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Abstract

We consider a curvature flow V = κ + A in a two-dimensional undulating cylinder Ω described by
Ω := {(x, y) ∈ R2 | −g1(y) < x < g2(y), y ∈ R}, where V is the normal velocity of a moving curve contacting
the boundaries of Ω perpendicularly, κ is its curvature, A > 0 is a constant and g1(y), g2(y) are positive
smooth functions. If g1 and g2 are periodic functions and there are no stationary curves, Matano
et al. [‘Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their
homogenization limit’, Netw. Heterog. Media 1 (2006), 537–568] proved the existence of a periodic
travelling wave. We consider the case where g1, g2 are general nonperiodic positive functions and the
problem has some stationary curves. For each stationary curve Γ unstable from above/below, we construct
an entire solution growing out of it, that is, a solution curve Γt which increases/decreases monotonically,
converging to Γ as t→ −∞ and converging to another stationary curve or to +∞/−∞ as t→∞.

2010 Mathematics subject classification: primary 53C44; secondary 35B40, 35K55.
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1. Introduction

We consider the curvature-driven motion of a plane curve in a two-dimensional
cylinder Ω with undulating boundaries. The law of motion of the curve is given by

V = κ + A, (1.1)

where V denotes the normal velocity of the curve, κ denotes its curvature and A > 0 is
a constant representing a driving force. The domain Ω is defined by

Ω := {(x, y) ∈ R2 | −g1(y) < x < g2(y), y ∈ R}

(see Figure 1), where g1(y) and g2(y) are smooth and positive functions.
By a solution of (1.1) we mean a time-dependent simple curve γt in Ω which

satisfies (1.1) and contacts the left/right boundary ∂1Ω/∂2Ω perpendicularly. Equation
(1.1) appears as a certain singular limit of an Allen–Cahn-type nonlinear diffusion
equation under the Neumann boundary conditions. The curve γt represents the
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Figure 1. Ω and the curve γt.

interface between two different phases. See, for example, [1, 7] for details and also [2]
and references therein for curvature flow from a geometrical point of view. To avoid
sign confusion, the normal to the curve γt is chosen toward the upper region, and the
signs of V and κ are understood in accordance with this choice of the normal direction.
Consequently, κ is negative at those points where the curve is concave (see Figure 1).

We will mainly consider the case where γt is expressed as a graph of a certain
function y = u(x, t) at each time t. Let ζi(t) (i = 1, 2) be the x-coordinates of the end
points of γt lying on ∂iΩ. Now (1.1) is equivalent to

ut =
uxx

1 + u2
x

+ A
√

1 + u2
x, ζ1(t) < x < ζ2(t), t > 0, (1.2)

with the Neumann boundary conditions{
ux(ζ1(t), t) = g′1(u(ζ1(t), t)), (ζ1(t), u(ζ1(t), t)) ∈ ∂1Ω,
ux(ζ2(t), t) = −g′2(u(ζ2(t), t)), (ζ2(t), u(ζ2(t), t)) ∈ ∂2Ω.

(1.3)

Throughout this paper we assume the slope condition

|g′1(y)|, |g′2(y)| < 1 for all y ∈ R, (1.4)

which is used to prevent γt from developing singularities near the boundaries. A
function u(x, t) defined for ζ1(t) ≤ x ≤ ζ2(t), t ≥ 0, is called a time-global classical
solution of (1.2)–(1.3) if:

(a) u, ux are continuous for ζ1(t) ≤ x ≤ ζ2(t), t ≥ 0, and uxx, ut are continuous for
ζ1(t) < x < ζ2(t), t > 0;

(b) u satisfies (1.2)–(1.3) for ζ1(t) < x < ζ2(t), t > 0.

It is called a stationary solution of (1.2)–(1.3) if it is independent of t. It is easily seen
that the graph of a stationary solution is a concave circular arc of radius A−1 which
contacts ∂iΩ (i = 1, 2) perpendicularly.

In [6], the authors considered this problem in case g1 = g2 are positive 1-periodic
functions and proved that if:

(H1) the problem (1.2)–(1.3) has no stationary solutions,
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then there is a time-global classical solution u(x, t) for any smooth initial data u0 with
|u′0(x)| small, which propagates to infinity and converges to a periodic travelling wave
U(x, t) with U(x, t + T ) = U(x, t) + 1. In [4], they extended the results to the case
when g1 and g2 are positive recurrent functions and showed that there is always an
entire solution (that is, a solution defined for all t ∈ R) propagating from −∞ to ∞
when (H1) holds. On the other hand, in case:

(H2) the problem (1.2)–(1.3) has a stationary solution,

rather than the existence of entire solutions moving from −∞ to ∞, there are some
solutions converging to stationary ones, called pinning phenomena.

In this paper we continue to consider the (H2) case. For any suitable function u0, the
global existence of the classical solution for (1.2)–(1.3) with initial data u(x, 0) = u0(x)
can be derived as in [4, 6]. (In fact, one can convert the problem into another one with
Neumann boundary conditions by straightening the boundaries ∂iΩ with isothermic
coordinates as in [4, 6]. If necessary, one can first consider the problem in a piece
Ω ∩ {(x, y) | −L < y < L} of Ω for each L > 0 and then regard the problem as one with
2L-periodic boundaries. Thus, one can apply the argument in [4, 6] to derive the
global existence of the classical solutions.) We will show that although there are no
entire solutions propagating from −∞ to ∞, the problem (1.2)–(1.3) still has some
(bounded or unbounded) entire solutions growing out of the stationary solution, even
for more general boundary functions g1 and g2. More precisely, assume that u = v(x)
is a stationary solution of (1.2)–(1.3). If it is unstable from above in the sense that any
circular arc γ above v (near v and contacting the boundaries of Ω perpendicularly) has
curvature larger than −A, then there is an entire solution U(x, t) propagating upward
monotonically, converging to v(x) as t → −∞ and converging to another stationary
solution or to +∞ as t→∞ (see details in Theorem 3.3). Similarly, if v(x) is unstable
from below in the sense that any circular arc γ below v (near v and contacting the
boundaries of Ω perpendicularly) has curvature smaller than −A, then there is an
entire solution U(x, t) propagating downward monotonically, converging to v(x) as
t→ −∞ and converging to another stationary solution or to −∞ as t→∞ (see details
in Theorem 3.5).

Any entire solution connecting two stationary ones corresponds to a heteroclinic
orbit in the phase space. For semilinear parabolic equations in a fixed domain,
such solutions have been well studied more than thirty years ago (see, for example,
[5, Theorems 1, 3 and 8]). In some sense, our main results, Theorems 3.3 and 3.5, can
be regarded as the curvature flow version of Matano’s results.

In Section 2 we present a necessary and sufficient condition for the existence of
stationary solutions. In Section 3.2 we will consider a sequence of solutions u(x, t)
of (1.2)–(1.3) with initial data close to v(x) (like γ) and then use the renormalisation
method to construct entire solutions. For this purpose, we need to show that the time
for u to travel a certain distance can be arbitrarily long, provided γ is sufficiently close
to v. In order to estimate this time, we construct a complicated upper solution in
Section 3.1.
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2. Stationary solutions

A function v(x) defined on [ξ1, ξ2] for some ξ1, ξ2 with ξ1 < 0 < ξ2 is called a
stationary solution of (1.2)–(1.3) if it solves the problem

vxx + A(1 + v2
x)3/2 = 0, ξ1 ≤ x ≤ ξ2,

vx(ξ1) = g′1(v(ξ1)), (ξ1, v(ξ1)) ∈ ∂1Ω,
vx(ξ2) = −g′2(v(ξ2)), (ξ2, v(ξ2)) ∈ ∂2Ω.

(2.1)

In this section we present a necessary and sufficient condition for the existence of such
solutions.

Assume that P1(−g1(y1), y1) ∈ ∂1Ω and P2(g2(y2), y2) ∈ ∂2Ω. Assume further that
there is a concave circular arc Γ with centre (x0, y0) which contacts ∂iΩ perpendicularly
at Pi (i = 1, 2). Then the function of Γ (denoted by r(x; y1, y2)) satisfies

g′1(y1) = rx(−g1(y1)) = tan θ1(y1), −g′2(y2) = rx(g2(y2)) = tan θ2(y2)

for some θ1(y1), θ2(y2) ∈ (−π/2, π/2). It is easily seen that

sin θ1(y1) =
g′1(y1)√

1 + (g′1(y1))2
, sin θ2(y2) =

−g′2(y2)√
1 + (g′2(y2))2

.

The curvature of Γ can be expressed in terms of gi(yi) and θi(yi) in the following way.

Case 1. θ1(y1) > 0 > θ2(y2). By a simple geometrical observation we see that, in this
case, −g1(y1) < x0 < g2(y2) and

rxx

(1 + r2
x)3/2 = −

sin θ1(y1) − sin θ2(y2)
g1(y1) + g2(y2)

< 0. (2.2)

Case 2. θ1(y1) > θ2(y2) ≥ 0. Again, we see by a simple geometrical observation that
−g1(y1) < g2(y2) ≤ x0 and (2.2) holds.

Case 3. 0 ≥ θ1(y1) > θ2(y2). In this case, x0 ≤ −g1(y1) < g2(y2) and (2.2) holds.

In accordance with the sign of (rxx/(1 + r2
x)3/2) + A, we can decide whether r is a

solution, a lower solution or an upper solution of (2.1) as the following theorem shows.

Theorem 2.1. The function r(x; y1, y2) is a solution (respectively lower solution, upper
solution) of (2.1) according as

K(y1, y2) := A[g1(y1) + g2(y2)] − [sin θ1(y1) − sin θ2(y2)] = 0

(respectively K(y1, y2) > 0, K(y1, y2) < 0).
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3. Entire solutions

3.1. Upper and lower solutions. In this subsection we construct some upper and
lower solutions of the problem (1.2)–(1.3), which will be used to construct entire
solutions in the next subsection (see Remark 3.4 below).

Step 1. Stationary solutions. Our construction is based on the stationary solutions
from Section 2. We first present some further properties of stationary solutions.
Assume, for some Y1, Y2 ∈ R, that r(x; Y1, Y2) is a solution of (2.1). Then there is
an upper semicircle with radius A−1 and centre (x0, y0), whose function is

v(x; x0, y0) := y0 +
√

A−2 − (x − x0)2, |x − x0| < A−1,

such that r(x) is a truncation of v(x) over some interval [ξ1, ξ2]:

r(x; Y1,Y2) ≡ v(x; x0, y0)|[ξ1,ξ2],

where ξ1, ξ2 are defined by

ξ1 := −g1(Y1) = −g1(v(ξ1)) < 0, ξ2 := g2(Y2) = g2(v(ξ2)) > 0.

Set J := [y0, y0 + A−1 + 1]. By the slope condition (1.4), we can find a constant
G ∈ (0, 1) such that

|g′1(y)| ≤ G, |g′2(y)| ≤ G for y ∈ J.

By the boundary conditions in (2.1),

|vx(ξi)| =
|ξi − x0|√

A−2 − |ξi − x0|
2

= |g′i(Yi)| ≤ G (i = 1, 2).

Hence,

|ξi − x0| ≤ X :=
G

A
√

1 + G2
(i = 1, 2).

Set

G̃ :=
1 + G

2
∈ (G, 1), X̃ :=

G̃

A
√

1 + G̃2
∈ (X, A−1).

Then v(x) is well defined over I := {x | |x − x0| ≤ X̃} and |vx(x)| ≤ G̃ for x ∈ I.
Define

hi := min
y∈J

gi(y), Ki := max
y∈J
|g′′i (y)| (i = 1, 2).

Then h1, h2 > 0 by the positivity of gi(y) (i = 1, 2). We will construct an upper solution
based on v(x; x0, y0) in the case that x0 satisfies

−h1 < x0 < h2. (3.1)

(Note that this condition holds in particular in the following cases:

• v(x) is a symmetric function and x0 = 0;
• g1(y) ≥ H, g2(y) ≥ H for some H > 0 (as in [4, 6]) and x0 ∈ (−H,H).)
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Since the graph of v contacts ∂iΩ (i = 1, 2) perpendicularly, we can find a small
number ε0 ∈ (0, 1) such that, for any function w(x) defined over I satisfying

v(x) ≤ w(x) ≤ v(x) + ε0, |wx(x) − vx(x)| ≤ ε0 for x ∈ I, (3.2)

its graph contacts ∂1Ω (respectively ∂2Ω) at exactly one point (ζ1,w(ζ1)) (respectively
(ζ2,w(ζ2))) with ζ1, ζ2 ∈ I. Moreover, since g′1(ξ1) = vx(ξ1) > 0, g′2(ξ2) = −vx(ξ2) > 0
in case (3.1) holds, we can choose ε0 sufficiently small such that g′1(ζ1) > 0, g′2(ζ2) > 0
and so

x0 − X̃ ≤ ζ1 ≤ ξ1 ≤ −h1 < x0 < h2 ≤ ξ2 ≤ ζ2 ≤ x0 + X̃.

Step 2. Construction of an upper solution. To construct an upper solution we need
some parameters. Set

Mi :=
G[A(1 + G̃2)3/2 + KiG̃]

1 −GG̃
+ Ki (i = 1, 2).

Choose β > M1 + M2 + 1 sufficiently large such that

M1 + β + (M1 − β)eβ(h1+x0) < 0 < (β − M2)eβ(h2−x0) − M2 − β. (3.3)

For such a β, choose a large t0 such that

T := t0 −
1
β2

{∣∣∣∣∣ln ε0

β

∣∣∣∣∣ +

∣∣∣∣∣ln A
β2

∣∣∣∣∣ +

∣∣∣∣∣ln (X̃ − X)(1 −GG̃)
G

∣∣∣∣∣ + ln(1 + eβX̃)
}
> 0.

Using these parameters we define two functions

ρ(x, t) := eβ
2(t−t0)(eβ(x−x0) + e−β(x−x0)), (x, t) ∈ D := I × [0,T ]

and
ū(x, t) := v(x; x0, y0) + ρ(x, t), (x, t) ∈ D. (3.4)

We will show that ū is an upper solution.

Step 3. Some a priori estimates on ū. By the choice of t0,

β2(T − t0) ≤ ln
ε0

β(1 + eβX̃)
< ln

ε0

1 + eβX̃
< 0.

Hence,
|ū(x, t) − v(x)| = |ρ(x, t)| ≤ eβ

2(T−t0)(1 + eβX̃) ≤ ε0, (x, t) ∈ D

and
|ūx(x, t) − vx(x)| = |ρx(x, t)| ≤ βeβ

2(T−t0)(1 + eβX̃) ≤ ε0, (x, t) ∈ D.

These inequalities imply that ū(·, t) satisfies the conditions for w in (3.2) for each
t ∈ [0,T ] and so its graph contacts ∂1Ω (respectively ∂2Ω) at exactly one point, whose
x-coordinate satisfies

x0 − X̃ ≤ ζ̄1(t) ≤ ξ1 ≤ −h1 < x0 (respectively x0 < h2 ≤ ξ2 ≤ ζ̄2(t) ≤ x0 + X̃).
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Now we prove that

(ūx)2 = (vx + ρx)2 ≤ v2
x, (x, t) ∈ D. (3.5)

First, for (x, t) ∈ D with x ≤ x0, we have ρx(x, t) ≤ 0 and, with z := x0 − x ∈ [0, X̃],

vx(x) + ρx(x, t) =
z

√
A−2 − z2

− βeβ
2(t−t0)(eβz − e−βz)

≥
z

√
A−2 − z2

− βeβ
2(T−t0)(eβz − e−βz)

≥ F(z) :=
z

√
A−2 − z2

−
A

β(1 + eβX̃)
(eβz − e−βz),

since βeβ
2(T−t0) ≤ A/[β(1 + eβX̃)] by the choice of t0. Note that F(0) = 0 and

F′(z) =
A−2

(A−2 − z2)3/2 −
A

1 + eβX̃
(eβz + e−βz) ≥ 0 for z ∈ [0, X̃].

We conclude that F(z) ≥ 0 and so

vx ≥ vx + ρx ≥ ρx ≥ −vx for (x, t) ∈ D with x ≤ x0.

In a similar way one can show that

ρx ≥ 0 and vx ≤ vx + ρx ≤ ρx ≤ −vx for (x, t) ∈ D with x ≥ x0.

The inequality (3.5) then follows from these estimates.
Next, by the choice of t0, we can prove that

vxx + ρxx ≤ −A + β2ρ ≤ −A + β2eβ
2(t−t0)(1 + eβX̃) ≤ −A + A = 0, (x, t) ∈ D. (3.6)

Furthermore, for t ∈ [0,T ], there exists θ lying between ζ̄1(t) and ξ1 such that

|ζ̄1(t) − ξ1| = |g1(ū(ζ̄1(t), t)) − g1(v(ξ1))| ≤ G|ū(ζ̄1(t), t) − v(ξ1)|
≤ G[|ū(ζ̄1(t), t) − ū(ξ1, t)| + |ū(ξ1, t) − v(ξ1)|]
≤ G|ūx(θ, t)| · |ζ̄1(t) − ξ1| + Gρ(ξ1, t)
≤ G ·max

x∈I
|vx| · |ζ̄1(t) − ξ1| + Gρ(ξ1, t)

≤ GG̃|ζ̄1(t) − ξ1| + Gρ(ξ1, t)

and so, by the choice of t0,

|ζ̄1(t) − ξ1| ≤
G

1 −GG̃
ρ(ξ1, t) ≤

G

1 −GG̃
eβ

2(T−t0)(1 + eβX̃) ≤ X̃ − X. (3.7)

Step 4. Verification of the upper solution.

Lemma 3.1. Let ū be defined as in (3.4). If (3.1) holds, then ū is an upper solution of
(1.2)–(1.3) in the time interval [0,T ].
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Proof. First, for (x, t) ∈ {(x, t) | ζ̄1(t) < x < ζ̄2(t), t ∈ [0,T ]} ⊂ D, by (3.5) and (3.6),

ūt −
ūxx

1 + ū2
x
− A

√
1 + ū2

x ≥ β
2ρ −

vxx + ρxx

1 + v2
x
− A

√
1 + v2

x = β2ρ −
β2ρ

1 + v2
x
≥ 0.

Next we consider the boundary conditions. For t ∈ [0,T ], there are some θ1, θ3 lying
between ζ̄1(t) (for simplicity, we write it as ζ̄1) and ξ1 and some θ2 lying between v(ξ1)
and ū(ζ̄1, t) such that

ūx(ζ̄1, t) − g′1(ū(ζ̄1, t)) = vx(ζ̄1) + ρx(ζ̄1, t) − g′1(ū(ζ̄1, t))
= vx(ξ1) + vxx(θ1)(ζ̄1 − ξ1) − g′1(v(ξ1)) − g′′1 (θ2)[ū(ζ̄1, t) − v(ξ1)] + ρx(ζ̄1, t)
= vxx(θ1)(ζ̄1 − ξ1) − g′′1 (θ2)[ρ(ζ̄1, t) + v(ζ̄1) − v(ξ1)] + ρx(ζ̄1, t)
= [vxx(θ1) − g′′1 (θ2)vx(θ3)](ζ̄1 − ξ1) − g′′1 (θ2)ρ(ζ̄1, t) + ρx(ζ̄1, t)

≤ [A(1 + G̃2)3/2 + K1G̃] · |ζ̄1 − ξ1| + K1ρ(ζ̄1, t) + ρx(ζ̄1, t)

≤
G[A(1 + G̃2)3/2 + K1G̃]

1 −GG̃
ρ(ξ1, t) + K1ρ(ζ̄1, t) + ρx(ζ̄1, t)

≤ M1ρ(ζ̄1, t) + ρx(ζ̄1, t).

The penultimate inequality follows from (3.7) and the last follows from ζ̄1 ≤ ξ1 < x0.
Therefore, for t ∈ [0,T ],

e−β
2(t−t0)[ūx(ζ̄1, t) − g′1(ū(ζ̄1, t))] ≤ M1(1 + e−β(ζ̄1−x0)) + β(1 − e−β(ζ̄1−x0))

≤ M1 + β + (M1 − β)eβ(h1+x0) < 0,

by the choice of β in (3.3). Similarly, one can prove that

ūx(ζ̄2(t), t) ≥ −g′2(ū(ζ̄2(t), t)), t ∈ [0,T ].

Therefore, ū(x, t) is an upper solution of (1.2)–(1.3) in the time interval [0,T ]. �

In a similar way, one can prove the following result.

Lemma 3.2. Assume (3.1). For sufficiently large β and t0, u(x, t) := v(x; x0, y0) − ρ(x, t)
is a lower solution of (1.2)–(1.3) in the time interval [0,T1], provided T1 > 0 is small.

3.2. Entire solutions. Let v(x; x0, y0) be a solution of (2.1), whose graph contacts
∂1Ω perpendicularly at a point (−g1(Y1), Y1) and contacts ∂2Ω perpendicularly at
(g2(Y2),Y2). Then K(Y1,Y2) = 0 by Theorem 2.1. If, for some ε > 0,

K(y1, y2) > 0, y1 ∈ (Y1,Y1 + ε), y2 ∈ (Y2,Y2 + ε), (3.8)

then v(x; x0, y0) is unstable from above. In fact, for yi ∈ (Yi, Yi + ε) (i = 1, 2), by
Theorem 2.1, r(x; y1, y2) is a lower solution and so its corresponding circular arc has
a curvature larger than −A. This implies that the solution of (1.2)–(1.3) starting from
r(x; y1, y2) moves upward monotonically. Thus, v is unstable from above. Similarly,
we can see that v(x; x0, y0) is a stationary solution unstable from below if, for some
ε > 0,

K(y1, y2) < 0, y1 ∈ (Y1 − ε,Y1), y2 ∈ (Y2 − ε,Y2). (3.9)

In this section we construct entire solutions starting from a stationary solution
unstable from above or below.
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Theorem 3.3. Let v(x; x0, y0) ≡ r(x; Y1, Y2) be a solution of (2.1), which is unstable
from above in the sense that (3.8) holds. Assume that x0 ∈ (−g1(Y1), g2(Y2)). Then
there is an entire solutionU(x, t) of (1.2)–(1.3) such thatUt(x, t) > 0,U(·, t)→ v(·) as
t→ −∞ and, as t→∞, U(·, t) either goes upward to infinity or converges to another
stationary solution.

Proof. From the assumption x0 ∈ (−g1(Y1), g2(Y2)),

g′1(Y1) = vx(−g1(Y1)) > 0 and g′2(Y2) = −vx(g2(Y2)) > 0.

Hence, there exists ε1 ∈ (0, ε/2) such that g′i(y) > 0 for y ∈ [Yi, Yi + 2ε1] (i = 1, 2).
Modifying the functions g1 and g2 outside the interval [Yi, Yi + 2ε1] (i = 1, 2) if
necessary, we may assume that

−g1(Y1) ≤ −h1 := − min
y∈[y0,y0+A−1+1]

g1(y) < x0 < h2 := min
y∈[y0,y0+A−1+1]

g2(y) ≤ g2(Y2).

The function ū(x, t) constructed in Section 3.1 is an upper solution of (1.2)–(1.3) as
long as ū(x, t) − v(x) = ρ(x, t) ≤ 2ε1 (since this inequality implies that the graph of ū
contacts ∂iΩ at some points where the functions gi are still unmodified).

For any large positive integer n with 1/n < ε1, we consider the solution un(x, t) of
the problem (1.2)–(1.3) with initial data un(x,0) = rn(x) := r(x; Y1 + 1/n,Y2 + 1/n). By
the condition (3.8),

unt(x, 0) =
rnxx

1 + r2
nx

+ A
√

1 + r2
nx > 0.

By the maximum principle, un(x, t) is a monotonically (strictly) increasing solution,
that is, unt(x, t) > 0 for any (x, t) in the domain of definition of un. In addition,
by (3.8), un will propagate upward over the points (−g1(Y1 + 2ε1), Y1 + 2ε1) and
(g2(Y2 + 2ε1), Y2 + 2ε1) before it tends to another possible stationary solution. For
each large n, define tn as follows:

tn := sup{s | un(ζ1(t), t) < Y1 + 2ε1, un(ζ2(t), t) < Y2 + 2ε1, t ∈ [0, s]}.

We now use Lemma 3.1 to prove the following claim.

Claim. tn →∞ as n→∞.

Proof. In fact, for any given τ > 0, we can take ε0 ≤ 2ε1 and take t0 sufficiently large
such that τ − t0 � −1 and τ < T . Then the function ū(x, t) defined in Section 3.1
satisfies

ū(ζ̄1(τ), τ) = v(ζ̄1(τ)) + ρ(ζ̄1(τ), τ) ≤ v(−g1(Y1)) + eβ
2(τ−t0)(1 + eβX̃)

= Y1 + eβ
2(τ−t0)(1 + eβX̃) < Y1 + 2ε1,

thanks to τ − t0 � −1. Similarly, ū(ζ̄2(τ), τ) < Y2 + 2ε1. Given such a ū(x, t), we see
that, when n is sufficiently large, un(x, 0) = rn(x) < ū(x, 0) on their common domain.
By Lemma 3.1, ū is an upper solution on the time interval [0,T ], so, by the maximum
principle,

un(ζi(τ), τ) ≤ ū(ζ̄i(τ), τ) < Yi + 2ε1 (i = 1, 2).
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By the definition of tn, either un(ζ1(tn), tn) = Y1 + 2ε1 or un(ζ2(tn), tn) = Y2 + 2ε1.
Hence,

either un(ζ1(τ), τ) < un(ζ1(tn), tn) or un(ζ2(τ), τ) < un(ζ2(tn), tn).

Since un is strictly increasing in t, it follows that tn > τ. This proves the claim. �

For each large n, define

Un(x, t) := un(x, t + tn) for t ≥ −tn.

Then Un solves the following problem:
Unt =

Unxx

1 + U2
nx

+ A
√

1 + U2
nx, ζ1(t + tn) < x < ζ2(t + tn), t > −tn,

Unx(ζ1(t + tn), t) = g′1(Un(ζ1(t + tn), t)), t > −tn,
Unx(ζ2(t + tn), t) = −g′2(Un(ζ2(t + tn), t)), t > −tn,
Un(ζi(tn), 0) = Yi + 2ε1, i = 1 or i = 2.

This problem can be converted into another quasilinear parabolic equation with
Neumann boundary conditions by straightening the boundaries ∂iΩ with isothermic
coordinates as in [4, 6] (if necessary, one can first consider the problem in a piece
Ω ∩ {(x, y) |min{Y1,Y2} − L ≤ y ≤max{Y1,Y2} + L} of Ω for each L > 0 and then regard
the problem as one with 2L-periodic boundaries). Thus, one can use the parabolic
estimates and Cantor’s diagonal argument as in [4, 6] to conclude that a subsequence
of the triple {(Un(x, t), ζ1(t + tn), ζ2(t + tn))} converges to a triple {(U(x, t), ζ̃1(t), ζ̃2(t))}
(all of the components are defined in R, since tn →∞) such that

Ut =
Uxx

1 +U2
x

+ A
√

1 +U2
x , ζ̃1(t) < x < ζ̃2(t), t ∈ R,

Ux(̃ζ1(t), t) = g′1(U(̃ζ1(t), t)), t ∈ R,
Ux(̃ζ2(t), t) = −g′2(U(̃ζ2(t), t)), t ∈ R,
U(̃ζi(0), 0) = Yi + 2ε1, i = 1 or i = 2.

Since un is monotonically increasing in t, we have Ut(x, t) > 0 for all t ∈ R by the
maximum principle. Therefore, as t→ −∞, U(·, t) goes downward and converges to
the stationary solution v(x). As t→∞, U(·, t) goes upward to infinity (when there
are no other stationary solutions lying above v(x)) or converges to another stationary
solution (when there is a stationary solution lying above v(x)). �

Remark 3.4. Note that the complicated upper solution ū(x, t) constructed in Section 3.1
is only used to prove that tn→∞ in the claim in the above proof. This limit means that
a solution u starting from the neighbourhood of an unstable stationary solution v takes
a very long time to leave v. This fact guarantees that the limiting function U(x, t) is
defined for all t < 0 and so is an entire solution.
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In a similar way we can prove the following result.

Theorem 3.5. Let v(x; x0, y0) ≡ r(x; Y1, Y2) be a solution of (2.1), which is unstable
from below in the sense that (3.9) holds. Assume that x0 ∈ (−g1(Y1), g2(Y2)). Then
there is an entire solution U(x, t) of (1.2)–(1.3) such that Ut(x, t) < 0, U(·, t)→ v(·)
as t→ −∞ and, as t→∞, U(·, t) either goes downward to infinity or converges to
another stationary solution.

Remark 3.6. Finally, we comment on Yau’s famous problem (cf. [3]): is it possible
to evolve a closed plane curve γ1 to converge to another one γ2 (perhaps, up to an
isometry), either in finite time or in infinite time, using a parabolic curvature flow?
In [3], the authors constructed a curvature flow and gave a positive answer to this
interesting problem, in case both γ1 and γ2 are simple, convex, closed curves. Note
that our results are related to and different from this problem. First, each solution U
obtained in Theorems 3.3 and 3.5 is an entire one, satisfying U(x,−∞) = Γ1 rather
than U(x, 0) = Γ1. Second, any entire solution connects two stationary ones rather
than two arbitrarily given curves. Third, the curves in this paper are not closed ones
but with end points on the boundaries of Ω.
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