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Because of their analytical simplicity and regularity, Stackel potentials are 
attractive tools for modelling galaxies. The third integral h is explicitly known 
in a Stackel potential, and can be used as an approximation to the effective third 
integral, in order to construct three-integral models (cf. Dejonghe, et al. , 1996, 
A&A 306, 363). 

Moreover, Stackel potentials turn out to yield good global descriptions for 
either axisymmetric or triaxial systems without central mass concentration (de 
Zeeuw 1985, MNRAS 216, 273, de Zeeuw & Lynden-Bell 1985, MNRAS 215, 
713), and even for some systems with a black hole included (Sridhar & Touma 
1997, MNRAS 292, 657). 

One long-standing concern though, is that Stackel potentials form only a very 
small subspace in the family of all potentials. The main orbit families found by 
numerical integration in general triaxial potentials are present in a Stackel potential 
(Schwarzschild 1981, ApJ 232,236, de Zeeuw 1985, MNRAS 216,273), but there 
is obviously no place in an integrable potential for smaller orbital families or 
stochastic orbits. However, since regular orbits are the rule rather than the exception, 
a potential which yields a good representation of those orbits is certainly a good 
basis for building models. 

We want to improve the generality of models based on Stackel potentials, by 
using a set of Stackel potentials, each of which fits the true galactic potential in a 
spatially limited region. These potentials then provide an explicit expression for 
the integrals that will allow us to construct semi-analytical distribution functions 
expressed as f(E, Lz, Is). In a Stackel potential, there is a function of 1 variable 
that can be freely chosen. This flexibility is advantageous, and will, of course, be 
exploited at the fullest when performing the fit. 

This work is a preliminary study on the feasibility and effectiveness of such an 
approach. This we do by comparing orbit integrations with their counterparts in 
the Stackel-set representation. 

As a test case, we consider an axisymmetric Miyamoto-Nagai (MN) model 
(1975, PASJ 27, 533) with intermediate flattening (e ~ 4.5). In this model, the 
diskiness is largely exaggerated, so we are considering a specially demanding 
case. The fitting of Stackel potentials to the MN potential in spatially limited 
regions is done on a grid, using quadratic programming. In brief, a number of basic 
potentials ipi are chosen out of a library and combined to yield a V's = J2i c% V .̂ in 
order to minimize the quantity x2 = J2i 0^ _ Hi CjV'i)2. with / an index covering 
the points in the grid. A complete description of this fit method can be found 
in Mathieu & Dejonghe, 1996, A&A 314, 25. The integration of orbits in both 
potentials, is performed using a fourth-order Runge-Kutta with variable time-step 
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and with energy conservation better than 10""6 (relative error) over 100 azimuthal 
periods. 

Checking the representation of orbits in both potentials, we find that typical 
orbits have very similar surfaces of section. Minor resonances trapping some of 
the orbits are well reproduced by the Stackel potentials. Other resonances present 
in the MN potential, but absent from the Stackel fit, are found for small values 
of h (these are orbits remaining close to the equatorial plane, where diskiness 
is important). They represent ~ 4% of our orbit library. Those orbits could be 
represented by an alternative method (such as a frequency decomposition). 

The volume of phase-space occupied by the orbit is important when assem
bling orbits to reproduce a given density. Therefore, we also computed the orbital 
densities p(R, z; E, Lz, I3) which are functions of (R, z) for each given orbit. The 
mass fraction correctly located in the Stackel potential compared to the original 
MN potential is M = 1 - 6M, where we computed SM — J2k e \(pMN(Rk, H) -
ps(Rk, ^ ) ) | / 2 . The average M is 92%, the lowest values for M are found for 
orbits with resonances that were not well fitted. 

An important question is how well the I3 is conserved along the orbits, so that 
it can be used as a label in modelling procedures. We calculated the variation of 
73 along the orbits and find that it is usually of order the error in the potential fit 
(at worst a few percents). For orbits that remain close to the equatorial plane, the 
variations reach a few tenths. This shows that, for a real galaxy, a strong diskiness 
would certainly require an additional local Stackel potential for these regions. 

We can conclude that, using a small set of Stackel potentials as an approximation 
to a trial MN potential, we are able to reproduce most of its orbits with satisfactory 
accuracy, except for very few resonances. We find that for the vast majority of 
orbits, the Stackel h does provide a valid approximation for the effective third 
integral of our trial potential. Therefore, this value of I3 can be used for labelling 
those orbits when constructing dynamical models. 
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