde{\mu}_{*}\left(J \tilde{X}_{1}\right), \cdots, \tilde{\mu}_{*}\left(J \tilde{X}_{n}\right)$ are independent at $\tilde{\mu}\left(W_{p} \cap D\right)$. It means the rank of $\tilde{\mu}$ is $2 n$ on $W_{p_{0}} \cap D$. Since p_{0} is an arbitrary point of $\hat{\partial} D$, there exists a neighbourhood W of ∂D such taht rank of $\tilde{\mu}$ is $2 n$ on $W \cap D$. Hence the set of all ponits of D where rank of $\tilde{\mu}$ is smaller than $2 n$ is a compact analytic set of dimension $n-1 \geq 1$ of M. Since M is a Stein manifold, there is no compact analytic set of dimension $n-1 \geq 1$ of M. Then rank $\tilde{\mu}$ is $2 n$ at each point of D. Hence $\tilde{\mu}$ is a local diffeomorphism on D.

Next we see that $\tilde{\mu}(\bar{D}) \subset \vec{D}$. In fact, if $\tilde{\mu}(\bar{D}) \not \subset \bar{D}$, there is a boundary point q of $\tilde{\mu}(\vec{D})$ such that $q=\tilde{\mu}(p) \notin \widetilde{D}$. Since $\tilde{\mu}(\partial D)=\partial D$, we have $p \in D$. This contradicts to the fact $\tilde{\mu}$ is a local diffeomorphism at p.

Since μ^{-1} also satisfies $T-C-R$ equations by Lemma 3-2, theer is $\left(\widetilde{\mu^{-1}}\right)$ such that $\left.\left(\widetilde{\mu^{-1}}\right)\right|_{D}$ is holomorphic and $\left.\left(\widetilde{\mu^{-1}}\right)\right|_{\partial D}=\mu^{-1}$. Since $\tilde{\mu}(\bar{D}) \subset \bar{D}$ and
$\left(\widetilde{\mu^{-1}}\right)(\bar{D}) \subset \bar{D}$, we have $(\tilde{\mu})\left(\widetilde{\mu^{-1}}\right)=i d=\widetilde{i d}$, and $\left(\widetilde{\mu^{-1}}\right)(\tilde{\mu})=i d=\widetilde{i d}$. This means that $\tilde{\mu}$ is a holomorphic automorphism of D.
Q.E.D.

By the proof of the above theorem, we conclude the following theorem.
Theorem 3-4. Let (M, D) be a finite manifold, N a Stein manifold and S a real hypersurface of N. If a mapping $\mu: \partial D \rightarrow S$ satisfies $T-C-R$ equations, there exists a differentiable mapping $\tilde{\mu}: \vec{D} \rightarrow N$ such that $\left.\tilde{\mu}\right|_{\partial D}=\mu$ and $\left.\tilde{\mu}\right|_{D}$ is holomorphic.

In the above theorem the conditoin that S is a real hypersurface can be changed to that $\mu: \partial D \rightarrow N$ satisfies the condition 1) of Definition 3-1.

By using the above theorem, we consider the holomorphic extension of a differentiable cross-section of a holomorphic fibre bundle.

Let (M, D) be a finite manifold and E a holomorphic fibre bundle over M. If a differentiable cross-section s over ∂D satisfies $T-C-R$ equations as a mapping $s: \partial D \rightarrow E$, we call s satisfies the tangential Cauchy-Reimann equations, (in short, $T-C-R$ equations).

Theorem 3-5. If a differentiable cross-section s over ∂D of a holomorphic fibre bundle whose fibre is a Stein manifold, satisfies $T-C-R$ equations, there exists a differentiable cross-section \tilde{s} over \bar{D} such that $\left.\tilde{s}\right|_{\partial D}=s$ and $\left.\tilde{s}\right|_{D}$ is a holomorphic crosssection.

Proof. Since M and the fibre of E are Stein manifolds, E is also a Stein manifold by the theorem of Matsushima-Morimoto [3]. Since cross-section s satisfies $T-C-R$ equations, there exists a mapping $\tilde{s}: D \rightarrow E$ such that $\left.\tilde{s}\right|_{\partial D}=s$ and $\left.\tilde{s}\right|_{D}$ is holomprohic by Theorem 3-4.

Then it sufficies to prove \tilde{s} is a cross-section i.e. $\pi \tilde{s}=i d$ where π is the projection from E to M.
$\tilde{f}=(\pi \tilde{s})^{*} f$ is a holomorphic function for every $f \in H(\widetilde{D})$. It is clear that $\left.\tilde{f}\right|_{\partial D}=f$ implies $\tilde{f}=(\pi \tilde{s})^{*} f=f$ on D. By considering coordinate functions, it means $\pi \tilde{s}=i d$.

Remark 3.6. If E is a holomorphic vector bundle, E is a Stien manifold since vector space over \boldsymbol{C} is a Stein manifold. In this case if a differentiable cross-section s over ∂D satisfies $T-C-R$ equations, by the local expression, then it satisfies $T-C-R$ equations as cross-section. Then s can be holomorphically extended to the cross-section over \tilde{D} by the above theorem.

Bibliography

[1] Hörmander, L. An introduction to complex analysis in several variables. Van Norstrand 1966.
[2] Kasahara, K. On Hartogs-Osgood's theorem for Stein Spaces., J. Math. Soci. Japan 17 (1965) pp. 297-314.
[3] Matsushima, Y. and Morimoto, A. Sur certains espaces fibrés holomorphes sur une variété de Stein., Bull. Soci. Math. France 88, 1960 pp. 137-155.

Nagoya University

